L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.965 − 0.258i)5-s + 0.999i·8-s + (0.5 + 0.866i)9-s + (0.965 − 0.258i)10-s − 1.41i·13-s + (−0.5 − 0.866i)16-s + (1.22 + 0.707i)17-s + (−0.866 − 0.499i)18-s + (−0.707 + 0.707i)20-s + (0.866 + 0.499i)25-s + (0.707 + 1.22i)26-s + (0.866 + 0.499i)32-s − 1.41·34-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.965 − 0.258i)5-s + 0.999i·8-s + (0.5 + 0.866i)9-s + (0.965 − 0.258i)10-s − 1.41i·13-s + (−0.5 − 0.866i)16-s + (1.22 + 0.707i)17-s + (−0.866 − 0.499i)18-s + (−0.707 + 0.707i)20-s + (0.866 + 0.499i)25-s + (0.707 + 1.22i)26-s + (0.866 + 0.499i)32-s − 1.41·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 - 0.328i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6215799039\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6215799039\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (0.965 + 0.258i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + 1.41iT - T^{2} \) |
| 17 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - 1.41T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - 1.41iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31039097304477237609774471422, −9.350958932551236198169326493779, −8.299000091668864983571778507251, −7.77847901556412539578274787496, −7.35254388748331778906011670772, −5.97175471216079513764284289979, −5.24837717668583242438779797325, −4.11615482734074465580480162201, −2.72931873858675939607097594529, −1.09103090404951139878806406777,
1.12503455848332174329274823098, 2.73960846638942985615717002133, 3.74268858308021409640504315515, 4.48927676494909329218206359569, 6.25535783319026214325310758899, 7.06652642881219069541522391606, 7.67021436107121208520001598496, 8.583758314404481453244171368113, 9.493600949540969785583798795577, 9.922552197709276684957316387725