L(s) = 1 | + (0.569 + 1.29i)2-s + (1.51 − 2.62i)3-s + (−1.35 + 1.47i)4-s + (−0.866 + 0.5i)5-s + (4.25 + 0.465i)6-s + (−2.67 − 0.908i)8-s + (−3.08 − 5.33i)9-s + (−1.14 − 0.836i)10-s + (−1.03 − 0.598i)11-s + (1.82 + 5.77i)12-s − 4.83i·13-s + 3.02i·15-s + (−0.349 − 3.98i)16-s + (−2.20 − 1.27i)17-s + (5.15 − 7.02i)18-s + (−0.711 − 1.23i)19-s + ⋯ |
L(s) = 1 | + (0.402 + 0.915i)2-s + (0.873 − 1.51i)3-s + (−0.675 + 0.737i)4-s + (−0.387 + 0.223i)5-s + (1.73 + 0.190i)6-s + (−0.946 − 0.321i)8-s + (−1.02 − 1.77i)9-s + (−0.360 − 0.264i)10-s + (−0.312 − 0.180i)11-s + (0.525 + 1.66i)12-s − 1.34i·13-s + 0.781i·15-s + (−0.0873 − 0.996i)16-s + (−0.534 − 0.308i)17-s + (1.21 − 1.65i)18-s + (−0.163 − 0.282i)19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.239+0.970i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.239+0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.239+0.970i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.239+0.970i)
|
Particular Values
L(1) |
≈ |
1.38629−1.08553i |
L(21) |
≈ |
1.38629−1.08553i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.569−1.29i)T |
| 5 | 1+(0.866−0.5i)T |
| 7 | 1 |
good | 3 | 1+(−1.51+2.62i)T+(−1.5−2.59i)T2 |
| 11 | 1+(1.03+0.598i)T+(5.5+9.52i)T2 |
| 13 | 1+4.83iT−13T2 |
| 17 | 1+(2.20+1.27i)T+(8.5+14.7i)T2 |
| 19 | 1+(0.711+1.23i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−5.02+2.90i)T+(11.5−19.9i)T2 |
| 29 | 1−0.774T+29T2 |
| 31 | 1+(−3.31+5.74i)T+(−15.5−26.8i)T2 |
| 37 | 1+(2.55+4.42i)T+(−18.5+32.0i)T2 |
| 41 | 1−7.46iT−41T2 |
| 43 | 1−1.38iT−43T2 |
| 47 | 1+(−0.535−0.927i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.68−2.91i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.94−8.55i)T+(−29.5−51.0i)T2 |
| 61 | 1+(8.31−4.79i)T+(30.5−52.8i)T2 |
| 67 | 1+(−9.14−5.27i)T+(33.5+58.0i)T2 |
| 71 | 1+16.3iT−71T2 |
| 73 | 1+(0.0927+0.0535i)T+(36.5+63.2i)T2 |
| 79 | 1+(9.32−5.38i)T+(39.5−68.4i)T2 |
| 83 | 1−15.8T+83T2 |
| 89 | 1+(−3.41+1.97i)T+(44.5−77.0i)T2 |
| 97 | 1+8.71iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.335923765280315664536050344983, −8.562541074442241853861304533715, −7.915954407709107940407650895124, −7.39961046982278343803505742980, −6.60632696550023502152682907288, −5.84271101326127364863208716370, −4.60334226082875792186594821143, −3.21250472918432122987530023448, −2.62057678040086249379826973770, −0.63329472521355241934001442928,
1.91919614013487304687550444561, 3.09931635675502347998600982868, 3.86508032815955943935641189172, 4.63275135654475363870115122659, 5.21413789892317399748465023730, 6.69815890871022212794950435402, 8.165400368993681224590323890543, 8.924234887900229986692676141322, 9.357248251772116565545640002688, 10.22788558469297428229182374446