L(s) = 1 | + (1.5 − 2.59i)3-s + (−0.5 − 0.866i)5-s + (−3 − 5.19i)9-s + (2.5 − 4.33i)11-s + 3·13-s − 3·15-s + (−0.5 + 0.866i)17-s + (3 + 5.19i)19-s + (−3 − 5.19i)23-s + (−0.499 + 0.866i)25-s − 9·27-s − 9·29-s + (−2 + 3.46i)31-s + (−7.50 − 12.9i)33-s + (−1 − 1.73i)37-s + ⋯ |
L(s) = 1 | + (0.866 − 1.49i)3-s + (−0.223 − 0.387i)5-s + (−1 − 1.73i)9-s + (0.753 − 1.30i)11-s + 0.832·13-s − 0.774·15-s + (−0.121 + 0.210i)17-s + (0.688 + 1.19i)19-s + (−0.625 − 1.08i)23-s + (−0.0999 + 0.173i)25-s − 1.73·27-s − 1.67·29-s + (−0.359 + 0.622i)31-s + (−1.30 − 2.26i)33-s + (−0.164 − 0.284i)37-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.701+0.712i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.701+0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.701+0.712i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.701+0.712i)
|
Particular Values
L(1) |
≈ |
0.786133−1.87584i |
L(21) |
≈ |
0.786133−1.87584i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.5+0.866i)T |
| 7 | 1 |
good | 3 | 1+(−1.5+2.59i)T+(−1.5−2.59i)T2 |
| 11 | 1+(−2.5+4.33i)T+(−5.5−9.52i)T2 |
| 13 | 1−3T+13T2 |
| 17 | 1+(0.5−0.866i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3−5.19i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+9T+29T2 |
| 31 | 1+(2−3.46i)T+(−15.5−26.8i)T2 |
| 37 | 1+(1+1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1−4T+41T2 |
| 43 | 1−10T+43T2 |
| 47 | 1+(0.5+0.866i)T+(−23.5+40.7i)T2 |
| 53 | 1+(2−3.46i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4−6.92i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4+6.92i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6−10.3i)T+(−33.5−58.0i)T2 |
| 71 | 1−8T+71T2 |
| 73 | 1+(−1+1.73i)T+(−36.5−63.2i)T2 |
| 79 | 1+(6.5+11.2i)T+(−39.5+68.4i)T2 |
| 83 | 1−4T+83T2 |
| 89 | 1+(−2−3.46i)T+(−44.5+77.0i)T2 |
| 97 | 1−13T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.170036079240335566035548870042, −8.780991723512763655898270630825, −7.984498717222100246955147740029, −7.39754411231380091219373760824, −6.22680407899718166068467139003, −5.82795065963223808062270303981, −3.95417231387729679149553435415, −3.23561328476068011249769120887, −1.86184011198517421290437146900, −0.893051422165929279927283314065,
2.06012136757807741944124969827, 3.29885871641974753156334332248, 3.99431508679137193633347955316, 4.75357227039929445424942766486, 5.85384386671571582830167338039, 7.18652279334543349240355008413, 7.84282940941575329803294748095, 9.144391342023484309781584764377, 9.314339183736443234315971302491, 10.07874805288484003330024534610