L(s) = 1 | + (−0.144 − 0.540i)3-s + (1.50 − 1.65i)5-s + (2.32 − 1.34i)9-s + (2.49 − 4.32i)11-s + (0.796 − 0.796i)13-s + (−1.11 − 0.575i)15-s + (−5.33 + 1.42i)17-s + (1.10 + 1.91i)19-s + (−1.89 + 7.08i)23-s + (−0.457 − 4.97i)25-s + (−2.25 − 2.25i)27-s − 2.10i·29-s + (−3.49 − 2.01i)31-s + (−2.70 − 0.723i)33-s + (9.23 + 2.47i)37-s + ⋯ |
L(s) = 1 | + (−0.0836 − 0.312i)3-s + (0.673 − 0.738i)5-s + (0.775 − 0.447i)9-s + (0.753 − 1.30i)11-s + (0.220 − 0.220i)13-s + (−0.286 − 0.148i)15-s + (−1.29 + 0.346i)17-s + (0.253 + 0.438i)19-s + (−0.395 + 1.47i)23-s + (−0.0914 − 0.995i)25-s + (−0.433 − 0.433i)27-s − 0.391i·29-s + (−0.627 − 0.362i)31-s + (−0.470 − 0.126i)33-s + (1.51 + 0.406i)37-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.108+0.994i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.108+0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
0.108+0.994i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(913,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), 0.108+0.994i)
|
Particular Values
L(1) |
≈ |
1.35086−1.21086i |
L(21) |
≈ |
1.35086−1.21086i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−1.50+1.65i)T |
| 7 | 1 |
good | 3 | 1+(0.144+0.540i)T+(−2.59+1.5i)T2 |
| 11 | 1+(−2.49+4.32i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.796+0.796i)T−13iT2 |
| 17 | 1+(5.33−1.42i)T+(14.7−8.5i)T2 |
| 19 | 1+(−1.10−1.91i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1.89−7.08i)T+(−19.9−11.5i)T2 |
| 29 | 1+2.10iT−29T2 |
| 31 | 1+(3.49+2.01i)T+(15.5+26.8i)T2 |
| 37 | 1+(−9.23−2.47i)T+(32.0+18.5i)T2 |
| 41 | 1+9.32iT−41T2 |
| 43 | 1+(−3.09−3.09i)T+43iT2 |
| 47 | 1+(−0.781+2.91i)T+(−40.7−23.5i)T2 |
| 53 | 1+(−3.48+0.933i)T+(45.8−26.5i)T2 |
| 59 | 1+(4.73−8.20i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.50+0.866i)T+(30.5−52.8i)T2 |
| 67 | 1+(2.73+10.1i)T+(−58.0+33.5i)T2 |
| 71 | 1+2.88T+71T2 |
| 73 | 1+(2.79+10.4i)T+(−63.2+36.5i)T2 |
| 79 | 1+(3.32−1.91i)T+(39.5−68.4i)T2 |
| 83 | 1+(11.9−11.9i)T−83iT2 |
| 89 | 1+(1.81+3.15i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−8.67−8.67i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.581188153705297954050245870721, −9.092787816877817358699422543497, −8.246687014480377315124998274204, −7.25407790541464848162057670745, −6.10776589796053660413591660683, −5.82478901261521123115282950471, −4.41971225133709541760193442632, −3.58283882109084952619541388698, −1.95929183264896194414224136242, −0.905852862284589040585356639319,
1.72428702340613975687276322266, 2.65165947067439721655850196429, 4.21047990957067530061018128474, 4.70958088313362184885430137166, 6.05648808633705936115186659000, 6.88684865566464400658132210054, 7.35644410292126293269792294976, 8.764820793302869856270494372242, 9.543595209260014068372909336037, 10.10512525553457852578607546828