L(s) = 1 | + (−0.144 − 0.540i)3-s + (1.50 − 1.65i)5-s + (2.32 − 1.34i)9-s + (2.49 − 4.32i)11-s + (0.796 − 0.796i)13-s + (−1.11 − 0.575i)15-s + (−5.33 + 1.42i)17-s + (1.10 + 1.91i)19-s + (−1.89 + 7.08i)23-s + (−0.457 − 4.97i)25-s + (−2.25 − 2.25i)27-s − 2.10i·29-s + (−3.49 − 2.01i)31-s + (−2.70 − 0.723i)33-s + (9.23 + 2.47i)37-s + ⋯ |
L(s) = 1 | + (−0.0836 − 0.312i)3-s + (0.673 − 0.738i)5-s + (0.775 − 0.447i)9-s + (0.753 − 1.30i)11-s + (0.220 − 0.220i)13-s + (−0.286 − 0.148i)15-s + (−1.29 + 0.346i)17-s + (0.253 + 0.438i)19-s + (−0.395 + 1.47i)23-s + (−0.0914 − 0.995i)25-s + (−0.433 − 0.433i)27-s − 0.391i·29-s + (−0.627 − 0.362i)31-s + (−0.470 − 0.126i)33-s + (1.51 + 0.406i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.108 + 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.108 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.35086 - 1.21086i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35086 - 1.21086i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.50 + 1.65i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.144 + 0.540i)T + (-2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (-2.49 + 4.32i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.796 + 0.796i)T - 13iT^{2} \) |
| 17 | \( 1 + (5.33 - 1.42i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-1.10 - 1.91i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.89 - 7.08i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 2.10iT - 29T^{2} \) |
| 31 | \( 1 + (3.49 + 2.01i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-9.23 - 2.47i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 9.32iT - 41T^{2} \) |
| 43 | \( 1 + (-3.09 - 3.09i)T + 43iT^{2} \) |
| 47 | \( 1 + (-0.781 + 2.91i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-3.48 + 0.933i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (4.73 - 8.20i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.50 + 0.866i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.73 + 10.1i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 2.88T + 71T^{2} \) |
| 73 | \( 1 + (2.79 + 10.4i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (3.32 - 1.91i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (11.9 - 11.9i)T - 83iT^{2} \) |
| 89 | \( 1 + (1.81 + 3.15i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.67 - 8.67i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.581188153705297954050245870721, −9.092787816877817358699422543497, −8.246687014480377315124998274204, −7.25407790541464848162057670745, −6.10776589796053660413591660683, −5.82478901261521123115282950471, −4.41971225133709541760193442632, −3.58283882109084952619541388698, −1.95929183264896194414224136242, −0.905852862284589040585356639319,
1.72428702340613975687276322266, 2.65165947067439721655850196429, 4.21047990957067530061018128474, 4.70958088313362184885430137166, 6.05648808633705936115186659000, 6.88684865566464400658132210054, 7.35644410292126293269792294976, 8.764820793302869856270494372242, 9.543595209260014068372909336037, 10.10512525553457852578607546828