L(s) = 1 | + (0.707 + 0.707i)2-s + (−1.41 − i)3-s − 0.999i·4-s + (−0.292 − 1.70i)6-s + (−1 − i)7-s + (2.12 − 2.12i)8-s + (1.00 + 2.82i)9-s + (2.82 + 2.82i)11-s + (−0.999 + 1.41i)12-s + (3 − 2i)13-s − 1.41i·14-s + 1.00·16-s + (−1.29 + 2.70i)18-s + (−1 − i)19-s + (0.414 + 2.41i)21-s + 4.00i·22-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (−0.816 − 0.577i)3-s − 0.499i·4-s + (−0.119 − 0.696i)6-s + (−0.377 − 0.377i)7-s + (0.750 − 0.750i)8-s + (0.333 + 0.942i)9-s + (0.852 + 0.852i)11-s + (−0.288 + 0.408i)12-s + (0.832 − 0.554i)13-s − 0.377i·14-s + 0.250·16-s + (−0.304 + 0.638i)18-s + (−0.229 − 0.229i)19-s + (0.0903 + 0.526i)21-s + 0.852i·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.141 + 0.989i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.141 + 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12885 - 0.978783i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12885 - 0.978783i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.41 + i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-3 + 2i)T \) |
good | 2 | \( 1 + (-0.707 - 0.707i)T + 2iT^{2} \) |
| 7 | \( 1 + (1 + i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.82 - 2.82i)T + 11iT^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + (1 + i)T + 19iT^{2} \) |
| 23 | \( 1 + 8.48iT - 23T^{2} \) |
| 29 | \( 1 - 2.82iT - 29T^{2} \) |
| 31 | \( 1 + (5 + 5i)T + 31iT^{2} \) |
| 37 | \( 1 + (1 + i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1.41 + 1.41i)T - 41iT^{2} \) |
| 43 | \( 1 + 6T + 43T^{2} \) |
| 47 | \( 1 + (-2.82 + 2.82i)T - 47iT^{2} \) |
| 53 | \( 1 + 5.65T + 53T^{2} \) |
| 59 | \( 1 + (2.82 + 2.82i)T + 59iT^{2} \) |
| 61 | \( 1 - 8T + 61T^{2} \) |
| 67 | \( 1 + (5 - 5i)T - 67iT^{2} \) |
| 71 | \( 1 + (2.82 - 2.82i)T - 71iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + 73iT^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 + (-5.65 - 5.65i)T + 83iT^{2} \) |
| 89 | \( 1 + (-9.89 - 9.89i)T + 89iT^{2} \) |
| 97 | \( 1 + (-7 + 7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08588022312972337751372459419, −8.996343870742000267881830225308, −7.81433074348019573424455279264, −6.80191392963236127299069907019, −6.54543895398255541263105630406, −5.61206961679028110060161780501, −4.71797818516801333994635135675, −3.85497653691125643962498321455, −1.96101929998877069000015819085, −0.69967314444000122778498041769,
1.54947218763846432001036652910, 3.34174272300163568225809605055, 3.73931228074371656073549150969, 4.81574788053086594733739152895, 5.82633289122574682253679288012, 6.50014283613447435602752137417, 7.64667275332521907793739478296, 8.840536990656040796549792308529, 9.307788808191469348680096112692, 10.47717821410700206991541553097