L(s) = 1 | + 1.73i·3-s + (−1.41 − 1.73i)5-s − 11-s + 1.73i·13-s + (2.99 − 2.44i)15-s + 5.19i·17-s − 2.82·19-s + 2.44i·23-s + (−0.999 + 4.89i)25-s + 5.19i·27-s + 7·29-s − 7.07·31-s − 1.73i·33-s + 7.34i·37-s − 2.99·39-s + ⋯ |
L(s) = 1 | + 0.999i·3-s + (−0.632 − 0.774i)5-s − 0.301·11-s + 0.480i·13-s + (0.774 − 0.632i)15-s + 1.26i·17-s − 0.648·19-s + 0.510i·23-s + (−0.199 + 0.979i)25-s + 1.00i·27-s + 1.29·29-s − 1.27·31-s − 0.301i·33-s + 1.20i·37-s − 0.480·39-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.632−0.774i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.632−0.774i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.632−0.774i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(589,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.632−0.774i)
|
Particular Values
L(1) |
≈ |
0.419536+0.884169i |
L(21) |
≈ |
0.419536+0.884169i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(1.41+1.73i)T |
| 7 | 1 |
good | 3 | 1−1.73iT−3T2 |
| 11 | 1+T+11T2 |
| 13 | 1−1.73iT−13T2 |
| 17 | 1−5.19iT−17T2 |
| 19 | 1+2.82T+19T2 |
| 23 | 1−2.44iT−23T2 |
| 29 | 1−7T+29T2 |
| 31 | 1+7.07T+31T2 |
| 37 | 1−7.34iT−37T2 |
| 41 | 1+7.07T+41T2 |
| 43 | 1+9.79iT−43T2 |
| 47 | 1−12.1iT−47T2 |
| 53 | 1−12.2iT−53T2 |
| 59 | 1+7.07T+59T2 |
| 61 | 1−14.1T+61T2 |
| 67 | 1+12.2iT−67T2 |
| 71 | 1+10T+71T2 |
| 73 | 1−73T2 |
| 79 | 1+3T+79T2 |
| 83 | 1−83T2 |
| 89 | 1+89T2 |
| 97 | 1+5.19iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36491174494227399064044545384, −9.418078231249830883339448985963, −8.732085221206297028357087132275, −8.015053077645827115910096070496, −6.97698557531034818077968814631, −5.81398345663655089806799938639, −4.79381452988828101998530296666, −4.21177954198269661181060492219, −3.34906453776074021685784432036, −1.58661233479883260522956626911,
0.45562131095881848179281836825, 2.14361889691587553951370284885, 3.09910867758932953131867298308, 4.30203119775406946387832885858, 5.46956454392757222239026486666, 6.71213006440912943594182825039, 7.02429709409911982384316956666, 7.913781972609144174578170141543, 8.568894742804875439753322715930, 9.866649520626739805001679251060