L(s) = 1 | + (2.59 − 1.5i)3-s + (0.133 − 2.23i)5-s + (3 − 5.19i)9-s + (−1.5 − 2.59i)11-s + i·13-s + (−3 − 6i)15-s + (4.33 − 2.5i)17-s + (−4 + 6.92i)19-s + (−1.73 − i)23-s + (−4.96 − 0.598i)25-s − 9i·27-s + 29-s + (1 + 1.73i)31-s + (−7.79 − 4.5i)33-s + (8.66 + 5i)37-s + ⋯ |
L(s) = 1 | + (1.49 − 0.866i)3-s + (0.0599 − 0.998i)5-s + (1 − 1.73i)9-s + (−0.452 − 0.783i)11-s + 0.277i·13-s + (−0.774 − 1.54i)15-s + (1.05 − 0.606i)17-s + (−0.917 + 1.58i)19-s + (−0.361 − 0.208i)23-s + (−0.992 − 0.119i)25-s − 1.73i·27-s + 0.185·29-s + (0.179 + 0.311i)31-s + (−1.35 − 0.783i)33-s + (1.42 + 0.821i)37-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.185+0.982i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.185+0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.185+0.982i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(569,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.185+0.982i)
|
Particular Values
L(1) |
≈ |
1.64746−1.98781i |
L(21) |
≈ |
1.64746−1.98781i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.133+2.23i)T |
| 7 | 1 |
good | 3 | 1+(−2.59+1.5i)T+(1.5−2.59i)T2 |
| 11 | 1+(1.5+2.59i)T+(−5.5+9.52i)T2 |
| 13 | 1−iT−13T2 |
| 17 | 1+(−4.33+2.5i)T+(8.5−14.7i)T2 |
| 19 | 1+(4−6.92i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.73+i)T+(11.5+19.9i)T2 |
| 29 | 1−T+29T2 |
| 31 | 1+(−1−1.73i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−8.66−5i)T+(18.5+32.0i)T2 |
| 41 | 1+6T+41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+(−9.52−5.5i)T+(23.5+40.7i)T2 |
| 53 | 1+(−5.19+3i)T+(26.5−45.8i)T2 |
| 59 | 1+(5+8.66i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−30.5−52.8i)T2 |
| 67 | 1+(−8.66+5i)T+(33.5−58.0i)T2 |
| 71 | 1+71T2 |
| 73 | 1+(8.66−5i)T+(36.5−63.2i)T2 |
| 79 | 1+(3.5−6.06i)T+(−39.5−68.4i)T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1+(−4+6.92i)T+(−44.5−77.0i)T2 |
| 97 | 1+3iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.551512034290190293324522526241, −8.667312171599813521900788112716, −8.158971344422432364903214444130, −7.66287278232485160802656445904, −6.45492950259355283937012833394, −5.51666822624580482865690215764, −4.18414552022219464378180601435, −3.25280095826607264231692118461, −2.13953807299700065005759460834, −1.05431700983908253886378584712,
2.21350996757624950219245770409, 2.84909332267963434753625479172, 3.84026228913242950129517929817, 4.65023441726917074162145194064, 5.94043774516656480927488681283, 7.21250933477752441130218541781, 7.75074184773112457121461601321, 8.657490878952809464549848455675, 9.445539821258872373899085040339, 10.26026453260722197668040557818