Properties

Label 1-1-1.1-r0-0-0
Degree 11
Conductor 11
Sign 11
Analytic cond. 0.004643980.00464398
Root an. cond. 0.004643980.00464398
Motivic weight 00
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

The Riemann zeta function is the prototypical L-function. It is the only L-function of degree 1 and conductor 1, and (conjecturally) it is the only primitive L-function with a pole. Its unique pole is located at s=1s=1. Learn more about its history.

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s + 11-s + 12-s + 13-s + 14-s + 15-s + 16-s + 17-s + 18-s + 19-s + 20-s + 21-s + 22-s + 23-s + 24-s + 25-s + 26-s + 27-s + 28-s + ⋯
L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s + 11-s + 12-s + 13-s + 14-s + 15-s + 16-s + 17-s + 18-s + 19-s + 20-s + 21-s + 22-s + 23-s + 24-s + 25-s + 26-s + 27-s + 28-s + ⋯

Functional equation

Λ(s)=(ΓR(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s) \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}
Λ(s)=(ΓR(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s) \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 11
Conductor: 11
Sign: 11
Analytic conductor: 0.004643980.00464398
Root analytic conductor: 0.004643980.00464398
Motivic weight: 00
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (1, 1, (0: ), 1)(1,\ 1,\ (0:\ ),\ 1)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.460354508-1.460354508
L(12)L(\frac12) \approx 1.460354508-1.460354508
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
good2 1T 1 - T
3 1T 1 - T
5 1T 1 - T
7 1T 1 - T
11 1T 1 - T
13 1T 1 - T
17 1T 1 - T
19 1T 1 - T
23 1T 1 - T
29 1T 1 - T
31 1T 1 - T
37 1T 1 - T
41 1T 1 - T
43 1T 1 - T
47 1T 1 - T
53 1T 1 - T
59 1T 1 - T
61 1T 1 - T
67 1T 1 - T
71 1T 1 - T
73 1T 1 - T
79 1T 1 - T
83 1T 1 - T
89 1T 1 - T
97 1T 1 - T
show more
show less
   L(s)=p (1αpps)1L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−88.809111207634465423682348079510, −87.425274613125229406531667850919, −84.735492980517050105735311206828, −82.910380854086030183164837494771, −79.337375020249367922763592877116, −77.14484006887480537268266485631, −75.70469069908393316832691676203, −72.06715767448190758252210796983, −69.54640171117397925292685752656, −67.07981052949417371447882889652, −65.11254404808160666087505425318, −60.83177852460980984425990182452, −59.34704400260235307965364867499, −56.44624769706339480436775947671, −52.97032147771446064414729660888, −49.77383247767230218191678467856, −48.00515088116715972794247274943, −43.32707328091499951949612216541, −40.91871901214749518739812691463, −37.58617815882567125721776348071, −32.93506158773918969066236896407, −30.42487612585951321031189753058, −25.01085758014568876321379099256, −21.02203963877155499262847959390, −14.13472514173469379045725198356, 14.13472514173469379045725198356, 21.02203963877155499262847959390, 25.01085758014568876321379099256, 30.42487612585951321031189753058, 32.93506158773918969066236896407, 37.58617815882567125721776348071, 40.91871901214749518739812691463, 43.32707328091499951949612216541, 48.00515088116715972794247274943, 49.77383247767230218191678467856, 52.97032147771446064414729660888, 56.44624769706339480436775947671, 59.34704400260235307965364867499, 60.83177852460980984425990182452, 65.11254404808160666087505425318, 67.07981052949417371447882889652, 69.54640171117397925292685752656, 72.06715767448190758252210796983, 75.70469069908393316832691676203, 77.14484006887480537268266485631, 79.337375020249367922763592877116, 82.910380854086030183164837494771, 84.735492980517050105735311206828, 87.425274613125229406531667850919, 88.809111207634465423682348079510

Graph of the ZZ-function along the critical line

The first zero of the Riemann zeta function, at height approximately 14.134, is higher than that of any other algebraic L-function.