L(s) = 1 | + (−2.23 + 0.133i)5-s + (−1.5 − 2.59i)9-s + 4i·13-s + (3.46 + 2i)17-s + (2 + 3.46i)19-s + (6.92 − 4i)23-s + (4.96 − 0.598i)25-s − 2·29-s + (4 − 6.92i)31-s + (6.92 − 4i)37-s + 6·41-s + 8i·43-s + (3.69 + 5.59i)45-s + (−6.92 + 4i)47-s + (−2 + 3.46i)59-s + ⋯ |
L(s) = 1 | + (−0.998 + 0.0599i)5-s + (−0.5 − 0.866i)9-s + 1.10i·13-s + (0.840 + 0.485i)17-s + (0.458 + 0.794i)19-s + (1.44 − 0.834i)23-s + (0.992 − 0.119i)25-s − 0.371·29-s + (0.718 − 1.24i)31-s + (1.13 − 0.657i)37-s + 0.937·41-s + 1.21i·43-s + (0.550 + 0.834i)45-s + (−1.01 + 0.583i)47-s + (−0.260 + 0.450i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.185i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.982 - 0.185i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26846 + 0.118757i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26846 + 0.118757i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.23 - 0.133i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 + (-3.46 - 2i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2 - 3.46i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.92 + 4i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.92 + 4i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 - 8iT - 43T^{2} \) |
| 47 | \( 1 + (6.92 - 4i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3 - 5.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.92 - 4i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + (-3.46 - 2i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2 + 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + (5 + 8.66i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.881095382358240547002154553866, −9.199099342813155425546326455796, −8.310126054698841747483603129600, −7.58678863588756123840577605265, −6.63730428256926712623220216119, −5.84734254600871668037574197444, −4.53978395344829857762746738944, −3.77414100600725362662326140358, −2.78372263240156959442536848385, −0.962554427255944045818718986399,
0.845848652453346445710810900749, 2.78359223102205622521061339146, 3.47530894235330696219250094753, 4.96998853271478763571430683095, 5.29699790414913958053695680384, 6.77258980269466721507198350982, 7.64046123905680919581557778955, 8.128474708784298076304312557466, 9.050566794417287782413425083481, 10.03048080107623049725194204300