L(s) = 1 | + (1.5 + 2.59i)3-s + (−0.5 + 0.866i)5-s + (−3 + 5.19i)9-s + (2.5 + 4.33i)11-s + 3·13-s − 3·15-s + (−0.5 − 0.866i)17-s + (3 − 5.19i)19-s + (−3 + 5.19i)23-s + (−0.499 − 0.866i)25-s − 9·27-s − 9·29-s + (−2 − 3.46i)31-s + (−7.50 + 12.9i)33-s + (−1 + 1.73i)37-s + ⋯ |
L(s) = 1 | + (0.866 + 1.49i)3-s + (−0.223 + 0.387i)5-s + (−1 + 1.73i)9-s + (0.753 + 1.30i)11-s + 0.832·13-s − 0.774·15-s + (−0.121 − 0.210i)17-s + (0.688 − 1.19i)19-s + (−0.625 + 1.08i)23-s + (−0.0999 − 0.173i)25-s − 1.73·27-s − 1.67·29-s + (−0.359 − 0.622i)31-s + (−1.30 + 2.26i)33-s + (−0.164 + 0.284i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.786133 + 1.87584i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.786133 + 1.87584i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-2.5 - 4.33i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3T + 13T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 + 5.19i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3 - 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 9T + 29T^{2} \) |
| 31 | \( 1 + (2 + 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4T + 41T^{2} \) |
| 43 | \( 1 - 10T + 43T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2 + 3.46i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4 + 6.92i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6 + 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (-1 - 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.5 - 11.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 4T + 83T^{2} \) |
| 89 | \( 1 + (-2 + 3.46i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 13T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07874805288484003330024534610, −9.314339183736443234315971302491, −9.144391342023484309781584764377, −7.84282940941575329803294748095, −7.18652279334543349240355008413, −5.85384386671571582830167338039, −4.75357227039929445424942766486, −3.99431508679137193633347955316, −3.29885871641974753156334332248, −2.06012136757807741944124969827,
0.893051422165929279927283314065, 1.86184011198517421290437146900, 3.23561328476068011249769120887, 3.95417231387729679149553435415, 5.82795065963223808062270303981, 6.22680407899718166068467139003, 7.39754411231380091219373760824, 7.984498717222100246955147740029, 8.780991723512763655898270630825, 9.170036079240335566035548870042