L(s) = 1 | − 2-s − 4-s + 3·8-s − 4·13-s − 16-s − 6·17-s − 8·19-s − 25-s + 4·26-s − 5·32-s + 6·34-s + 8·38-s + 2·43-s + 18·47-s − 8·49-s + 50-s + 4·52-s − 8·53-s − 16·59-s + 7·64-s + 6·67-s + 6·68-s + 8·76-s − 9·81-s − 26·83-s − 2·86-s − 18·94-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s + 1.06·8-s − 1.10·13-s − 1/4·16-s − 1.45·17-s − 1.83·19-s − 1/5·25-s + 0.784·26-s − 0.883·32-s + 1.02·34-s + 1.29·38-s + 0.304·43-s + 2.62·47-s − 8/7·49-s + 0.141·50-s + 0.554·52-s − 1.09·53-s − 2.08·59-s + 7/8·64-s + 0.733·67-s + 0.727·68-s + 0.917·76-s − 81-s − 2.85·83-s − 0.215·86-s − 1.85·94-s + ⋯ |
Λ(s)=(=(28900s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(28900s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
28900
= 22⋅52⋅172
|
Sign: |
−1
|
Analytic conductor: |
1.84268 |
Root analytic conductor: |
1.16509 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 28900, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 5 | C2 | 1+T2 |
| 17 | C2 | 1+6T+pT2 |
good | 3 | C22 | 1+p2T4 |
| 7 | C22 | 1+8T2+p2T4 |
| 11 | C22 | 1−8T2+p2T4 |
| 13 | C2×C2 | (1−2T+pT2)(1+6T+pT2) |
| 19 | C2×C2 | (1+pT2)(1+8T+pT2) |
| 23 | C22 | 1+40T2+p2T4 |
| 29 | C22 | 1+30T2+p2T4 |
| 31 | C22 | 1−8T2+p2T4 |
| 37 | C22 | 1+6T2+p2T4 |
| 41 | C22 | 1+58T2+p2T4 |
| 43 | C2×C2 | (1−12T+pT2)(1+10T+pT2) |
| 47 | C2×C2 | (1−10T+pT2)(1−8T+pT2) |
| 53 | C2×C2 | (1+2T+pT2)(1+6T+pT2) |
| 59 | C2×C2 | (1+4T+pT2)(1+12T+pT2) |
| 61 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 67 | C2×C2 | (1−10T+pT2)(1+4T+pT2) |
| 71 | C22 | 1−72T2+p2T4 |
| 73 | C22 | 1−30T2+p2T4 |
| 79 | C22 | 1+120T2+p2T4 |
| 83 | C2×C2 | (1+12T+pT2)(1+14T+pT2) |
| 89 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 97 | C22 | 1−82T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21297280232623962707754863672, −9.708254981814360858292663699128, −9.202072821355533222558179266565, −8.662434285870896733895612797810, −8.423005787233979230346840942154, −7.53639490843311349121052775111, −7.27812164456876842814157434085, −6.46471330296411122639951342724, −5.93303168624518243897643367682, −4.94139277905990953926192582146, −4.48404698138439520044486747643, −3.99612885944062491515261866857, −2.68559110089798692482543213228, −1.85990320101749540748192083329, 0,
1.85990320101749540748192083329, 2.68559110089798692482543213228, 3.99612885944062491515261866857, 4.48404698138439520044486747643, 4.94139277905990953926192582146, 5.93303168624518243897643367682, 6.46471330296411122639951342724, 7.27812164456876842814157434085, 7.53639490843311349121052775111, 8.423005787233979230346840942154, 8.662434285870896733895612797810, 9.202072821355533222558179266565, 9.708254981814360858292663699128, 10.21297280232623962707754863672