L(s) = 1 | + (0.805 + 1.16i)2-s + (−3.15 + 0.844i)3-s + (−0.703 + 1.87i)4-s + (−0.260 − 2.22i)5-s + (−3.52 − 2.98i)6-s + (−2.74 + 0.689i)8-s + (6.62 − 3.82i)9-s + (2.37 − 2.09i)10-s + (1.96 + 1.13i)11-s + (0.635 − 6.49i)12-s + (1.38 − 1.38i)13-s + (2.69 + 6.78i)15-s + (−3.01 − 2.63i)16-s + (−0.186 + 0.0499i)17-s + (9.78 + 4.62i)18-s + (3.45 + 5.98i)19-s + ⋯ |
L(s) = 1 | + (0.569 + 0.822i)2-s + (−1.81 + 0.487i)3-s + (−0.351 + 0.936i)4-s + (−0.116 − 0.993i)5-s + (−1.43 − 1.21i)6-s + (−0.969 + 0.243i)8-s + (2.20 − 1.27i)9-s + (0.750 − 0.661i)10-s + (0.593 + 0.342i)11-s + (0.183 − 1.87i)12-s + (0.383 − 0.383i)13-s + (0.696 + 1.75i)15-s + (−0.752 − 0.658i)16-s + (−0.0451 + 0.0121i)17-s + (2.30 + 1.08i)18-s + (0.792 + 1.37i)19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(−0.593−0.805i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(−0.593−0.805i)Λ(1−s)
Degree: |
2 |
Conductor: |
980
= 22⋅5⋅72
|
Sign: |
−0.593−0.805i
|
Analytic conductor: |
7.82533 |
Root analytic conductor: |
2.79738 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ980(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 980, ( :1/2), −0.593−0.805i)
|
Particular Values
L(1) |
≈ |
0.434269+0.859375i |
L(21) |
≈ |
0.434269+0.859375i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.805−1.16i)T |
| 5 | 1+(0.260+2.22i)T |
| 7 | 1 |
good | 3 | 1+(3.15−0.844i)T+(2.59−1.5i)T2 |
| 11 | 1+(−1.96−1.13i)T+(5.5+9.52i)T2 |
| 13 | 1+(−1.38+1.38i)T−13iT2 |
| 17 | 1+(0.186−0.0499i)T+(14.7−8.5i)T2 |
| 19 | 1+(−3.45−5.98i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.866+3.23i)T+(−19.9−11.5i)T2 |
| 29 | 1−7.33iT−29T2 |
| 31 | 1+(0.430+0.248i)T+(15.5+26.8i)T2 |
| 37 | 1+(−0.904+3.37i)T+(−32.0−18.5i)T2 |
| 41 | 1−3.22T+41T2 |
| 43 | 1+(2.91+2.91i)T+43iT2 |
| 47 | 1+(2.40+0.645i)T+(40.7+23.5i)T2 |
| 53 | 1+(−1.87−6.98i)T+(−45.8+26.5i)T2 |
| 59 | 1+(2.61−4.52i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−5.00−8.67i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−3.21−12.0i)T+(−58.0+33.5i)T2 |
| 71 | 1+3.60iT−71T2 |
| 73 | 1+(−3.38−12.6i)T+(−63.2+36.5i)T2 |
| 79 | 1+(−5.66−9.81i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.591+0.591i)T+83iT2 |
| 89 | 1+(−3.45+1.99i)T+(44.5−77.0i)T2 |
| 97 | 1+(1.09+1.09i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32922785023187349981177882764, −9.472679660891283304745173179995, −8.598029420348758065872538991256, −7.47010874799429363914405338068, −6.63808285461829269090794026788, −5.69173833362550135702731362216, −5.34418952417490404518538677654, −4.38000139879729101727031468706, −3.74835381928925044828831688422, −1.09404189236223748914786342805,
0.59182551506647517843409121115, 1.91983314126946747215255612995, 3.37951685175502599305870706881, 4.50547089033427457514743061719, 5.35008927866693357068054999790, 6.35342114077628943887658421509, 6.60160024390806552192115268658, 7.69897678285084717910774328245, 9.366219766907498954342111316328, 10.06991602622884063160034071122