L(s) = 1 | + (0.597 − 0.597i)2-s + (1.67 − 0.458i)3-s + 1.28i·4-s + (0.724 − 1.27i)6-s + (2.39 + 2.39i)7-s + (1.96 + 1.96i)8-s + (2.58 − 1.53i)9-s − 1.92·11-s + (0.589 + 2.14i)12-s + (−3.00 − 1.98i)13-s + 2.86·14-s − 0.225·16-s + (4.01 + 4.01i)17-s + (0.627 − 2.45i)18-s − 3.56·19-s + ⋯ |
L(s) = 1 | + (0.422 − 0.422i)2-s + (0.964 − 0.264i)3-s + 0.642i·4-s + (0.295 − 0.519i)6-s + (0.906 + 0.906i)7-s + (0.694 + 0.694i)8-s + (0.860 − 0.510i)9-s − 0.581·11-s + (0.170 + 0.620i)12-s + (−0.834 − 0.551i)13-s + 0.765·14-s − 0.0562·16-s + (0.973 + 0.973i)17-s + (0.147 − 0.578i)18-s − 0.817·19-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(0.972−0.234i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(0.972−0.234i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
0.972−0.234i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(818,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), 0.972−0.234i)
|
Particular Values
L(1) |
≈ |
2.99270+0.356122i |
L(21) |
≈ |
2.99270+0.356122i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.67+0.458i)T |
| 5 | 1 |
| 13 | 1+(3.00+1.98i)T |
good | 2 | 1+(−0.597+0.597i)T−2iT2 |
| 7 | 1+(−2.39−2.39i)T+7iT2 |
| 11 | 1+1.92T+11T2 |
| 17 | 1+(−4.01−4.01i)T+17iT2 |
| 19 | 1+3.56T+19T2 |
| 23 | 1+(−3.88+3.88i)T−23iT2 |
| 29 | 1−2.60T+29T2 |
| 31 | 1−8.42iT−31T2 |
| 37 | 1+(5.96+5.96i)T+37iT2 |
| 41 | 1+1.16T+41T2 |
| 43 | 1+(0.498+0.498i)T+43iT2 |
| 47 | 1+(−2.66+2.66i)T−47iT2 |
| 53 | 1+(−4.62+4.62i)T−53iT2 |
| 59 | 1+3.80iT−59T2 |
| 61 | 1+7.40T+61T2 |
| 67 | 1+(−7.88−7.88i)T+67iT2 |
| 71 | 1−2.61T+71T2 |
| 73 | 1+(−8.89+8.89i)T−73iT2 |
| 79 | 1+7.19iT−79T2 |
| 83 | 1+(11.9+11.9i)T+83iT2 |
| 89 | 1−4.47iT−89T2 |
| 97 | 1+(5.19+5.19i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.20779090505356817024944616367, −8.802312908175207176671226933322, −8.433019187500822413359278277960, −7.76819860725134516487398077742, −6.89529725833466320286467899120, −5.40034353908870283905892609243, −4.65505330887920879185404383065, −3.48185569388774267966891170877, −2.62723449015425296223123472462, −1.82820725537666854815578350834,
1.26178338413845960650176808049, 2.52704761256876043076377380389, 3.93732373929460336732651085670, 4.73534091983892150431398333345, 5.32768155014133889024532733615, 6.81028437018097276100916227903, 7.45574544602501178660516803407, 8.069693038679698357110997818678, 9.291866275234561500412444460228, 9.919558088765467646779138944071