Properties

Label 4-60e3-1.1-c1e2-0-8
Degree $4$
Conductor $216000$
Sign $1$
Analytic cond. $13.7723$
Root an. cond. $1.92642$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·4-s + 5-s − 2·6-s + 9-s + 2·10-s − 2·12-s − 15-s − 4·16-s + 2·18-s + 8·19-s + 2·20-s − 4·23-s + 25-s − 27-s + 6·29-s − 2·30-s − 8·32-s + 2·36-s + 16·38-s + 45-s − 8·46-s + 20·47-s + 4·48-s − 2·49-s + 2·50-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 4-s + 0.447·5-s − 0.816·6-s + 1/3·9-s + 0.632·10-s − 0.577·12-s − 0.258·15-s − 16-s + 0.471·18-s + 1.83·19-s + 0.447·20-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s − 0.365·30-s − 1.41·32-s + 1/3·36-s + 2.59·38-s + 0.149·45-s − 1.17·46-s + 2.91·47-s + 0.577·48-s − 2/7·49-s + 0.282·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 216000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(216000\)    =    \(2^{6} \cdot 3^{3} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(13.7723\)
Root analytic conductor: \(1.92642\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 216000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.232269705\)
\(L(\frac12)\) \(\approx\) \(3.232269705\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p T^{2} \)
3$C_1$ \( 1 + T \)
5$C_1$ \( 1 - T \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
37$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.073530912643278889469956898388, −8.657861741242126463766634676427, −7.88654228264781158140020591353, −7.47252738528849922863843022880, −6.81868368955996367238914359276, −6.58666760429134442590423229824, −5.82490822183852211395449671228, −5.45856204156854412166855237097, −5.35311022889694298747997708124, −4.33995178638783517592705153269, −4.26296913019575463751863880198, −3.37165696296968462837210908940, −2.83061317783178071719510045796, −2.11884394608975336905441282615, −0.977335489126259654610215845871, 0.977335489126259654610215845871, 2.11884394608975336905441282615, 2.83061317783178071719510045796, 3.37165696296968462837210908940, 4.26296913019575463751863880198, 4.33995178638783517592705153269, 5.35311022889694298747997708124, 5.45856204156854412166855237097, 5.82490822183852211395449671228, 6.58666760429134442590423229824, 6.81868368955996367238914359276, 7.47252738528849922863843022880, 7.88654228264781158140020591353, 8.657861741242126463766634676427, 9.073530912643278889469956898388

Graph of the $Z$-function along the critical line