L(s) = 1 | + (−1.25 + 1.25i)2-s + (1.06 − 1.36i)3-s − 1.15i·4-s + (0.381 + 3.05i)6-s + (−1.60 − 1.60i)7-s + (−1.05 − 1.05i)8-s + (−0.738 − 2.90i)9-s − 2.48·11-s + (−1.58 − 1.23i)12-s + (−0.624 + 3.55i)13-s + 4.02·14-s + 4.97·16-s + (1.27 + 1.27i)17-s + (4.58 + 2.72i)18-s + 1.93·19-s + ⋯ |
L(s) = 1 | + (−0.888 + 0.888i)2-s + (0.613 − 0.789i)3-s − 0.579i·4-s + (0.155 + 1.24i)6-s + (−0.605 − 0.605i)7-s + (−0.373 − 0.373i)8-s + (−0.246 − 0.969i)9-s − 0.748·11-s + (−0.457 − 0.355i)12-s + (−0.173 + 0.984i)13-s + 1.07·14-s + 1.24·16-s + (0.309 + 0.309i)17-s + (1.08 + 0.642i)18-s + 0.443·19-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(−0.960−0.277i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(−0.960−0.277i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
−0.960−0.277i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(818,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), −0.960−0.277i)
|
Particular Values
L(1) |
≈ |
0.0413133+0.291456i |
L(21) |
≈ |
0.0413133+0.291456i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.06+1.36i)T |
| 5 | 1 |
| 13 | 1+(0.624−3.55i)T |
good | 2 | 1+(1.25−1.25i)T−2iT2 |
| 7 | 1+(1.60+1.60i)T+7iT2 |
| 11 | 1+2.48T+11T2 |
| 17 | 1+(−1.27−1.27i)T+17iT2 |
| 19 | 1−1.93T+19T2 |
| 23 | 1+(5.56−5.56i)T−23iT2 |
| 29 | 1+9.66T+29T2 |
| 31 | 1−6.61iT−31T2 |
| 37 | 1+(−3.53−3.53i)T+37iT2 |
| 41 | 1−7.35T+41T2 |
| 43 | 1+(−3.46−3.46i)T+43iT2 |
| 47 | 1+(4.55−4.55i)T−47iT2 |
| 53 | 1+(3.97−3.97i)T−53iT2 |
| 59 | 1−2.79iT−59T2 |
| 61 | 1+2.54T+61T2 |
| 67 | 1+(1.34+1.34i)T+67iT2 |
| 71 | 1+6.58T+71T2 |
| 73 | 1+(−2.82+2.82i)T−73iT2 |
| 79 | 1−6.48iT−79T2 |
| 83 | 1+(−3.17−3.17i)T+83iT2 |
| 89 | 1+7.47iT−89T2 |
| 97 | 1+(9.27+9.27i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.755267417142640885638714560506, −9.528353430820723325273536269855, −8.552858780310934844310825613597, −7.60820195491472939458927146581, −7.41994941436599598412400973541, −6.44948523757964435867371978689, −5.71333891353893561985636157964, −3.97590179327058235844161674614, −3.03938440693348914067603044916, −1.49444729401967876410334665141,
0.16389591970516038518976631067, 2.24602124782070832764725456518, 2.82318370510624019043212219860, 3.87225011594347989953313853466, 5.31548698811857014486214918766, 5.91364971811874196700541047310, 7.73524278470630851516203525694, 8.107287523078234370733049046110, 9.285752601024123225362558836624, 9.502127132796374542156665677963