L(s) = 1 | + (0.569 + 1.29i)2-s + (1.51 − 2.62i)3-s + (−1.35 + 1.47i)4-s + (−0.866 + 0.5i)5-s + (4.25 + 0.465i)6-s + (−2.67 − 0.908i)8-s + (−3.08 − 5.33i)9-s + (−1.14 − 0.836i)10-s + (−1.03 − 0.598i)11-s + (1.82 + 5.77i)12-s − 4.83i·13-s + 3.02i·15-s + (−0.349 − 3.98i)16-s + (−2.20 − 1.27i)17-s + (5.15 − 7.02i)18-s + (−0.711 − 1.23i)19-s + ⋯ |
L(s) = 1 | + (0.402 + 0.915i)2-s + (0.873 − 1.51i)3-s + (−0.675 + 0.737i)4-s + (−0.387 + 0.223i)5-s + (1.73 + 0.190i)6-s + (−0.946 − 0.321i)8-s + (−1.02 − 1.77i)9-s + (−0.360 − 0.264i)10-s + (−0.312 − 0.180i)11-s + (0.525 + 1.66i)12-s − 1.34i·13-s + 0.781i·15-s + (−0.0873 − 0.996i)16-s + (−0.534 − 0.308i)17-s + (1.21 − 1.65i)18-s + (−0.163 − 0.282i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.239 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.239 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38629 - 1.08553i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38629 - 1.08553i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.569 - 1.29i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1.51 + 2.62i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (1.03 + 0.598i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 4.83iT - 13T^{2} \) |
| 17 | \( 1 + (2.20 + 1.27i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.711 + 1.23i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.02 + 2.90i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.774T + 29T^{2} \) |
| 31 | \( 1 + (-3.31 + 5.74i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.55 + 4.42i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 7.46iT - 41T^{2} \) |
| 43 | \( 1 - 1.38iT - 43T^{2} \) |
| 47 | \( 1 + (-0.535 - 0.927i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.68 - 2.91i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.94 - 8.55i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (8.31 - 4.79i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.14 - 5.27i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 16.3iT - 71T^{2} \) |
| 73 | \( 1 + (0.0927 + 0.0535i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (9.32 - 5.38i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 15.8T + 83T^{2} \) |
| 89 | \( 1 + (-3.41 + 1.97i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 8.71iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.335923765280315664536050344983, −8.562541074442241853861304533715, −7.915954407709107940407650895124, −7.39961046982278343803505742980, −6.60632696550023502152682907288, −5.84271101326127364863208716370, −4.60334226082875792186594821143, −3.21250472918432122987530023448, −2.62057678040086249379826973770, −0.63329472521355241934001442928,
1.91919614013487304687550444561, 3.09931635675502347998600982868, 3.86508032815955943935641189172, 4.63275135654475363870115122659, 5.21413789892317399748465023730, 6.69815890871022212794950435402, 8.165400368993681224590323890543, 8.924234887900229986692676141322, 9.357248251772116565545640002688, 10.22788558469297428229182374446