L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.965 − 0.258i)5-s + 0.999i·8-s + (0.5 + 0.866i)9-s + (0.965 − 0.258i)10-s − 1.41i·13-s + (−0.5 − 0.866i)16-s + (1.22 + 0.707i)17-s + (−0.866 − 0.499i)18-s + (−0.707 + 0.707i)20-s + (0.866 + 0.499i)25-s + (0.707 + 1.22i)26-s + (0.866 + 0.499i)32-s − 1.41·34-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.965 − 0.258i)5-s + 0.999i·8-s + (0.5 + 0.866i)9-s + (0.965 − 0.258i)10-s − 1.41i·13-s + (−0.5 − 0.866i)16-s + (1.22 + 0.707i)17-s + (−0.866 − 0.499i)18-s + (−0.707 + 0.707i)20-s + (0.866 + 0.499i)25-s + (0.707 + 1.22i)26-s + (0.866 + 0.499i)32-s − 1.41·34-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.944−0.328i)Λ(1−s)
Λ(s)=(=(980s/2ΓC(s)L(s)(0.944−0.328i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.944−0.328i
|
Analytic conductor: |
0.489083 |
Root analytic conductor: |
0.699345 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(459,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :0), 0.944−0.328i)
|
Particular Values
L(21) |
≈ |
0.6215799039 |
L(21) |
≈ |
0.6215799039 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 5 | 1+(0.965+0.258i)T |
| 7 | 1 |
good | 3 | 1+(−0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+1.41iT−T2 |
| 17 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1+T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+(−1.73+i)T+(0.5−0.866i)T2 |
| 41 | 1−1.41T+T2 |
| 43 | 1+T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.707−1.22i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(1.22+0.707i)T+(0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(0.707+1.22i)T+(−0.5+0.866i)T2 |
| 97 | 1−1.41iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31039097304477237609774471422, −9.350958932551236198169326493779, −8.299000091668864983571778507251, −7.77847901556412539578274787496, −7.35254388748331778906011670772, −5.97175471216079513764284289979, −5.24837717668583242438779797325, −4.11615482734074465580480162201, −2.72931873858675939607097594529, −1.09103090404951139878806406777,
1.12503455848332174329274823098, 2.73960846638942985615717002133, 3.74268858308021409640504315515, 4.48927676494909329218206359569, 6.25535783319026214325310758899, 7.06652642881219069541522391606, 7.67021436107121208520001598496, 8.583758314404481453244171368113, 9.493600949540969785583798795577, 9.922552197709276684957316387725