L(s) = 1 | + (−1.42 + 1.42i)3-s + (−2.11 − 0.724i)5-s − 1.06i·9-s + 5.50·11-s + (1.36 − 1.36i)13-s + (4.04 − 1.98i)15-s + (0.849 + 0.849i)17-s − 0.519·19-s + (−4.91 − 4.91i)23-s + (3.95 + 3.06i)25-s + (−2.75 − 2.75i)27-s + 9.66i·29-s + 3.60i·31-s + (−7.85 + 7.85i)33-s + (−1.27 + 1.27i)37-s + ⋯ |
L(s) = 1 | + (−0.823 + 0.823i)3-s + (−0.946 − 0.323i)5-s − 0.354i·9-s + 1.66·11-s + (0.379 − 0.379i)13-s + (1.04 − 0.512i)15-s + (0.205 + 0.205i)17-s − 0.119·19-s + (−1.02 − 1.02i)23-s + (0.790 + 0.612i)25-s + (−0.530 − 0.530i)27-s + 1.79i·29-s + 0.646i·31-s + (−1.36 + 1.36i)33-s + (−0.210 + 0.210i)37-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.262−0.964i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.262−0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.262−0.964i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.262−0.964i)
|
Particular Values
L(1) |
≈ |
0.521354+0.682355i |
L(21) |
≈ |
0.521354+0.682355i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2.11+0.724i)T |
| 7 | 1 |
good | 3 | 1+(1.42−1.42i)T−3iT2 |
| 11 | 1−5.50T+11T2 |
| 13 | 1+(−1.36+1.36i)T−13iT2 |
| 17 | 1+(−0.849−0.849i)T+17iT2 |
| 19 | 1+0.519T+19T2 |
| 23 | 1+(4.91+4.91i)T+23iT2 |
| 29 | 1−9.66iT−29T2 |
| 31 | 1−3.60iT−31T2 |
| 37 | 1+(1.27−1.27i)T−37iT2 |
| 41 | 1−9.63iT−41T2 |
| 43 | 1+(−5.88−5.88i)T+43iT2 |
| 47 | 1+(−3.91−3.91i)T+47iT2 |
| 53 | 1+(6.06+6.06i)T+53iT2 |
| 59 | 1+4.02T+59T2 |
| 61 | 1−12.0iT−61T2 |
| 67 | 1+(10.1−10.1i)T−67iT2 |
| 71 | 1+1.96T+71T2 |
| 73 | 1+(−10.1+10.1i)T−73iT2 |
| 79 | 1+9.86iT−79T2 |
| 83 | 1+(5.05−5.05i)T−83iT2 |
| 89 | 1−4.50T+89T2 |
| 97 | 1+(−10.3−10.3i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.48369516588753548309411307405, −9.407745864410117187894919163847, −8.685358718480950727745139241087, −7.82233631642868217695237323006, −6.68614590770836310029261562760, −5.93061476970548194948418761684, −4.77639324748937834104178628185, −4.21159221821758405408268442199, −3.30942395806500690640253757322, −1.22219381293070847417423454872,
0.52426009799280054126164288562, 1.86457297625212403198618803460, 3.64760713269628767178560950998, 4.21803327029112316266952461930, 5.77169021248879438090418241572, 6.36856872757139123411020508530, 7.17143387064232417787262741502, 7.81124137888838073294448954871, 8.917976584625241327525823536572, 9.706228873984825366796679903621