The Riemann zeta function is the prototypical L-function. It is the only L-function of degree 1 and conductor 1, and (conjecturally) it is the only primitive L-function with a pole. Its unique pole is located at s=1. Learn more about its history.
L(s) = 1 | + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s + 11-s + 12-s + 13-s + 14-s + 15-s + 16-s + 17-s + 18-s + 19-s + 20-s + 21-s + 22-s + 23-s + 24-s + 25-s + 26-s + 27-s + 28-s + ⋯ |
L(s) = 1 | + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s + 11-s + 12-s + 13-s + 14-s + 15-s + 16-s + 17-s + 18-s + 19-s + 20-s + 21-s + 22-s + 23-s + 24-s + 25-s + 26-s + 27-s + 28-s + ⋯ |
Λ(s)=(=(ΓR(s)L(s)Λ(1−s)
Λ(s)=(=(ΓR(s)L(s)Λ(1−s)
Particular Values
L(21) |
≈ |
−1.460354508 |
L(21) |
≈ |
−1.460354508 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
good | 2 | 1−T |
| 3 | 1−T |
| 5 | 1−T |
| 7 | 1−T |
| 11 | 1−T |
| 13 | 1−T |
| 17 | 1−T |
| 19 | 1−T |
| 23 | 1−T |
| 29 | 1−T |
| 31 | 1−T |
| 37 | 1−T |
| 41 | 1−T |
| 43 | 1−T |
| 47 | 1−T |
| 53 | 1−T |
| 59 | 1−T |
| 61 | 1−T |
| 67 | 1−T |
| 71 | 1−T |
| 73 | 1−T |
| 79 | 1−T |
| 83 | 1−T |
| 89 | 1−T |
| 97 | 1−T |
show more | |
show less | |
L(s)=p∏ (1−αpp−s)−1
Imaginary part of the first few zeros on the critical line
−88.809111207634465423682348079510, −87.425274613125229406531667850919, −84.735492980517050105735311206828, −82.910380854086030183164837494771, −79.337375020249367922763592877116, −77.14484006887480537268266485631, −75.70469069908393316832691676203, −72.06715767448190758252210796983, −69.54640171117397925292685752656, −67.07981052949417371447882889652, −65.11254404808160666087505425318, −60.83177852460980984425990182452, −59.34704400260235307965364867499, −56.44624769706339480436775947671, −52.97032147771446064414729660888, −49.77383247767230218191678467856, −48.00515088116715972794247274943, −43.32707328091499951949612216541, −40.91871901214749518739812691463, −37.58617815882567125721776348071, −32.93506158773918969066236896407, −30.42487612585951321031189753058, −25.01085758014568876321379099256, −21.02203963877155499262847959390, −14.13472514173469379045725198356,
14.13472514173469379045725198356, 21.02203963877155499262847959390, 25.01085758014568876321379099256, 30.42487612585951321031189753058, 32.93506158773918969066236896407, 37.58617815882567125721776348071, 40.91871901214749518739812691463, 43.32707328091499951949612216541, 48.00515088116715972794247274943, 49.77383247767230218191678467856, 52.97032147771446064414729660888, 56.44624769706339480436775947671, 59.34704400260235307965364867499, 60.83177852460980984425990182452, 65.11254404808160666087505425318, 67.07981052949417371447882889652, 69.54640171117397925292685752656, 72.06715767448190758252210796983, 75.70469069908393316832691676203, 77.14484006887480537268266485631, 79.337375020249367922763592877116, 82.910380854086030183164837494771, 84.735492980517050105735311206828, 87.425274613125229406531667850919, 88.809111207634465423682348079510
The first zero of the Riemann zeta function, at height approximately 14.134, is higher than that of any other algebraic L-function.