L(s) = 1 | + 6·3-s − 5-s + 15·9-s + 3·11-s − 6·15-s − 9·17-s + 19-s − 12·23-s + 5·25-s + 18·27-s − 2·29-s − 31-s + 18·33-s + 27·37-s + 30·41-s − 15·45-s + 15·47-s − 54·51-s − 3·53-s − 3·55-s + 6·57-s − 59-s − 12·61-s − 18·67-s − 72·69-s + 12·71-s + 15·73-s + ⋯ |
L(s) = 1 | + 3.46·3-s − 0.447·5-s + 5·9-s + 0.904·11-s − 1.54·15-s − 2.18·17-s + 0.229·19-s − 2.50·23-s + 25-s + 3.46·27-s − 0.371·29-s − 0.179·31-s + 3.13·33-s + 4.43·37-s + 4.68·41-s − 2.23·45-s + 2.18·47-s − 7.56·51-s − 0.412·53-s − 0.404·55-s + 0.794·57-s − 0.130·59-s − 1.53·61-s − 2.19·67-s − 8.66·69-s + 1.42·71-s + 1.75·73-s + ⋯ |
Λ(s)=(=((28⋅54⋅78)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((28⋅54⋅78)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅54⋅78
|
Sign: |
1
|
Analytic conductor: |
3749.83 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅54⋅78, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
11.38092805 |
L(21) |
≈ |
11.38092805 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C22 | 1+T−4T2+pT3+p2T4 |
| 7 | | 1 |
good | 3 | C2 | (1−pT+pT2)2(1+pT2)2 |
| 11 | D4×C2 | 1−3T−T2+36T3−120T4+36pT5−p2T6−3p3T7+p4T8 |
| 13 | D4×C2 | 1−8T2+126T4−8p2T6+p4T8 |
| 17 | D4×C2 | 1+9T+63T2+324T3+1466T4+324pT5+63p2T6+9p3T7+p4T8 |
| 19 | D4×C2 | 1−T−23T2+14T3+196T4+14pT5−23p2T6−p3T7+p4T8 |
| 23 | C2×C22 | (1+4T+pT2)2(1+4T−7T2+4pT3+p2T4) |
| 29 | D4 | (1+T+44T2+pT3+p2T4)2 |
| 31 | D4×C2 | 1+T−47T2−14T3+1312T4−14pT5−47p2T6+p3T7+p4T8 |
| 37 | D4×C2 | 1−27T+373T2−3510T3+24522T4−3510pT5+373p2T6−27p3T7+p4T8 |
| 41 | D4 | (1−15T+124T2−15pT3+p2T4)2 |
| 43 | D4×C2 | 1−125T2+7248T4−125p2T6+p4T8 |
| 47 | D4×C2 | 1−15T+183T2−1620T3+12980T4−1620pT5+183p2T6−15p3T7+p4T8 |
| 53 | D4×C2 | 1+3T+67T2+192T3+1446T4+192pT5+67p2T6+3p3T7+p4T8 |
| 59 | D4×C2 | 1+T−103T2−14T3+7276T4−14pT5−103p2T6+p3T7+p4T8 |
| 61 | D4×C2 | 1+12T+43T2−252T3−2304T4−252pT5+43p2T6+12p3T7+p4T8 |
| 67 | D4×C2 | 1+18T+193T2+1530T3+9972T4+1530pT5+193p2T6+18p3T7+p4T8 |
| 71 | D4 | (1−6T+94T2−6pT3+p2T4)2 |
| 73 | D4×C2 | 1−15T+235T2−2400T3+25746T4−2400pT5+235p2T6−15p3T7+p4T8 |
| 79 | D4×C2 | 1−7T−107T2+14T3+14224T4+14pT5−107p2T6−7p3T7+p4T8 |
| 83 | D4×C2 | 1−245T2+28656T4−245p2T6+p4T8 |
| 89 | C22 | (1−7T−40T2−7pT3+p2T4)2 |
| 97 | C22 | (1−146T2+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.62235158519014918214147507618, −7.03612924724030584450084137808, −6.83609233709056375197379581958, −6.38962675923068870423781790407, −6.29175966788611932923959960166, −6.15059512883423555085305806111, −6.04164448305357931036516488694, −5.53502414156249029738533042188, −5.48614917378650306179413362076, −4.75793072180921361689850446533, −4.58302768564089329542421197940, −4.49014893037245897602809841794, −4.01942505981022545473454502387, −3.98829940797767663379501254858, −3.87633730315401775075689056968, −3.73697213701862280626243310236, −3.06118209029767841100099964641, −2.74579446592009931401234472719, −2.66836745540452429146182002237, −2.61510398619315868829920328450, −2.38016032719902969222988574103, −1.94130971427855647793677836062, −1.69980048485353719383561222284, −0.945252816187647753011242282979, −0.63695643960673285640660315023,
0.63695643960673285640660315023, 0.945252816187647753011242282979, 1.69980048485353719383561222284, 1.94130971427855647793677836062, 2.38016032719902969222988574103, 2.61510398619315868829920328450, 2.66836745540452429146182002237, 2.74579446592009931401234472719, 3.06118209029767841100099964641, 3.73697213701862280626243310236, 3.87633730315401775075689056968, 3.98829940797767663379501254858, 4.01942505981022545473454502387, 4.49014893037245897602809841794, 4.58302768564089329542421197940, 4.75793072180921361689850446533, 5.48614917378650306179413362076, 5.53502414156249029738533042188, 6.04164448305357931036516488694, 6.15059512883423555085305806111, 6.29175966788611932923959960166, 6.38962675923068870423781790407, 6.83609233709056375197379581958, 7.03612924724030584450084137808, 7.62235158519014918214147507618