Properties

Label 4-972e2-1.1-c1e2-0-1
Degree $4$
Conductor $944784$
Sign $1$
Analytic cond. $60.2402$
Root an. cond. $2.78593$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 5·13-s − 14·19-s + 5·25-s + 7·31-s − 20·37-s + 13·43-s + 7·49-s + 13·61-s − 11·67-s + 34·73-s − 17·79-s − 20·91-s + 19·97-s + 7·103-s + 34·109-s + 11·121-s + 127-s + 131-s − 56·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 1.51·7-s − 1.38·13-s − 3.21·19-s + 25-s + 1.25·31-s − 3.28·37-s + 1.98·43-s + 49-s + 1.66·61-s − 1.34·67-s + 3.97·73-s − 1.91·79-s − 2.09·91-s + 1.92·97-s + 0.689·103-s + 3.25·109-s + 121-s + 0.0887·127-s + 0.0873·131-s − 4.85·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 944784 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 944784 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(944784\)    =    \(2^{4} \cdot 3^{10}\)
Sign: $1$
Analytic conductor: \(60.2402\)
Root analytic conductor: \(2.78593\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 944784,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.786333715\)
\(L(\frac12)\) \(\approx\) \(1.786333715\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + T + p T^{2} ) \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 17 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
83$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22462097453571218112343460634, −10.18697061169295571038824450105, −9.162377778935506121976372507627, −8.756652611867347707245320640521, −8.739823279221469597398495088759, −8.124202131819958128206303762430, −7.83153989491991082327661306619, −7.27313939997081265463475314151, −6.80148584373458156962987207243, −6.53627614476559093084639588800, −5.93437472438920757150385202680, −5.23741506028052292590218272383, −4.97173078420817295032312813270, −4.51043623003399902229115609309, −4.19237772252609825951327090288, −3.50557625438951798957335859084, −2.62032001267920941684449414407, −2.12889956551082042608832160227, −1.81224222374119512359537461234, −0.60557878200296286027696848784, 0.60557878200296286027696848784, 1.81224222374119512359537461234, 2.12889956551082042608832160227, 2.62032001267920941684449414407, 3.50557625438951798957335859084, 4.19237772252609825951327090288, 4.51043623003399902229115609309, 4.97173078420817295032312813270, 5.23741506028052292590218272383, 5.93437472438920757150385202680, 6.53627614476559093084639588800, 6.80148584373458156962987207243, 7.27313939997081265463475314151, 7.83153989491991082327661306619, 8.124202131819958128206303762430, 8.739823279221469597398495088759, 8.756652611867347707245320640521, 9.162377778935506121976372507627, 10.18697061169295571038824450105, 10.22462097453571218112343460634

Graph of the $Z$-function along the critical line