L(s) = 1 | + (0.299 + 0.299i)2-s + (0.125 + 1.72i)3-s − 1.82i·4-s + (−0.479 + 0.554i)6-s + (−0.976 + 0.976i)7-s + (1.14 − 1.14i)8-s + (−2.96 + 0.431i)9-s − 1.78·11-s + (3.14 − 0.227i)12-s + (−2.75 − 2.32i)13-s − 0.584·14-s − 2.95·16-s + (−3.26 + 3.26i)17-s + (−1.01 − 0.759i)18-s − 6.18·19-s + ⋯ |
L(s) = 1 | + (0.211 + 0.211i)2-s + (0.0721 + 0.997i)3-s − 0.910i·4-s + (−0.195 + 0.226i)6-s + (−0.368 + 0.368i)7-s + (0.404 − 0.404i)8-s + (−0.989 + 0.143i)9-s − 0.537·11-s + (0.908 − 0.0657i)12-s + (−0.765 − 0.643i)13-s − 0.156·14-s − 0.739·16-s + (−0.790 + 0.790i)17-s + (−0.239 − 0.178i)18-s − 1.41·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.924 + 0.379i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.924 + 0.379i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0301231 - 0.152601i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0301231 - 0.152601i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.125 - 1.72i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (2.75 + 2.32i)T \) |
good | 2 | \( 1 + (-0.299 - 0.299i)T + 2iT^{2} \) |
| 7 | \( 1 + (0.976 - 0.976i)T - 7iT^{2} \) |
| 11 | \( 1 + 1.78T + 11T^{2} \) |
| 17 | \( 1 + (3.26 - 3.26i)T - 17iT^{2} \) |
| 19 | \( 1 + 6.18T + 19T^{2} \) |
| 23 | \( 1 + (-0.696 - 0.696i)T + 23iT^{2} \) |
| 29 | \( 1 - 7.33T + 29T^{2} \) |
| 31 | \( 1 - 6.61iT - 31T^{2} \) |
| 37 | \( 1 + (5.21 - 5.21i)T - 37iT^{2} \) |
| 41 | \( 1 + 6.45T + 41T^{2} \) |
| 43 | \( 1 + (-1.78 + 1.78i)T - 43iT^{2} \) |
| 47 | \( 1 + (5.69 + 5.69i)T + 47iT^{2} \) |
| 53 | \( 1 + (1.74 + 1.74i)T + 53iT^{2} \) |
| 59 | \( 1 + 9.15iT - 59T^{2} \) |
| 61 | \( 1 - 1.01T + 61T^{2} \) |
| 67 | \( 1 + (3.72 - 3.72i)T - 67iT^{2} \) |
| 71 | \( 1 - 5.49T + 71T^{2} \) |
| 73 | \( 1 + (-1.35 - 1.35i)T + 73iT^{2} \) |
| 79 | \( 1 + 10.2iT - 79T^{2} \) |
| 83 | \( 1 + (-7.93 + 7.93i)T - 83iT^{2} \) |
| 89 | \( 1 + 3.75iT - 89T^{2} \) |
| 97 | \( 1 + (-6.92 + 6.92i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40799302059570334526070132607, −9.878865175854569004376088822480, −8.838117170834551897596530996370, −8.269094243413640020637446418958, −6.77841705318171533120909168716, −6.11328285141204490137506352101, −5.08110115131388128524382191600, −4.63513575908265847467316704220, −3.31364463988422677234740759802, −2.14765681512664996195815228836,
0.05940032456887405762153628382, 2.14242524685791498467689178742, 2.80366030495277644985307621937, 4.08815363508976846330322353165, 5.01295494918612545981721917550, 6.48627682797197680524953120470, 6.96388705097467554354472860401, 7.81718844720653978241947460123, 8.536588287572663786081891952781, 9.354867719373889534775941414254