Properties

Label 2-980-1.1-c5-0-25
Degree $2$
Conductor $980$
Sign $1$
Analytic cond. $157.176$
Root an. cond. $12.5369$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.38·3-s + 25·5-s − 223.·9-s + 579.·11-s + 426.·13-s − 109.·15-s + 2.01e3·17-s + 402.·19-s + 1.51e3·23-s + 625·25-s + 2.04e3·27-s − 7.78e3·29-s + 4.70e3·31-s − 2.53e3·33-s + 1.77e3·37-s − 1.86e3·39-s + 7.35e3·41-s − 8.56e3·43-s − 5.59e3·45-s − 3.74e3·47-s − 8.80e3·51-s − 3.35e4·53-s + 1.44e4·55-s − 1.76e3·57-s + 1.13e4·59-s + 2.49e4·61-s + 1.06e4·65-s + ⋯
L(s)  = 1  − 0.281·3-s + 0.447·5-s − 0.920·9-s + 1.44·11-s + 0.699·13-s − 0.125·15-s + 1.68·17-s + 0.255·19-s + 0.597·23-s + 0.200·25-s + 0.540·27-s − 1.71·29-s + 0.878·31-s − 0.405·33-s + 0.212·37-s − 0.196·39-s + 0.683·41-s − 0.706·43-s − 0.411·45-s − 0.247·47-s − 0.474·51-s − 1.63·53-s + 0.645·55-s − 0.0718·57-s + 0.422·59-s + 0.859·61-s + 0.312·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(980\)    =    \(2^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(157.176\)
Root analytic conductor: \(12.5369\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 980,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.656221786\)
\(L(\frac12)\) \(\approx\) \(2.656221786\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 25T \)
7 \( 1 \)
good3 \( 1 + 4.38T + 243T^{2} \)
11 \( 1 - 579.T + 1.61e5T^{2} \)
13 \( 1 - 426.T + 3.71e5T^{2} \)
17 \( 1 - 2.01e3T + 1.41e6T^{2} \)
19 \( 1 - 402.T + 2.47e6T^{2} \)
23 \( 1 - 1.51e3T + 6.43e6T^{2} \)
29 \( 1 + 7.78e3T + 2.05e7T^{2} \)
31 \( 1 - 4.70e3T + 2.86e7T^{2} \)
37 \( 1 - 1.77e3T + 6.93e7T^{2} \)
41 \( 1 - 7.35e3T + 1.15e8T^{2} \)
43 \( 1 + 8.56e3T + 1.47e8T^{2} \)
47 \( 1 + 3.74e3T + 2.29e8T^{2} \)
53 \( 1 + 3.35e4T + 4.18e8T^{2} \)
59 \( 1 - 1.13e4T + 7.14e8T^{2} \)
61 \( 1 - 2.49e4T + 8.44e8T^{2} \)
67 \( 1 + 3.53e4T + 1.35e9T^{2} \)
71 \( 1 - 7.09e4T + 1.80e9T^{2} \)
73 \( 1 + 1.70e4T + 2.07e9T^{2} \)
79 \( 1 - 1.01e4T + 3.07e9T^{2} \)
83 \( 1 + 4.61e4T + 3.93e9T^{2} \)
89 \( 1 - 2.14e4T + 5.58e9T^{2} \)
97 \( 1 - 6.50e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.311777039198551114208555170402, −8.537123873069959178545094519868, −7.60192655835063117261823555718, −6.50390358245507566598635454898, −5.89477845269386338918252439055, −5.11975422602787745442066778086, −3.80674750265579950915729194445, −3.04645909342565458496681575559, −1.61181318770494918014945942837, −0.77685159906677371088932789037, 0.77685159906677371088932789037, 1.61181318770494918014945942837, 3.04645909342565458496681575559, 3.80674750265579950915729194445, 5.11975422602787745442066778086, 5.89477845269386338918252439055, 6.50390358245507566598635454898, 7.60192655835063117261823555718, 8.537123873069959178545094519868, 9.311777039198551114208555170402

Graph of the $Z$-function along the critical line