L(s) = 1 | + (0.707 + 0.707i)2-s + (−1.41 + i)3-s − 0.999i·4-s + (−1.70 − 0.292i)6-s + (1 + i)7-s + (2.12 − 2.12i)8-s + (1.00 − 2.82i)9-s + (−2.82 − 2.82i)11-s + (0.999 + 1.41i)12-s + (−3 + 2i)13-s + 1.41i·14-s + 1.00·16-s + (2.70 − 1.29i)18-s + (−1 − i)19-s + (−2.41 − 0.414i)21-s − 4.00i·22-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (−0.816 + 0.577i)3-s − 0.499i·4-s + (−0.696 − 0.119i)6-s + (0.377 + 0.377i)7-s + (0.750 − 0.750i)8-s + (0.333 − 0.942i)9-s + (−0.852 − 0.852i)11-s + (0.288 + 0.408i)12-s + (−0.832 + 0.554i)13-s + 0.377i·14-s + 0.250·16-s + (0.638 − 0.304i)18-s + (−0.229 − 0.229i)19-s + (−0.526 − 0.0903i)21-s − 0.852i·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.431 + 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.431 + 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.926363 - 0.583990i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.926363 - 0.583990i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.41 - i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3 - 2i)T \) |
good | 2 | \( 1 + (-0.707 - 0.707i)T + 2iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.82 + 2.82i)T + 11iT^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + (1 + i)T + 19iT^{2} \) |
| 23 | \( 1 + 8.48iT - 23T^{2} \) |
| 29 | \( 1 + 2.82iT - 29T^{2} \) |
| 31 | \( 1 + (5 + 5i)T + 31iT^{2} \) |
| 37 | \( 1 + (-1 - i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.41 - 1.41i)T - 41iT^{2} \) |
| 43 | \( 1 - 6T + 43T^{2} \) |
| 47 | \( 1 + (-2.82 + 2.82i)T - 47iT^{2} \) |
| 53 | \( 1 + 5.65T + 53T^{2} \) |
| 59 | \( 1 + (-2.82 - 2.82i)T + 59iT^{2} \) |
| 61 | \( 1 - 8T + 61T^{2} \) |
| 67 | \( 1 + (-5 + 5i)T - 67iT^{2} \) |
| 71 | \( 1 + (-2.82 + 2.82i)T - 71iT^{2} \) |
| 73 | \( 1 + (1 + i)T + 73iT^{2} \) |
| 79 | \( 1 - 10T + 79T^{2} \) |
| 83 | \( 1 + (-5.65 - 5.65i)T + 83iT^{2} \) |
| 89 | \( 1 + (9.89 + 9.89i)T + 89iT^{2} \) |
| 97 | \( 1 + (7 - 7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.976546583700732469681323799229, −9.187807993918501248828789661092, −8.119562550239981904369737622998, −6.98282190945396367693944130606, −6.22294262501307378293025083095, −5.44884629818054630039693489071, −4.82517950540750976713319566807, −3.99487938160348717048317674803, −2.34984455263533978237284609177, −0.46789272395221062628868678043,
1.62009956464111801742451288000, 2.66014765122719964393185980927, 3.97187030805399446596375311188, 5.03012589607614929023375351501, 5.45244063082564313508315268718, 7.01361111739257645236183053699, 7.54183144396936730020705590281, 8.107007983117112342326641087502, 9.550937014058362794384691283572, 10.55080320099149433765704856204