L(s) = 1 | + (−0.707 − 0.707i)2-s + (1 − 1.41i)3-s − 0.999i·4-s + (−1.70 + 0.292i)6-s + (−1 − i)7-s + (−2.12 + 2.12i)8-s + (−1.00 − 2.82i)9-s + (−2.82 + 2.82i)11-s + (−1.41 − 0.999i)12-s + (2 − 3i)13-s + 1.41i·14-s + 1.00·16-s + (−1.29 + 2.70i)18-s + (1 − i)19-s + (−2.41 + 0.414i)21-s + 4.00·22-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (0.577 − 0.816i)3-s − 0.499i·4-s + (−0.696 + 0.119i)6-s + (−0.377 − 0.377i)7-s + (−0.750 + 0.750i)8-s + (−0.333 − 0.942i)9-s + (−0.852 + 0.852i)11-s + (−0.408 − 0.288i)12-s + (0.554 − 0.832i)13-s + 0.377i·14-s + 0.250·16-s + (−0.304 + 0.638i)18-s + (0.229 − 0.229i)19-s + (−0.526 + 0.0903i)21-s + 0.852·22-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(−0.614−0.789i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(−0.614−0.789i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
−0.614−0.789i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(551,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), −0.614−0.789i)
|
Particular Values
L(1) |
≈ |
0.271828+0.555983i |
L(21) |
≈ |
0.271828+0.555983i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1+1.41i)T |
| 5 | 1 |
| 13 | 1+(−2+3i)T |
good | 2 | 1+(0.707+0.707i)T+2iT2 |
| 7 | 1+(1+i)T+7iT2 |
| 11 | 1+(2.82−2.82i)T−11iT2 |
| 17 | 1+17T2 |
| 19 | 1+(−1+i)T−19iT2 |
| 23 | 1+8.48T+23T2 |
| 29 | 1+2.82iT−29T2 |
| 31 | 1+(5−5i)T−31iT2 |
| 37 | 1+(1+i)T+37iT2 |
| 41 | 1+(1.41+1.41i)T+41iT2 |
| 43 | 1−6iT−43T2 |
| 47 | 1+(−2.82+2.82i)T−47iT2 |
| 53 | 1+5.65iT−53T2 |
| 59 | 1+(2.82−2.82i)T−59iT2 |
| 61 | 1−8T+61T2 |
| 67 | 1+(−5+5i)T−67iT2 |
| 71 | 1+(−2.82−2.82i)T+71iT2 |
| 73 | 1+(1+i)T+73iT2 |
| 79 | 1+10T+79T2 |
| 83 | 1+(−5.65−5.65i)T+83iT2 |
| 89 | 1+(−9.89+9.89i)T−89iT2 |
| 97 | 1+(7−7i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.673451268081745190128082809495, −8.599061143618181068014766861767, −7.961762332918055513978201182778, −7.07016635259605825682806147076, −6.11303450444885643996722076195, −5.26020901751273711743845626171, −3.73149944900423468378206603820, −2.61279009361964217256241870082, −1.69219593981253661912035641300, −0.29505375134976694326419730739,
2.35446875000867515281987056864, 3.42587723280838639040613155157, 4.10649225898848003879516446271, 5.51681358829249898529448746781, 6.28587054128424301410234678989, 7.51766203852099923779310812915, 8.168509582588643533159577507918, 8.846028324195117207948416607887, 9.456411782061042449518536235933, 10.28685822042339847621450064783