L(s) = 1 | + 2-s + 4-s + 8-s − 11-s − 4·13-s + 16-s − 3·17-s − 19-s − 22-s + 3·23-s − 5·25-s − 4·26-s + 9·29-s + 2·31-s + 32-s − 3·34-s − 7·37-s − 38-s + 6·41-s + 11·43-s − 44-s + 3·46-s + 3·47-s − 5·50-s − 4·52-s + 9·58-s − 9·59-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s − 0.301·11-s − 1.10·13-s + 1/4·16-s − 0.727·17-s − 0.229·19-s − 0.213·22-s + 0.625·23-s − 25-s − 0.784·26-s + 1.67·29-s + 0.359·31-s + 0.176·32-s − 0.514·34-s − 1.15·37-s − 0.162·38-s + 0.937·41-s + 1.67·43-s − 0.150·44-s + 0.442·46-s + 0.437·47-s − 0.707·50-s − 0.554·52-s + 1.18·58-s − 1.17·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 5 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 + T + p T^{2} \) |
| 23 | \( 1 - 3 T + p T^{2} \) |
| 29 | \( 1 - 9 T + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 + 7 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 - 11 T + p T^{2} \) |
| 47 | \( 1 - 3 T + p T^{2} \) |
| 53 | \( 1 + p T^{2} \) |
| 59 | \( 1 + 9 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 3 T + p T^{2} \) |
| 73 | \( 1 + 4 T + p T^{2} \) |
| 79 | \( 1 + 16 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.36107291702769445710144207308, −6.54821781815717450235118487434, −5.97120035176155296969755179357, −5.16567992531436349906382784247, −4.55521700469119396218663125003, −4.01662326174328454403961614589, −2.83156278620086316701868803689, −2.52019578937119137078367245192, −1.38710158730409092388824349185, 0,
1.38710158730409092388824349185, 2.52019578937119137078367245192, 2.83156278620086316701868803689, 4.01662326174328454403961614589, 4.55521700469119396218663125003, 5.16567992531436349906382784247, 5.97120035176155296969755179357, 6.54821781815717450235118487434, 7.36107291702769445710144207308