L(s) = 1 | + (0.486 − 1.32i)2-s + 0.812·3-s + (−1.52 − 1.29i)4-s + i·5-s + (0.395 − 1.07i)6-s + (−2.45 + 1.39i)8-s − 2.34·9-s + (1.32 + 0.486i)10-s − 4.86i·11-s + (−1.23 − 1.04i)12-s − 0.895i·13-s + 0.812i·15-s + (0.658 + 3.94i)16-s − 5.89i·17-s + (−1.13 + 3.10i)18-s + 2.91·19-s + ⋯ |
L(s) = 1 | + (0.344 − 0.938i)2-s + 0.468·3-s + (−0.763 − 0.646i)4-s + 0.447i·5-s + (0.161 − 0.440i)6-s + (−0.869 + 0.494i)8-s − 0.780·9-s + (0.419 + 0.153i)10-s − 1.46i·11-s + (−0.357 − 0.302i)12-s − 0.248i·13-s + 0.209i·15-s + (0.164 + 0.986i)16-s − 1.42i·17-s + (−0.268 + 0.732i)18-s + 0.669·19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.988+0.153i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.988+0.153i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.988+0.153i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.988+0.153i)
|
Particular Values
L(1) |
≈ |
0.100747−1.30258i |
L(21) |
≈ |
0.100747−1.30258i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.486+1.32i)T |
| 5 | 1−iT |
| 7 | 1 |
good | 3 | 1−0.812T+3T2 |
| 11 | 1+4.86iT−11T2 |
| 13 | 1+0.895iT−13T2 |
| 17 | 1+5.89iT−17T2 |
| 19 | 1−2.91T+19T2 |
| 23 | 1+1.56iT−23T2 |
| 29 | 1+9.73T+29T2 |
| 31 | 1+4.41T+31T2 |
| 37 | 1+1.82T+37T2 |
| 41 | 1+10.4iT−41T2 |
| 43 | 1−3.04iT−43T2 |
| 47 | 1−5.21T+47T2 |
| 53 | 1−0.179T+53T2 |
| 59 | 1−11.3T+59T2 |
| 61 | 1+6.15iT−61T2 |
| 67 | 1+7.79iT−67T2 |
| 71 | 1−8.38iT−71T2 |
| 73 | 1−8.78iT−73T2 |
| 79 | 1−3.63iT−79T2 |
| 83 | 1+2.03T+83T2 |
| 89 | 1−1.76iT−89T2 |
| 97 | 1−7.83iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.540039609855006429227133165902, −9.010890231600696618561209086495, −8.184885629430102933150142795600, −7.11670574166279779450310917356, −5.73672960403112726777708701634, −5.36081671228079540217734441295, −3.76769882447282725850330191717, −3.15988627730599665660278973550, −2.28550498982775698709388956719, −0.48864877337221501100155742563,
1.94827766752038157008779945988, 3.44953260928586676375444226779, 4.27510712001831073424889201829, 5.31469127625601673334809850527, 6.01944274207922397667575317825, 7.20196041744080815929360081510, 7.76294073157571959043885257663, 8.671217191108684932740849686616, 9.283397064106007892830599991296, 10.04359702330412623873504782777