Properties

Label 2-980-28.27-c1-0-71
Degree 22
Conductor 980980
Sign 0.988+0.153i-0.988 + 0.153i
Analytic cond. 7.825337.82533
Root an. cond. 2.797382.79738
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.486 − 1.32i)2-s + 0.812·3-s + (−1.52 − 1.29i)4-s + i·5-s + (0.395 − 1.07i)6-s + (−2.45 + 1.39i)8-s − 2.34·9-s + (1.32 + 0.486i)10-s − 4.86i·11-s + (−1.23 − 1.04i)12-s − 0.895i·13-s + 0.812i·15-s + (0.658 + 3.94i)16-s − 5.89i·17-s + (−1.13 + 3.10i)18-s + 2.91·19-s + ⋯
L(s)  = 1  + (0.344 − 0.938i)2-s + 0.468·3-s + (−0.763 − 0.646i)4-s + 0.447i·5-s + (0.161 − 0.440i)6-s + (−0.869 + 0.494i)8-s − 0.780·9-s + (0.419 + 0.153i)10-s − 1.46i·11-s + (−0.357 − 0.302i)12-s − 0.248i·13-s + 0.209i·15-s + (0.164 + 0.986i)16-s − 1.42i·17-s + (−0.268 + 0.732i)18-s + 0.669·19-s + ⋯

Functional equation

Λ(s)=(980s/2ΓC(s)L(s)=((0.988+0.153i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.153i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(980s/2ΓC(s+1/2)L(s)=((0.988+0.153i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.988 + 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 980980    =    225722^{2} \cdot 5 \cdot 7^{2}
Sign: 0.988+0.153i-0.988 + 0.153i
Analytic conductor: 7.825337.82533
Root analytic conductor: 2.797382.79738
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ980(391,)\chi_{980} (391, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 980, ( :1/2), 0.988+0.153i)(2,\ 980,\ (\ :1/2),\ -0.988 + 0.153i)

Particular Values

L(1)L(1) \approx 0.1007471.30258i0.100747 - 1.30258i
L(12)L(\frac12) \approx 0.1007471.30258i0.100747 - 1.30258i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.486+1.32i)T 1 + (-0.486 + 1.32i)T
5 1iT 1 - iT
7 1 1
good3 10.812T+3T2 1 - 0.812T + 3T^{2}
11 1+4.86iT11T2 1 + 4.86iT - 11T^{2}
13 1+0.895iT13T2 1 + 0.895iT - 13T^{2}
17 1+5.89iT17T2 1 + 5.89iT - 17T^{2}
19 12.91T+19T2 1 - 2.91T + 19T^{2}
23 1+1.56iT23T2 1 + 1.56iT - 23T^{2}
29 1+9.73T+29T2 1 + 9.73T + 29T^{2}
31 1+4.41T+31T2 1 + 4.41T + 31T^{2}
37 1+1.82T+37T2 1 + 1.82T + 37T^{2}
41 1+10.4iT41T2 1 + 10.4iT - 41T^{2}
43 13.04iT43T2 1 - 3.04iT - 43T^{2}
47 15.21T+47T2 1 - 5.21T + 47T^{2}
53 10.179T+53T2 1 - 0.179T + 53T^{2}
59 111.3T+59T2 1 - 11.3T + 59T^{2}
61 1+6.15iT61T2 1 + 6.15iT - 61T^{2}
67 1+7.79iT67T2 1 + 7.79iT - 67T^{2}
71 18.38iT71T2 1 - 8.38iT - 71T^{2}
73 18.78iT73T2 1 - 8.78iT - 73T^{2}
79 13.63iT79T2 1 - 3.63iT - 79T^{2}
83 1+2.03T+83T2 1 + 2.03T + 83T^{2}
89 11.76iT89T2 1 - 1.76iT - 89T^{2}
97 17.83iT97T2 1 - 7.83iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.540039609855006429227133165902, −9.010890231600696618561209086495, −8.184885629430102933150142795600, −7.11670574166279779450310917356, −5.73672960403112726777708701634, −5.36081671228079540217734441295, −3.76769882447282725850330191717, −3.15988627730599665660278973550, −2.28550498982775698709388956719, −0.48864877337221501100155742563, 1.94827766752038157008779945988, 3.44953260928586676375444226779, 4.27510712001831073424889201829, 5.31469127625601673334809850527, 6.01944274207922397667575317825, 7.20196041744080815929360081510, 7.76294073157571959043885257663, 8.671217191108684932740849686616, 9.283397064106007892830599991296, 10.04359702330412623873504782777

Graph of the ZZ-function along the critical line