L(s) = 1 | + (2.59 − 1.5i)3-s + (0.133 − 2.23i)5-s + (3 − 5.19i)9-s + (−1.5 − 2.59i)11-s + i·13-s + (−3 − 6i)15-s + (4.33 − 2.5i)17-s + (−4 + 6.92i)19-s + (−1.73 − i)23-s + (−4.96 − 0.598i)25-s − 9i·27-s + 29-s + (1 + 1.73i)31-s + (−7.79 − 4.5i)33-s + (8.66 + 5i)37-s + ⋯ |
L(s) = 1 | + (1.49 − 0.866i)3-s + (0.0599 − 0.998i)5-s + (1 − 1.73i)9-s + (−0.452 − 0.783i)11-s + 0.277i·13-s + (−0.774 − 1.54i)15-s + (1.05 − 0.606i)17-s + (−0.917 + 1.58i)19-s + (−0.361 − 0.208i)23-s + (−0.992 − 0.119i)25-s − 1.73i·27-s + 0.185·29-s + (0.179 + 0.311i)31-s + (−1.35 − 0.783i)33-s + (1.42 + 0.821i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.185 + 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.185 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.64746 - 1.98781i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.64746 - 1.98781i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.133 + 2.23i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-2.59 + 1.5i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (1.5 + 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - iT - 13T^{2} \) |
| 17 | \( 1 + (-4.33 + 2.5i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4 - 6.92i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.73 + i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - T + 29T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-8.66 - 5i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 + (-9.52 - 5.5i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.19 + 3i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5 + 8.66i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.66 + 5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (8.66 - 5i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.5 - 6.06i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 12iT - 83T^{2} \) |
| 89 | \( 1 + (-4 + 6.92i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.551512034290190293324522526241, −8.667312171599813521900788112716, −8.158971344422432364903214444130, −7.66287278232485160802656445904, −6.45492950259355283937012833394, −5.51666822624580482865690215764, −4.18414552022219464378180601435, −3.25280095826607264231692118461, −2.13953807299700065005759460834, −1.05431700983908253886378584712,
2.21350996757624950219245770409, 2.84909332267963434753625479172, 3.84026228913242950129517929817, 4.65023441726917074162145194064, 5.94043774516656480927488681283, 7.21250933477752441130218541781, 7.75074184773112457121461601321, 8.657490878952809464549848455675, 9.445539821258872373899085040339, 10.26026453260722197668040557818