Properties

Label 2-9702-1.1-c1-0-141
Degree $2$
Conductor $9702$
Sign $-1$
Analytic cond. $77.4708$
Root an. cond. $8.80175$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 11-s − 4·13-s + 16-s − 3·17-s − 19-s − 22-s + 3·23-s − 5·25-s − 4·26-s + 9·29-s + 2·31-s + 32-s − 3·34-s − 7·37-s − 38-s + 6·41-s + 11·43-s − 44-s + 3·46-s + 3·47-s − 5·50-s − 4·52-s + 9·58-s − 9·59-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 0.301·11-s − 1.10·13-s + 1/4·16-s − 0.727·17-s − 0.229·19-s − 0.213·22-s + 0.625·23-s − 25-s − 0.784·26-s + 1.67·29-s + 0.359·31-s + 0.176·32-s − 0.514·34-s − 1.15·37-s − 0.162·38-s + 0.937·41-s + 1.67·43-s − 0.150·44-s + 0.442·46-s + 0.437·47-s − 0.707·50-s − 0.554·52-s + 1.18·58-s − 1.17·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9702\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(77.4708\)
Root analytic conductor: \(8.80175\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9702,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36107291702769445710144207308, −6.54821781815717450235118487434, −5.97120035176155296969755179357, −5.16567992531436349906382784247, −4.55521700469119396218663125003, −4.01662326174328454403961614589, −2.83156278620086316701868803689, −2.52019578937119137078367245192, −1.38710158730409092388824349185, 0, 1.38710158730409092388824349185, 2.52019578937119137078367245192, 2.83156278620086316701868803689, 4.01662326174328454403961614589, 4.55521700469119396218663125003, 5.16567992531436349906382784247, 5.97120035176155296969755179357, 6.54821781815717450235118487434, 7.36107291702769445710144207308

Graph of the $Z$-function along the critical line