L(s) = 1 | + (−1.26 + 0.626i)2-s + (1.49 + 2.59i)3-s + (1.21 − 1.58i)4-s + (0.866 + 0.5i)5-s + (−3.52 − 2.35i)6-s + (−0.546 + 2.77i)8-s + (−2.99 + 5.18i)9-s + (−1.41 − 0.0915i)10-s + (−1.93 + 1.11i)11-s + (5.94 + 0.774i)12-s + 3.17i·13-s + 2.99i·15-s + (−1.04 − 3.86i)16-s + (2.98 − 1.72i)17-s + (0.548 − 8.45i)18-s + (−1.02 + 1.77i)19-s + ⋯ |
L(s) = 1 | + (−0.896 + 0.442i)2-s + (0.865 + 1.49i)3-s + (0.607 − 0.794i)4-s + (0.387 + 0.223i)5-s + (−1.43 − 0.960i)6-s + (−0.193 + 0.981i)8-s + (−0.998 + 1.72i)9-s + (−0.446 − 0.0289i)10-s + (−0.584 + 0.337i)11-s + (1.71 + 0.223i)12-s + 0.879i·13-s + 0.774i·15-s + (−0.261 − 0.965i)16-s + (0.723 − 0.417i)17-s + (0.129 − 1.99i)18-s + (−0.235 + 0.407i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0661i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0415307 + 1.25389i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0415307 + 1.25389i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.26 - 0.626i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1.49 - 2.59i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (1.93 - 1.11i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3.17iT - 13T^{2} \) |
| 17 | \( 1 + (-2.98 + 1.72i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.02 - 1.77i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.30 + 1.33i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 7.38T + 29T^{2} \) |
| 31 | \( 1 + (-2.44 - 4.23i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.59 + 9.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 1.46iT - 41T^{2} \) |
| 43 | \( 1 - 9.95iT - 43T^{2} \) |
| 47 | \( 1 + (3.06 - 5.30i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.32 + 4.03i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.55 - 6.16i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.19 - 1.26i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.0456 - 0.0263i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 0.212iT - 71T^{2} \) |
| 73 | \( 1 + (-12.8 + 7.43i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.399 - 0.230i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 10.9T + 83T^{2} \) |
| 89 | \( 1 + (6.07 + 3.51i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 0.185iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.987296623294979579150235220896, −9.631631428670800153134728785154, −8.961798589884689184922409313669, −8.088693858042615801969920917762, −7.37002642283235167152235405244, −6.11882197541353967730184750742, −5.20495543921025010688870042465, −4.26267514361640666957703027488, −3.00554740320721776665386756877, −2.00356841190108365448475978284,
0.67242270674577860728007482688, 1.83899597315427692437709961449, 2.69392964552538853368720980538, 3.61494945956080402827018731111, 5.59000565686395762544604389079, 6.49564191613541507662759976930, 7.43053261115471269276006664250, 8.070810914948245347271470629649, 8.494069972947517754401801463213, 9.498010999719590744897860661645