L(s) = 1 | + 9-s + 6·13-s + 4·17-s − 6·25-s + 4·29-s + 2·49-s + 4·53-s − 4·61-s − 24·79-s + 81-s + 4·101-s + 8·103-s + 16·107-s + 20·113-s + 6·117-s + 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 4·153-s + 157-s + 163-s + 167-s + 23·169-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 1.66·13-s + 0.970·17-s − 6/5·25-s + 0.742·29-s + 2/7·49-s + 0.549·53-s − 0.512·61-s − 2.70·79-s + 1/9·81-s + 0.398·101-s + 0.788·103-s + 1.54·107-s + 1.88·113-s + 0.554·117-s + 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.323·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.76·169-s + ⋯ |
Λ(s)=(=(97344s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(97344s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
97344
= 26⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
6.20673 |
Root analytic conductor: |
1.57839 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 97344, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.719115326 |
L(21) |
≈ |
1.719115326 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 13 | C2 | 1−6T+pT2 |
good | 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−10T2+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C22 | 1+6T2+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 31 | C22 | 1+14T2+p2T4 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C22 | 1−2T2+p2T4 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 53 | C2×C2 | (1−6T+pT2)(1+2T+pT2) |
| 59 | C22 | 1−10T2+p2T4 |
| 61 | C2×C2 | (1−6T+pT2)(1+10T+pT2) |
| 67 | C22 | 1−58T2+p2T4 |
| 71 | C22 | 1+94T2+p2T4 |
| 73 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 79 | C2×C2 | (1+8T+pT2)(1+16T+pT2) |
| 83 | C22 | 1−26T2+p2T4 |
| 89 | C22 | 1−130T2+p2T4 |
| 97 | C22 | 1+126T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.699438769496114402033257178004, −8.993860452341910821794806769078, −8.589788743802462385769043811054, −8.215799634359465414661645965473, −7.53440663921409189155491314773, −7.22581679137061663285206796479, −6.43986804523822436911164629458, −5.94124585537876212909233098247, −5.67153147242154355347872008580, −4.80024266791599446847212426264, −4.18301772950860384666382204939, −3.59866243929372867606894540722, −3.03644367581316318535608327538, −1.94677222991202967287945155352, −1.07453461325392778034782218303,
1.07453461325392778034782218303, 1.94677222991202967287945155352, 3.03644367581316318535608327538, 3.59866243929372867606894540722, 4.18301772950860384666382204939, 4.80024266791599446847212426264, 5.67153147242154355347872008580, 5.94124585537876212909233098247, 6.43986804523822436911164629458, 7.22581679137061663285206796479, 7.53440663921409189155491314773, 8.215799634359465414661645965473, 8.589788743802462385769043811054, 8.993860452341910821794806769078, 9.699438769496114402033257178004