L(s) = 1 | + 2·2-s − 3-s + 2·4-s − 5-s − 2·6-s − 2·9-s − 2·10-s − 2·12-s + 3·13-s + 15-s − 4·16-s − 4·18-s − 2·20-s + 25-s + 6·26-s + 5·27-s + 2·30-s − 2·31-s − 8·32-s − 4·36-s − 12·37-s − 3·39-s − 3·41-s + 3·43-s + 2·45-s + 4·48-s − 10·49-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 0.577·3-s + 4-s − 0.447·5-s − 0.816·6-s − 2/3·9-s − 0.632·10-s − 0.577·12-s + 0.832·13-s + 0.258·15-s − 16-s − 0.942·18-s − 0.447·20-s + 1/5·25-s + 1.17·26-s + 0.962·27-s + 0.365·30-s − 0.359·31-s − 1.41·32-s − 2/3·36-s − 1.97·37-s − 0.480·39-s − 0.468·41-s + 0.457·43-s + 0.298·45-s + 0.577·48-s − 1.42·49-s + ⋯ |
Λ(s)=(=(216000s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(216000s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
216000
= 26⋅33⋅53
|
Sign: |
−1
|
Analytic conductor: |
13.7723 |
Root analytic conductor: |
1.92642 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 216000, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−pT+pT2 |
| 3 | C2 | 1+T+pT2 |
| 5 | C1 | 1+T |
good | 7 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 11 | C22 | 1−12T2+p2T4 |
| 13 | C2×C2 | (1−6T+pT2)(1+3T+pT2) |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C22 | 1−13T2+p2T4 |
| 23 | C22 | 1−21T2+p2T4 |
| 29 | C22 | 1−32T2+p2T4 |
| 31 | C2×C2 | (1−2T+pT2)(1+4T+pT2) |
| 37 | C2×C2 | (1+2T+pT2)(1+10T+pT2) |
| 41 | C2×C2 | (1−2T+pT2)(1+5T+pT2) |
| 43 | C2×C2 | (1−2T+pT2)(1−T+pT2) |
| 47 | C22 | 1−15T2+p2T4 |
| 53 | C2×C2 | (1−7T+pT2)(1+14T+pT2) |
| 59 | C22 | 1−90T2+p2T4 |
| 61 | C22 | 1+95T2+p2T4 |
| 67 | C2×C2 | (1−12T+pT2)(1+3T+pT2) |
| 71 | C2×C2 | (1−5T+pT2)(1+14T+pT2) |
| 73 | C22 | 1+100T2+p2T4 |
| 79 | C2×C2 | (1−4T+pT2)(1+14T+pT2) |
| 83 | C2×C2 | (1−12T+pT2)(1−6T+pT2) |
| 89 | C2×C2 | (1+10T+pT2)(1+11T+pT2) |
| 97 | C22 | 1−176T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.722339061279030502026217557080, −8.326625773390273821916688279470, −7.86104944075813803200111539928, −6.98306956144003059227349427373, −6.80029561603651451983469425798, −6.20925779024294472317126229619, −5.74294810853403922092955208519, −5.32290141168043296240714248598, −4.84739726754712687571159778127, −4.31296215270085071722819888265, −3.57959421488730987783136762088, −3.31251437718625774347934014906, −2.57128120301065922656290658012, −1.55179478107478001093121490033, 0,
1.55179478107478001093121490033, 2.57128120301065922656290658012, 3.31251437718625774347934014906, 3.57959421488730987783136762088, 4.31296215270085071722819888265, 4.84739726754712687571159778127, 5.32290141168043296240714248598, 5.74294810853403922092955208519, 6.20925779024294472317126229619, 6.80029561603651451983469425798, 6.98306956144003059227349427373, 7.86104944075813803200111539928, 8.326625773390273821916688279470, 8.722339061279030502026217557080