Properties

Label 2.0.11.1-20736.4-f
Base field Q(11)\Q(\sqrt{-11})
Weight 22
Level norm 2073620736
Level (48a96) \left(-48 a - 96\right)
Dimension 11
CM no
Base change no
Sign 1-1
Analytic rank odd

Related objects

Downloads

Learn more

Base field: Q(11)\Q(\sqrt{-11})

Generator aa, with minimal polynomial x2x+3x^2 - x + 3; class number 11.

Form

Weight: 2
Level: 20736.4 = (48a96) \left(-48 a - 96\right)
Level norm: 20736
Dimension: 1
CM: no
Base change: no
Newspace:2.0.11.1-20736.4 (dimension 6)
Sign of functional equation: 1-1
Analytic rank: odd

Associated elliptic curves

This Bianchi newform is associated to the isogeny class 2.0.11.1-20736.4-f of elliptic curves.

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 3 3.1 = (a) \left(-a\right) 1 -1
3 3 3.2 = (a1) \left(a - 1\right) 1 1
4 4 4.1 = (2) \left(2\right) 1 -1

Hecke eigenvalues

The Hecke eigenvalue field is Q\Q. The eigenvalue of the Hecke operator TpT_{\mathfrak{p}} is apa_{\mathfrak{p}}. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues apa_{\mathfrak{p}} for primes p\mathfrak{p} which do not divide the level.

N(p)N(\mathfrak{p}) p\mathfrak{p} apa_{\mathfrak{p}}
5 5 5.1 = (a1) \left(-a - 1\right) 1 1
5 5 5.2 = (a2) \left(a - 2\right) 2 -2
11 11 11.1 = (2a+1) \left(-2 a + 1\right) 3 3
23 23 23.1 = (a+4) \left(a + 4\right) 4 -4
23 23 23.2 = (a5) \left(a - 5\right) 2 -2
31 31 31.1 = (3a+4) \left(-3 a + 4\right) 3 3
31 31 31.2 = (3a+1) \left(3 a + 1\right) 6 6
37 37 37.1 = (3a2) \left(-3 a - 2\right) 7 -7
37 37 37.2 = (3a5) \left(3 a - 5\right) 5 5
47 47 47.1 = (2a+7) \left(-2 a + 7\right) 4 4
47 47 47.2 = (2a+5) \left(2 a + 5\right) 7 -7
49 49 49.1 = (7) \left(7\right) 6 -6
53 53 53.1 = (4a+5) \left(-4 a + 5\right) 12 -12
53 53 53.2 = (4a+1) \left(4 a + 1\right) 6 6
59 59 59.1 = (a+7) \left(a + 7\right) 9 -9
59 59 59.2 = (a8) \left(a - 8\right) 12 -12
67 67 67.1 = (3a5) \left(-3 a - 5\right) 0 0
67 67 67.2 = (3a8) \left(3 a - 8\right) 3 3
71 71 71.1 = (5a+1) \left(-5 a + 1\right) 13 13
71 71 71.2 = (5a4) \left(5 a - 4\right) 5 5
Display number of eigenvalues