L(s) = 1 | − 2-s + 4-s + 7-s − 8-s − 5·9-s − 14-s + 16-s − 9·17-s + 5·18-s − 3·23-s + 2·25-s + 28-s + 4·31-s − 32-s + 9·34-s − 5·36-s − 9·41-s + 3·46-s − 9·47-s + 49-s − 2·50-s − 56-s − 4·62-s − 5·63-s + 64-s − 9·68-s − 15·71-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s − 5/3·9-s − 0.267·14-s + 1/4·16-s − 2.18·17-s + 1.17·18-s − 0.625·23-s + 2/5·25-s + 0.188·28-s + 0.718·31-s − 0.176·32-s + 1.54·34-s − 5/6·36-s − 1.40·41-s + 0.442·46-s − 1.31·47-s + 1/7·49-s − 0.282·50-s − 0.133·56-s − 0.508·62-s − 0.629·63-s + 1/8·64-s − 1.09·68-s − 1.78·71-s + ⋯ |
Λ(s)=(=(43904s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(43904s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
43904
= 27⋅73
|
Sign: |
−1
|
Analytic conductor: |
2.79935 |
Root analytic conductor: |
1.29349 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 43904, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | 1+T |
| 7 | C1 | 1−T |
good | 3 | C2 | (1−T+pT2)(1+T+pT2) |
| 5 | C22 | 1−2T2+p2T4 |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 13 | C22 | 1−20T2+p2T4 |
| 17 | C2×C2 | (1+3T+pT2)(1+6T+pT2) |
| 19 | C22 | 1−2T2+p2T4 |
| 23 | C2×C2 | (1−3T+pT2)(1+6T+pT2) |
| 29 | C22 | 1+43T2+p2T4 |
| 31 | C2×C2 | (1−5T+pT2)(1+T+pT2) |
| 37 | C22 | 1−5T2+p2T4 |
| 41 | C2×C2 | (1+pT2)(1+9T+pT2) |
| 43 | C22 | 1+34T2+p2T4 |
| 47 | C2×C2 | (1−3T+pT2)(1+12T+pT2) |
| 53 | C22 | 1+85T2+p2T4 |
| 59 | C22 | 1−23T2+p2T4 |
| 61 | C22 | 1+40T2+p2T4 |
| 67 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 71 | C2×C2 | (1+6T+pT2)(1+9T+pT2) |
| 73 | C2×C2 | (1+4T+pT2)(1+10T+pT2) |
| 79 | C2×C2 | (1+T+pT2)(1+10T+pT2) |
| 83 | C22 | 1−5T2+p2T4 |
| 89 | C2×C2 | (1−12T+pT2)(1+3T+pT2) |
| 97 | C2×C2 | (1−14T+pT2)(1−2T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16503550298585820097002192537, −9.183105464166945810672815012539, −8.803492526446667316711688403013, −8.565983171959853283933569857530, −8.063621987925375588879513174290, −7.39421188716369306557033815179, −6.70885443291402377233247170593, −6.26828606774537762458311499295, −5.73771297527460382349868991289, −4.92023477868249713444324566679, −4.39611675489762487688262311461, −3.31155823054676521760797309766, −2.63959424907761678348027679278, −1.83998833486204604502597426161, 0,
1.83998833486204604502597426161, 2.63959424907761678348027679278, 3.31155823054676521760797309766, 4.39611675489762487688262311461, 4.92023477868249713444324566679, 5.73771297527460382349868991289, 6.26828606774537762458311499295, 6.70885443291402377233247170593, 7.39421188716369306557033815179, 8.063621987925375588879513174290, 8.565983171959853283933569857530, 8.803492526446667316711688403013, 9.183105464166945810672815012539, 10.16503550298585820097002192537