L(s) = 1 | + (−1.42 + 1.42i)3-s + (−2.11 − 0.724i)5-s − 1.06i·9-s + 5.50·11-s + (1.36 − 1.36i)13-s + (4.04 − 1.98i)15-s + (0.849 + 0.849i)17-s − 0.519·19-s + (−4.91 − 4.91i)23-s + (3.95 + 3.06i)25-s + (−2.75 − 2.75i)27-s + 9.66i·29-s + 3.60i·31-s + (−7.85 + 7.85i)33-s + (−1.27 + 1.27i)37-s + ⋯ |
L(s) = 1 | + (−0.823 + 0.823i)3-s + (−0.946 − 0.323i)5-s − 0.354i·9-s + 1.66·11-s + (0.379 − 0.379i)13-s + (1.04 − 0.512i)15-s + (0.205 + 0.205i)17-s − 0.119·19-s + (−1.02 − 1.02i)23-s + (0.790 + 0.612i)25-s + (−0.530 − 0.530i)27-s + 1.79i·29-s + 0.646i·31-s + (−1.36 + 1.36i)33-s + (−0.210 + 0.210i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.262 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.262 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.521354 + 0.682355i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.521354 + 0.682355i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.11 + 0.724i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (1.42 - 1.42i)T - 3iT^{2} \) |
| 11 | \( 1 - 5.50T + 11T^{2} \) |
| 13 | \( 1 + (-1.36 + 1.36i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.849 - 0.849i)T + 17iT^{2} \) |
| 19 | \( 1 + 0.519T + 19T^{2} \) |
| 23 | \( 1 + (4.91 + 4.91i)T + 23iT^{2} \) |
| 29 | \( 1 - 9.66iT - 29T^{2} \) |
| 31 | \( 1 - 3.60iT - 31T^{2} \) |
| 37 | \( 1 + (1.27 - 1.27i)T - 37iT^{2} \) |
| 41 | \( 1 - 9.63iT - 41T^{2} \) |
| 43 | \( 1 + (-5.88 - 5.88i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.91 - 3.91i)T + 47iT^{2} \) |
| 53 | \( 1 + (6.06 + 6.06i)T + 53iT^{2} \) |
| 59 | \( 1 + 4.02T + 59T^{2} \) |
| 61 | \( 1 - 12.0iT - 61T^{2} \) |
| 67 | \( 1 + (10.1 - 10.1i)T - 67iT^{2} \) |
| 71 | \( 1 + 1.96T + 71T^{2} \) |
| 73 | \( 1 + (-10.1 + 10.1i)T - 73iT^{2} \) |
| 79 | \( 1 + 9.86iT - 79T^{2} \) |
| 83 | \( 1 + (5.05 - 5.05i)T - 83iT^{2} \) |
| 89 | \( 1 - 4.50T + 89T^{2} \) |
| 97 | \( 1 + (-10.3 - 10.3i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48369516588753548309411307405, −9.407745864410117187894919163847, −8.685358718480950727745139241087, −7.82233631642868217695237323006, −6.68614590770836310029261562760, −5.93061476970548194948418761684, −4.77639324748937834104178628185, −4.21159221821758405408268442199, −3.30942395806500690640253757322, −1.22219381293070847417423454872,
0.52426009799280054126164288562, 1.86457297625212403198618803460, 3.64760713269628767178560950998, 4.21803327029112316266952461930, 5.77169021248879438090418241572, 6.36856872757139123411020508530, 7.17143387064232417787262741502, 7.81124137888838073294448954871, 8.917976584625241327525823536572, 9.706228873984825366796679903621