L(s) = 1 | + 1.73i·3-s + (−1.41 − 1.73i)5-s − 11-s + 1.73i·13-s + (2.99 − 2.44i)15-s + 5.19i·17-s − 2.82·19-s + 2.44i·23-s + (−0.999 + 4.89i)25-s + 5.19i·27-s + 7·29-s − 7.07·31-s − 1.73i·33-s + 7.34i·37-s − 2.99·39-s + ⋯ |
L(s) = 1 | + 0.999i·3-s + (−0.632 − 0.774i)5-s − 0.301·11-s + 0.480i·13-s + (0.774 − 0.632i)15-s + 1.26i·17-s − 0.648·19-s + 0.510i·23-s + (−0.199 + 0.979i)25-s + 1.00i·27-s + 1.29·29-s − 1.27·31-s − 0.301i·33-s + 1.20i·37-s − 0.480·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.632 - 0.774i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.632 - 0.774i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.419536 + 0.884169i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.419536 + 0.884169i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.41 + 1.73i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 1.73iT - 3T^{2} \) |
| 11 | \( 1 + T + 11T^{2} \) |
| 13 | \( 1 - 1.73iT - 13T^{2} \) |
| 17 | \( 1 - 5.19iT - 17T^{2} \) |
| 19 | \( 1 + 2.82T + 19T^{2} \) |
| 23 | \( 1 - 2.44iT - 23T^{2} \) |
| 29 | \( 1 - 7T + 29T^{2} \) |
| 31 | \( 1 + 7.07T + 31T^{2} \) |
| 37 | \( 1 - 7.34iT - 37T^{2} \) |
| 41 | \( 1 + 7.07T + 41T^{2} \) |
| 43 | \( 1 + 9.79iT - 43T^{2} \) |
| 47 | \( 1 - 12.1iT - 47T^{2} \) |
| 53 | \( 1 - 12.2iT - 53T^{2} \) |
| 59 | \( 1 + 7.07T + 59T^{2} \) |
| 61 | \( 1 - 14.1T + 61T^{2} \) |
| 67 | \( 1 + 12.2iT - 67T^{2} \) |
| 71 | \( 1 + 10T + 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 3T + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 5.19iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36491174494227399064044545384, −9.418078231249830883339448985963, −8.732085221206297028357087132275, −8.015053077645827115910096070496, −6.97698557531034818077968814631, −5.81398345663655089806799938639, −4.79381452988828101998530296666, −4.21177954198269661181060492219, −3.34906453776074021685784432036, −1.58661233479883260522956626911,
0.45562131095881848179281836825, 2.14361889691587553951370284885, 3.09910867758932953131867298308, 4.30203119775406946387832885858, 5.46956454392757222239026486666, 6.71213006440912943594182825039, 7.02429709409911982384316956666, 7.913781972609144174578170141543, 8.568894742804875439753322715930, 9.866649520626739805001679251060