L(s) = 1 | + (0.299 + 0.299i)2-s + (0.125 + 1.72i)3-s − 1.82i·4-s + (−0.479 + 0.554i)6-s + (−0.976 + 0.976i)7-s + (1.14 − 1.14i)8-s + (−2.96 + 0.431i)9-s − 1.78·11-s + (3.14 − 0.227i)12-s + (−2.75 − 2.32i)13-s − 0.584·14-s − 2.95·16-s + (−3.26 + 3.26i)17-s + (−1.01 − 0.759i)18-s − 6.18·19-s + ⋯ |
L(s) = 1 | + (0.211 + 0.211i)2-s + (0.0721 + 0.997i)3-s − 0.910i·4-s + (−0.195 + 0.226i)6-s + (−0.368 + 0.368i)7-s + (0.404 − 0.404i)8-s + (−0.989 + 0.143i)9-s − 0.537·11-s + (0.908 − 0.0657i)12-s + (−0.765 − 0.643i)13-s − 0.156·14-s − 0.739·16-s + (−0.790 + 0.790i)17-s + (−0.239 − 0.178i)18-s − 1.41·19-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(−0.924+0.379i)Λ(2−s)
Λ(s)=(=(975s/2ΓC(s+1/2)L(s)(−0.924+0.379i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
−0.924+0.379i
|
Analytic conductor: |
7.78541 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(857,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :1/2), −0.924+0.379i)
|
Particular Values
L(1) |
≈ |
0.0301231−0.152601i |
L(21) |
≈ |
0.0301231−0.152601i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.125−1.72i)T |
| 5 | 1 |
| 13 | 1+(2.75+2.32i)T |
good | 2 | 1+(−0.299−0.299i)T+2iT2 |
| 7 | 1+(0.976−0.976i)T−7iT2 |
| 11 | 1+1.78T+11T2 |
| 17 | 1+(3.26−3.26i)T−17iT2 |
| 19 | 1+6.18T+19T2 |
| 23 | 1+(−0.696−0.696i)T+23iT2 |
| 29 | 1−7.33T+29T2 |
| 31 | 1−6.61iT−31T2 |
| 37 | 1+(5.21−5.21i)T−37iT2 |
| 41 | 1+6.45T+41T2 |
| 43 | 1+(−1.78+1.78i)T−43iT2 |
| 47 | 1+(5.69+5.69i)T+47iT2 |
| 53 | 1+(1.74+1.74i)T+53iT2 |
| 59 | 1+9.15iT−59T2 |
| 61 | 1−1.01T+61T2 |
| 67 | 1+(3.72−3.72i)T−67iT2 |
| 71 | 1−5.49T+71T2 |
| 73 | 1+(−1.35−1.35i)T+73iT2 |
| 79 | 1+10.2iT−79T2 |
| 83 | 1+(−7.93+7.93i)T−83iT2 |
| 89 | 1+3.75iT−89T2 |
| 97 | 1+(−6.92+6.92i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.40799302059570334526070132607, −9.878865175854569004376088822480, −8.838117170834551897596530996370, −8.269094243413640020637446418958, −6.77841705318171533120909168716, −6.11328285141204490137506352101, −5.08110115131388128524382191600, −4.63513575908265847467316704220, −3.31364463988422677234740759802, −2.14765681512664996195815228836,
0.05940032456887405762153628382, 2.14242524685791498467689178742, 2.80366030495277644985307621937, 4.08815363508976846330322353165, 5.01295494918612545981721917550, 6.48627682797197680524953120470, 6.96388705097467554354472860401, 7.81718844720653978241947460123, 8.536588287572663786081891952781, 9.354867719373889534775941414254