L(s) = 1 | + 4·3-s − 4·7-s + 6·9-s + 8·13-s − 16-s + 4·19-s − 16·21-s − 4·27-s − 20·31-s − 4·37-s + 32·39-s − 4·48-s + 8·49-s + 16·57-s + 32·61-s − 24·63-s + 20·67-s − 4·73-s − 40·79-s − 37·81-s − 32·91-s − 80·93-s − 28·97-s + 4·109-s − 16·111-s + 4·112-s + 48·117-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 1.51·7-s + 2·9-s + 2.21·13-s − 1/4·16-s + 0.917·19-s − 3.49·21-s − 0.769·27-s − 3.59·31-s − 0.657·37-s + 5.12·39-s − 0.577·48-s + 8/7·49-s + 2.11·57-s + 4.09·61-s − 3.02·63-s + 2.44·67-s − 0.468·73-s − 4.50·79-s − 4.11·81-s − 3.35·91-s − 8.29·93-s − 2.84·97-s + 0.383·109-s − 1.51·111-s + 0.377·112-s + 4.43·117-s + ⋯ |
Λ(s)=(=((34⋅58⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅58⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅134
|
Sign: |
1
|
Analytic conductor: |
3673.89 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.677004440 |
L(21) |
≈ |
2.677004440 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | (1−2T+pT2)2 |
| 5 | | 1 |
| 13 | C2 | (1−4T+pT2)2 |
good | 2 | C23 | 1+T4+p4T8 |
| 7 | C22 | (1+2T+2T2+2pT3+p2T4)2 |
| 11 | C23 | 1−206T4+p4T8 |
| 17 | C2 | (1+pT2)4 |
| 19 | C22 | (1−2T+2T2−2pT3+p2T4)2 |
| 23 | C22 | (1−26T2+p2T4)2 |
| 29 | C22 | (1−50T2+p2T4)2 |
| 31 | C22 | (1+10T+50T2+10pT3+p2T4)2 |
| 37 | C22 | (1+2T+2T2+2pT3+p2T4)2 |
| 41 | C23 | 1+2722T4+p4T8 |
| 43 | C22 | (1−50T2+p2T4)2 |
| 47 | C23 | 1+1666T4+p4T8 |
| 53 | C22 | (1−74T2+p2T4)2 |
| 59 | C23 | 1+3442T4+p4T8 |
| 61 | C2 | (1−8T+pT2)4 |
| 67 | C22 | (1−10T+50T2−10pT3+p2T4)2 |
| 71 | C23 | 1+5794T4+p4T8 |
| 73 | C22 | (1+2T+2T2+2pT3+p2T4)2 |
| 79 | C2 | (1+10T+pT2)4 |
| 83 | C23 | 1−3374T4+p4T8 |
| 89 | C23 | 1−15518T4+p4T8 |
| 97 | C22 | (1+14T+98T2+14pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.22962409609456433245768818249, −7.07016635259605825682806147076, −6.86915256857119081157305746333, −6.55671272987272668850243569332, −6.28587054128424301410234678989, −6.11303450444885643996722076195, −5.64641845260248698870777580206, −5.58271078423323100671504545178, −5.51681358829249898529448746781, −5.26020901751273711743845626171, −4.87486010028116000615906200460, −4.30153597556576245932011039173, −4.10649225898848003879516446271, −3.77028440778335171036997422539, −3.73149944900423468378206603820, −3.54352803548533372590464931605, −3.42587723280838639040613155157, −3.10134724492919741928496646964, −2.61279009361964217256241870082, −2.51197808784028607522587919343, −2.35446875000867515281987056864, −1.69219593981253661912035641300, −1.55626953031201905766173472793, −1.15692906186722819687092818764, −0.29505375134976694326419730739,
0.29505375134976694326419730739, 1.15692906186722819687092818764, 1.55626953031201905766173472793, 1.69219593981253661912035641300, 2.35446875000867515281987056864, 2.51197808784028607522587919343, 2.61279009361964217256241870082, 3.10134724492919741928496646964, 3.42587723280838639040613155157, 3.54352803548533372590464931605, 3.73149944900423468378206603820, 3.77028440778335171036997422539, 4.10649225898848003879516446271, 4.30153597556576245932011039173, 4.87486010028116000615906200460, 5.26020901751273711743845626171, 5.51681358829249898529448746781, 5.58271078423323100671504545178, 5.64641845260248698870777580206, 6.11303450444885643996722076195, 6.28587054128424301410234678989, 6.55671272987272668850243569332, 6.86915256857119081157305746333, 7.07016635259605825682806147076, 7.22962409609456433245768818249