L(s) = 1 | + 4·7-s − 5·13-s − 14·19-s + 5·25-s + 7·31-s − 20·37-s + 13·43-s + 7·49-s + 13·61-s − 11·67-s + 34·73-s − 17·79-s − 20·91-s + 19·97-s + 7·103-s + 34·109-s + 11·121-s + 127-s + 131-s − 56·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 1.51·7-s − 1.38·13-s − 3.21·19-s + 25-s + 1.25·31-s − 3.28·37-s + 1.98·43-s + 49-s + 1.66·61-s − 1.34·67-s + 3.97·73-s − 1.91·79-s − 2.09·91-s + 1.92·97-s + 0.689·103-s + 3.25·109-s + 121-s + 0.0887·127-s + 0.0873·131-s − 4.85·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=(944784s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(944784s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
944784
= 24⋅310
|
Sign: |
1
|
Analytic conductor: |
60.2402 |
Root analytic conductor: |
2.78593 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 944784, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.786333715 |
L(21) |
≈ |
1.786333715 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | 1−pT2+p2T4 |
| 7 | C2 | (1−5T+pT2)(1+T+pT2) |
| 11 | C22 | 1−pT2+p2T4 |
| 13 | C2 | (1−2T+pT2)(1+7T+pT2) |
| 17 | C2 | (1+pT2)2 |
| 19 | C2 | (1+7T+pT2)2 |
| 23 | C22 | 1−pT2+p2T4 |
| 29 | C22 | 1−pT2+p2T4 |
| 31 | C2 | (1−11T+pT2)(1+4T+pT2) |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C2 | (1−8T+pT2)(1−5T+pT2) |
| 47 | C22 | 1−pT2+p2T4 |
| 53 | C2 | (1+pT2)2 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C2 | (1−14T+pT2)(1+T+pT2) |
| 67 | C2 | (1−5T+pT2)(1+16T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−17T+pT2)2 |
| 79 | C2 | (1+4T+pT2)(1+13T+pT2) |
| 83 | C22 | 1−pT2+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1−14T+pT2)(1−5T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22462097453571218112343460634, −10.18697061169295571038824450105, −9.162377778935506121976372507627, −8.756652611867347707245320640521, −8.739823279221469597398495088759, −8.124202131819958128206303762430, −7.83153989491991082327661306619, −7.27313939997081265463475314151, −6.80148584373458156962987207243, −6.53627614476559093084639588800, −5.93437472438920757150385202680, −5.23741506028052292590218272383, −4.97173078420817295032312813270, −4.51043623003399902229115609309, −4.19237772252609825951327090288, −3.50557625438951798957335859084, −2.62032001267920941684449414407, −2.12889956551082042608832160227, −1.81224222374119512359537461234, −0.60557878200296286027696848784,
0.60557878200296286027696848784, 1.81224222374119512359537461234, 2.12889956551082042608832160227, 2.62032001267920941684449414407, 3.50557625438951798957335859084, 4.19237772252609825951327090288, 4.51043623003399902229115609309, 4.97173078420817295032312813270, 5.23741506028052292590218272383, 5.93437472438920757150385202680, 6.53627614476559093084639588800, 6.80148584373458156962987207243, 7.27313939997081265463475314151, 7.83153989491991082327661306619, 8.124202131819958128206303762430, 8.739823279221469597398495088759, 8.756652611867347707245320640521, 9.162377778935506121976372507627, 10.18697061169295571038824450105, 10.22462097453571218112343460634