L(s) = 1 | + 0.236·2-s − 2.87·3-s − 1.94·4-s − 5-s − 0.677·6-s + 1.02·7-s − 0.931·8-s + 5.24·9-s − 0.236·10-s + 0.916·11-s + 5.58·12-s + 4.99·13-s + 0.241·14-s + 2.87·15-s + 3.66·16-s + 0.345·17-s + 1.23·18-s − 5.30·19-s + 1.94·20-s − 2.93·21-s + 0.216·22-s − 7.21·23-s + 2.67·24-s + 25-s + 1.17·26-s − 6.44·27-s − 1.98·28-s + ⋯ |
L(s) = 1 | + 0.166·2-s − 1.65·3-s − 0.972·4-s − 0.447·5-s − 0.276·6-s + 0.386·7-s − 0.329·8-s + 1.74·9-s − 0.0746·10-s + 0.276·11-s + 1.61·12-s + 1.38·13-s + 0.0644·14-s + 0.741·15-s + 0.917·16-s + 0.0838·17-s + 0.291·18-s − 1.21·19-s + 0.434·20-s − 0.640·21-s + 0.0461·22-s − 1.50·23-s + 0.545·24-s + 0.200·25-s + 0.231·26-s − 1.23·27-s − 0.375·28-s + ⋯ |
Λ(s)=(=(985s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(985s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+T |
| 197 | 1+T |
good | 2 | 1−0.236T+2T2 |
| 3 | 1+2.87T+3T2 |
| 7 | 1−1.02T+7T2 |
| 11 | 1−0.916T+11T2 |
| 13 | 1−4.99T+13T2 |
| 17 | 1−0.345T+17T2 |
| 19 | 1+5.30T+19T2 |
| 23 | 1+7.21T+23T2 |
| 29 | 1−4.17T+29T2 |
| 31 | 1−9.99T+31T2 |
| 37 | 1−2.64T+37T2 |
| 41 | 1+9.80T+41T2 |
| 43 | 1+12.7T+43T2 |
| 47 | 1+8.43T+47T2 |
| 53 | 1+3.66T+53T2 |
| 59 | 1−4.19T+59T2 |
| 61 | 1−2.70T+61T2 |
| 67 | 1−9.72T+67T2 |
| 71 | 1−0.435T+71T2 |
| 73 | 1+6.14T+73T2 |
| 79 | 1+4.36T+79T2 |
| 83 | 1+9.26T+83T2 |
| 89 | 1−14.2T+89T2 |
| 97 | 1+11.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.971418702623043891700848736214, −8.452433518686175009157825461961, −8.204767947991794871108089560919, −6.50687939541780888295466074856, −6.23674441840629068922137331081, −5.08210146811284364005604198164, −4.47715637092761514735997251787, −3.63547080183708698198608749544, −1.33538730130272320767838242290, 0,
1.33538730130272320767838242290, 3.63547080183708698198608749544, 4.47715637092761514735997251787, 5.08210146811284364005604198164, 6.23674441840629068922137331081, 6.50687939541780888295466074856, 8.204767947991794871108089560919, 8.452433518686175009157825461961, 9.971418702623043891700848736214