L(s) = 1 | + 2-s + 2·3-s + 2·6-s − 8-s + 3·9-s − 8·13-s − 16-s − 6·17-s + 3·18-s − 2·19-s − 2·24-s + 5·25-s − 8·26-s + 10·27-s − 12·29-s + 4·31-s − 6·34-s − 2·37-s − 2·38-s − 16·39-s + 12·41-s + 16·43-s + 12·47-s − 2·48-s + 5·50-s − 12·51-s − 6·53-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.15·3-s + 0.816·6-s − 0.353·8-s + 9-s − 2.21·13-s − 1/4·16-s − 1.45·17-s + 0.707·18-s − 0.458·19-s − 0.408·24-s + 25-s − 1.56·26-s + 1.92·27-s − 2.22·29-s + 0.718·31-s − 1.02·34-s − 0.328·37-s − 0.324·38-s − 2.56·39-s + 1.87·41-s + 2.43·43-s + 1.75·47-s − 0.288·48-s + 0.707·50-s − 1.68·51-s − 0.824·53-s + ⋯ |
Λ(s)=(=(9604s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(9604s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
9604
= 22⋅74
|
Sign: |
1
|
Analytic conductor: |
0.612359 |
Root analytic conductor: |
0.884609 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 9604, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.682449691 |
L(21) |
≈ |
1.682449691 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 7 | | 1 |
good | 3 | C22 | 1−2T+T2−2pT3+p2T4 |
| 5 | C22 | 1−pT2+p2T4 |
| 11 | C22 | 1−pT2+p2T4 |
| 13 | C2 | (1+4T+pT2)2 |
| 17 | C22 | 1+6T+19T2+6pT3+p2T4 |
| 19 | C22 | 1+2T−15T2+2pT3+p2T4 |
| 23 | C22 | 1−pT2+p2T4 |
| 29 | C2 | (1+6T+pT2)2 |
| 31 | C2 | (1−11T+pT2)(1+7T+pT2) |
| 37 | C22 | 1+2T−33T2+2pT3+p2T4 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | C22 | 1−12T+97T2−12pT3+p2T4 |
| 53 | C22 | 1+6T−17T2+6pT3+p2T4 |
| 59 | C22 | 1−6T−23T2−6pT3+p2T4 |
| 61 | C22 | 1+8T+3T2+8pT3+p2T4 |
| 67 | C22 | 1−4T−51T2−4pT3+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1+2T−69T2+2pT3+p2T4 |
| 79 | C22 | 1+8T−15T2+8pT3+p2T4 |
| 83 | C2 | (1+6T+pT2)2 |
| 89 | C22 | 1−6T−53T2−6pT3+p2T4 |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.04145501722198037479383964324, −14.00599460194856240485032040018, −12.89897144252259646211093501170, −12.85516300122271479135410455197, −12.44533047287876342504227065817, −11.74368042716781372037397857686, −10.84462218398902176922880365263, −10.60537085923855477135106016776, −9.630199992252261854634945255997, −9.241789904092050155683227766971, −8.904163825273414140536527508881, −8.083333619699282901638240448876, −7.25391899305612172511439282965, −7.16393847545088947450776580615, −6.12510237641322476348159870666, −5.23488858771214743865463879013, −4.42448063842485448054280162476, −4.12098676425324769033179756617, −2.71904573650174489385286764559, −2.41749920092248519897743465838,
2.41749920092248519897743465838, 2.71904573650174489385286764559, 4.12098676425324769033179756617, 4.42448063842485448054280162476, 5.23488858771214743865463879013, 6.12510237641322476348159870666, 7.16393847545088947450776580615, 7.25391899305612172511439282965, 8.083333619699282901638240448876, 8.904163825273414140536527508881, 9.241789904092050155683227766971, 9.630199992252261854634945255997, 10.60537085923855477135106016776, 10.84462218398902176922880365263, 11.74368042716781372037397857686, 12.44533047287876342504227065817, 12.85516300122271479135410455197, 12.89897144252259646211093501170, 14.00599460194856240485032040018, 14.04145501722198037479383964324