L(s) = 1 | + (0.486 − 1.32i)2-s + 0.812·3-s + (−1.52 − 1.29i)4-s + i·5-s + (0.395 − 1.07i)6-s + (−2.45 + 1.39i)8-s − 2.34·9-s + (1.32 + 0.486i)10-s − 4.86i·11-s + (−1.23 − 1.04i)12-s − 0.895i·13-s + 0.812i·15-s + (0.658 + 3.94i)16-s − 5.89i·17-s + (−1.13 + 3.10i)18-s + 2.91·19-s + ⋯ |
L(s) = 1 | + (0.344 − 0.938i)2-s + 0.468·3-s + (−0.763 − 0.646i)4-s + 0.447i·5-s + (0.161 − 0.440i)6-s + (−0.869 + 0.494i)8-s − 0.780·9-s + (0.419 + 0.153i)10-s − 1.46i·11-s + (−0.357 − 0.302i)12-s − 0.248i·13-s + 0.209i·15-s + (0.164 + 0.986i)16-s − 1.42i·17-s + (−0.268 + 0.732i)18-s + 0.669·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.153i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.988 + 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.100747 - 1.30258i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.100747 - 1.30258i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.486 + 1.32i)T \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
good | 3 | \( 1 - 0.812T + 3T^{2} \) |
| 11 | \( 1 + 4.86iT - 11T^{2} \) |
| 13 | \( 1 + 0.895iT - 13T^{2} \) |
| 17 | \( 1 + 5.89iT - 17T^{2} \) |
| 19 | \( 1 - 2.91T + 19T^{2} \) |
| 23 | \( 1 + 1.56iT - 23T^{2} \) |
| 29 | \( 1 + 9.73T + 29T^{2} \) |
| 31 | \( 1 + 4.41T + 31T^{2} \) |
| 37 | \( 1 + 1.82T + 37T^{2} \) |
| 41 | \( 1 + 10.4iT - 41T^{2} \) |
| 43 | \( 1 - 3.04iT - 43T^{2} \) |
| 47 | \( 1 - 5.21T + 47T^{2} \) |
| 53 | \( 1 - 0.179T + 53T^{2} \) |
| 59 | \( 1 - 11.3T + 59T^{2} \) |
| 61 | \( 1 + 6.15iT - 61T^{2} \) |
| 67 | \( 1 + 7.79iT - 67T^{2} \) |
| 71 | \( 1 - 8.38iT - 71T^{2} \) |
| 73 | \( 1 - 8.78iT - 73T^{2} \) |
| 79 | \( 1 - 3.63iT - 79T^{2} \) |
| 83 | \( 1 + 2.03T + 83T^{2} \) |
| 89 | \( 1 - 1.76iT - 89T^{2} \) |
| 97 | \( 1 - 7.83iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.540039609855006429227133165902, −9.010890231600696618561209086495, −8.184885629430102933150142795600, −7.11670574166279779450310917356, −5.73672960403112726777708701634, −5.36081671228079540217734441295, −3.76769882447282725850330191717, −3.15988627730599665660278973550, −2.28550498982775698709388956719, −0.48864877337221501100155742563,
1.94827766752038157008779945988, 3.44953260928586676375444226779, 4.27510712001831073424889201829, 5.31469127625601673334809850527, 6.01944274207922397667575317825, 7.20196041744080815929360081510, 7.76294073157571959043885257663, 8.671217191108684932740849686616, 9.283397064106007892830599991296, 10.04359702330412623873504782777