Properties

Label 4-312e2-1.1-c1e2-0-11
Degree $4$
Conductor $97344$
Sign $1$
Analytic cond. $6.20673$
Root an. cond. $1.57839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9-s + 6·13-s + 4·17-s − 6·25-s + 4·29-s + 2·49-s + 4·53-s − 4·61-s − 24·79-s + 81-s + 4·101-s + 8·103-s + 16·107-s + 20·113-s + 6·117-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4·153-s + 157-s + 163-s + 167-s + 23·169-s + ⋯
L(s)  = 1  + 1/3·9-s + 1.66·13-s + 0.970·17-s − 6/5·25-s + 0.742·29-s + 2/7·49-s + 0.549·53-s − 0.512·61-s − 2.70·79-s + 1/9·81-s + 0.398·101-s + 0.788·103-s + 1.54·107-s + 1.88·113-s + 0.554·117-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.323·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.76·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(6.20673\)
Root analytic conductor: \(1.57839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 97344,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.719115326\)
\(L(\frac12)\) \(\approx\) \(1.719115326\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
13$C_2$ \( 1 - 6 T + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
41$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 94 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 126 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.699438769496114402033257178004, −8.993860452341910821794806769078, −8.589788743802462385769043811054, −8.215799634359465414661645965473, −7.53440663921409189155491314773, −7.22581679137061663285206796479, −6.43986804523822436911164629458, −5.94124585537876212909233098247, −5.67153147242154355347872008580, −4.80024266791599446847212426264, −4.18301772950860384666382204939, −3.59866243929372867606894540722, −3.03644367581316318535608327538, −1.94677222991202967287945155352, −1.07453461325392778034782218303, 1.07453461325392778034782218303, 1.94677222991202967287945155352, 3.03644367581316318535608327538, 3.59866243929372867606894540722, 4.18301772950860384666382204939, 4.80024266791599446847212426264, 5.67153147242154355347872008580, 5.94124585537876212909233098247, 6.43986804523822436911164629458, 7.22581679137061663285206796479, 7.53440663921409189155491314773, 8.215799634359465414661645965473, 8.589788743802462385769043811054, 8.993860452341910821794806769078, 9.699438769496114402033257178004

Graph of the $Z$-function along the critical line