Properties

Label 2-985-1.1-c1-0-30
Degree $2$
Conductor $985$
Sign $-1$
Analytic cond. $7.86526$
Root an. cond. $2.80450$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.236·2-s − 2.87·3-s − 1.94·4-s − 5-s − 0.677·6-s + 1.02·7-s − 0.931·8-s + 5.24·9-s − 0.236·10-s + 0.916·11-s + 5.58·12-s + 4.99·13-s + 0.241·14-s + 2.87·15-s + 3.66·16-s + 0.345·17-s + 1.23·18-s − 5.30·19-s + 1.94·20-s − 2.93·21-s + 0.216·22-s − 7.21·23-s + 2.67·24-s + 25-s + 1.17·26-s − 6.44·27-s − 1.98·28-s + ⋯
L(s)  = 1  + 0.166·2-s − 1.65·3-s − 0.972·4-s − 0.447·5-s − 0.276·6-s + 0.386·7-s − 0.329·8-s + 1.74·9-s − 0.0746·10-s + 0.276·11-s + 1.61·12-s + 1.38·13-s + 0.0644·14-s + 0.741·15-s + 0.917·16-s + 0.0838·17-s + 0.291·18-s − 1.21·19-s + 0.434·20-s − 0.640·21-s + 0.0461·22-s − 1.50·23-s + 0.545·24-s + 0.200·25-s + 0.231·26-s − 1.23·27-s − 0.375·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 985 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 985 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(985\)    =    \(5 \cdot 197\)
Sign: $-1$
Analytic conductor: \(7.86526\)
Root analytic conductor: \(2.80450\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 985,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
197 \( 1 + T \)
good2 \( 1 - 0.236T + 2T^{2} \)
3 \( 1 + 2.87T + 3T^{2} \)
7 \( 1 - 1.02T + 7T^{2} \)
11 \( 1 - 0.916T + 11T^{2} \)
13 \( 1 - 4.99T + 13T^{2} \)
17 \( 1 - 0.345T + 17T^{2} \)
19 \( 1 + 5.30T + 19T^{2} \)
23 \( 1 + 7.21T + 23T^{2} \)
29 \( 1 - 4.17T + 29T^{2} \)
31 \( 1 - 9.99T + 31T^{2} \)
37 \( 1 - 2.64T + 37T^{2} \)
41 \( 1 + 9.80T + 41T^{2} \)
43 \( 1 + 12.7T + 43T^{2} \)
47 \( 1 + 8.43T + 47T^{2} \)
53 \( 1 + 3.66T + 53T^{2} \)
59 \( 1 - 4.19T + 59T^{2} \)
61 \( 1 - 2.70T + 61T^{2} \)
67 \( 1 - 9.72T + 67T^{2} \)
71 \( 1 - 0.435T + 71T^{2} \)
73 \( 1 + 6.14T + 73T^{2} \)
79 \( 1 + 4.36T + 79T^{2} \)
83 \( 1 + 9.26T + 83T^{2} \)
89 \( 1 - 14.2T + 89T^{2} \)
97 \( 1 + 11.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.971418702623043891700848736214, −8.452433518686175009157825461961, −8.204767947991794871108089560919, −6.50687939541780888295466074856, −6.23674441840629068922137331081, −5.08210146811284364005604198164, −4.47715637092761514735997251787, −3.63547080183708698198608749544, −1.33538730130272320767838242290, 0, 1.33538730130272320767838242290, 3.63547080183708698198608749544, 4.47715637092761514735997251787, 5.08210146811284364005604198164, 6.23674441840629068922137331081, 6.50687939541780888295466074856, 8.204767947991794871108089560919, 8.452433518686175009157825461961, 9.971418702623043891700848736214

Graph of the $Z$-function along the critical line