L(s) = 1 | + (−0.707 − 0.707i)2-s + (1 − 1.41i)3-s − 0.999i·4-s + (−1.70 + 0.292i)6-s + (−1 − i)7-s + (−2.12 + 2.12i)8-s + (−1.00 − 2.82i)9-s + (−2.82 + 2.82i)11-s + (−1.41 − 0.999i)12-s + (2 − 3i)13-s + 1.41i·14-s + 1.00·16-s + (−1.29 + 2.70i)18-s + (1 − i)19-s + (−2.41 + 0.414i)21-s + 4.00·22-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (0.577 − 0.816i)3-s − 0.499i·4-s + (−0.696 + 0.119i)6-s + (−0.377 − 0.377i)7-s + (−0.750 + 0.750i)8-s + (−0.333 − 0.942i)9-s + (−0.852 + 0.852i)11-s + (−0.408 − 0.288i)12-s + (0.554 − 0.832i)13-s + 0.377i·14-s + 0.250·16-s + (−0.304 + 0.638i)18-s + (0.229 − 0.229i)19-s + (−0.526 + 0.0903i)21-s + 0.852·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.614 - 0.789i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.614 - 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.271828 + 0.555983i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.271828 + 0.555983i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1 + 1.41i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-2 + 3i)T \) |
good | 2 | \( 1 + (0.707 + 0.707i)T + 2iT^{2} \) |
| 7 | \( 1 + (1 + i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.82 - 2.82i)T - 11iT^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 + (-1 + i)T - 19iT^{2} \) |
| 23 | \( 1 + 8.48T + 23T^{2} \) |
| 29 | \( 1 + 2.82iT - 29T^{2} \) |
| 31 | \( 1 + (5 - 5i)T - 31iT^{2} \) |
| 37 | \( 1 + (1 + i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.41 + 1.41i)T + 41iT^{2} \) |
| 43 | \( 1 - 6iT - 43T^{2} \) |
| 47 | \( 1 + (-2.82 + 2.82i)T - 47iT^{2} \) |
| 53 | \( 1 + 5.65iT - 53T^{2} \) |
| 59 | \( 1 + (2.82 - 2.82i)T - 59iT^{2} \) |
| 61 | \( 1 - 8T + 61T^{2} \) |
| 67 | \( 1 + (-5 + 5i)T - 67iT^{2} \) |
| 71 | \( 1 + (-2.82 - 2.82i)T + 71iT^{2} \) |
| 73 | \( 1 + (1 + i)T + 73iT^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + (-5.65 - 5.65i)T + 83iT^{2} \) |
| 89 | \( 1 + (-9.89 + 9.89i)T - 89iT^{2} \) |
| 97 | \( 1 + (7 - 7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.673451268081745190128082809495, −8.599061143618181068014766861767, −7.961762332918055513978201182778, −7.07016635259605825682806147076, −6.11303450444885643996722076195, −5.26020901751273711743845626171, −3.73149944900423468378206603820, −2.61279009361964217256241870082, −1.69219593981253661912035641300, −0.29505375134976694326419730739,
2.35446875000867515281987056864, 3.42587723280838639040613155157, 4.10649225898848003879516446271, 5.51681358829249898529448746781, 6.28587054128424301410234678989, 7.51766203852099923779310812915, 8.168509582588643533159577507918, 8.846028324195117207948416607887, 9.456411782061042449518536235933, 10.28685822042339847621450064783