L(s) = 1 | + (0.597 − 0.597i)2-s + (1.67 − 0.458i)3-s + 1.28i·4-s + (0.724 − 1.27i)6-s + (2.39 + 2.39i)7-s + (1.96 + 1.96i)8-s + (2.58 − 1.53i)9-s − 1.92·11-s + (0.589 + 2.14i)12-s + (−3.00 − 1.98i)13-s + 2.86·14-s − 0.225·16-s + (4.01 + 4.01i)17-s + (0.627 − 2.45i)18-s − 3.56·19-s + ⋯ |
L(s) = 1 | + (0.422 − 0.422i)2-s + (0.964 − 0.264i)3-s + 0.642i·4-s + (0.295 − 0.519i)6-s + (0.906 + 0.906i)7-s + (0.694 + 0.694i)8-s + (0.860 − 0.510i)9-s − 0.581·11-s + (0.170 + 0.620i)12-s + (−0.834 − 0.551i)13-s + 0.765·14-s − 0.0562·16-s + (0.973 + 0.973i)17-s + (0.147 − 0.578i)18-s − 0.817·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.972 - 0.234i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.972 - 0.234i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.99270 + 0.356122i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.99270 + 0.356122i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.67 + 0.458i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.00 + 1.98i)T \) |
good | 2 | \( 1 + (-0.597 + 0.597i)T - 2iT^{2} \) |
| 7 | \( 1 + (-2.39 - 2.39i)T + 7iT^{2} \) |
| 11 | \( 1 + 1.92T + 11T^{2} \) |
| 17 | \( 1 + (-4.01 - 4.01i)T + 17iT^{2} \) |
| 19 | \( 1 + 3.56T + 19T^{2} \) |
| 23 | \( 1 + (-3.88 + 3.88i)T - 23iT^{2} \) |
| 29 | \( 1 - 2.60T + 29T^{2} \) |
| 31 | \( 1 - 8.42iT - 31T^{2} \) |
| 37 | \( 1 + (5.96 + 5.96i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.16T + 41T^{2} \) |
| 43 | \( 1 + (0.498 + 0.498i)T + 43iT^{2} \) |
| 47 | \( 1 + (-2.66 + 2.66i)T - 47iT^{2} \) |
| 53 | \( 1 + (-4.62 + 4.62i)T - 53iT^{2} \) |
| 59 | \( 1 + 3.80iT - 59T^{2} \) |
| 61 | \( 1 + 7.40T + 61T^{2} \) |
| 67 | \( 1 + (-7.88 - 7.88i)T + 67iT^{2} \) |
| 71 | \( 1 - 2.61T + 71T^{2} \) |
| 73 | \( 1 + (-8.89 + 8.89i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.19iT - 79T^{2} \) |
| 83 | \( 1 + (11.9 + 11.9i)T + 83iT^{2} \) |
| 89 | \( 1 - 4.47iT - 89T^{2} \) |
| 97 | \( 1 + (5.19 + 5.19i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20779090505356817024944616367, −8.802312908175207176671226933322, −8.433019187500822413359278277960, −7.76819860725134516487398077742, −6.89529725833466320286467899120, −5.40034353908870283905892609243, −4.65505330887920879185404383065, −3.48185569388774267966891170877, −2.62723449015425296223123472462, −1.82820725537666854815578350834,
1.26178338413845960650176808049, 2.52704761256876043076377380389, 3.93732373929460336732651085670, 4.73534091983892150431398333345, 5.32768155014133889024532733615, 6.81028437018097276100916227903, 7.45574544602501178660516803407, 8.069693038679698357110997818678, 9.291866275234561500412444460228, 9.919558088765467646779138944071