Properties

Label 2.0.39.1-192.4-a
Base field \(\Q(\sqrt{-39}) \)
Weight $2$
Level norm $192$
Level \( \left(24, 8 a + 8\right) \)
Dimension $1$
CM no
Base change no
Sign $+1$
Analytic rank \(0\)

Related objects

Downloads

Learn more

Base field: \(\Q(\sqrt{-39}) \)

Generator \(a\), with minimal polynomial \(x^2 - x + 10\); class number \(4\).

Form

Weight: 2
Level: 192.4 = \( \left(24, 8 a + 8\right) \)
Level norm: 192
Dimension: 1
CM: no
Base change: no, but is a twist of the base change of a form over \(\mathbb{Q}\)
Newspace:2.0.39.1-192.4 (dimension 8)
Sign of functional equation: $+1$
Analytic rank: \(0\)

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 2 \) 2.1 = \( \left(2, a\right) \) \( -1 \)
\( 2 \) 2.2 = \( \left(2, a + 1\right) \) \( 1 \)
\( 3 \) 3.1 = \( \left(3, a + 1\right) \) \( 1 \)

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 100 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
\( 5 \) 5.1 = \( \left(5, a\right) \) \( -4 \)
\( 5 \) 5.2 = \( \left(5, a + 4\right) \) \( 4 \)
\( 11 \) 11.1 = \( \left(11, a + 3\right) \) \( 2 \)
\( 11 \) 11.2 = \( \left(11, a + 7\right) \) \( -2 \)
\( 13 \) 13.1 = \( \left(13, a + 6\right) \) \( -6 \)
\( 41 \) 41.1 = \( \left(41, a + 8\right) \) \( 0 \)
\( 41 \) 41.2 = \( \left(41, a + 32\right) \) \( 0 \)
\( 43 \) 43.1 = \( \left(-2 a + 3\right) \) \( -4 \)
\( 43 \) 43.2 = \( \left(2 a + 1\right) \) \( -4 \)
\( 47 \) 47.1 = \( \left(47, a + 16\right) \) \( -2 \)
\( 47 \) 47.2 = \( \left(47, a + 30\right) \) \( 2 \)
\( 49 \) 49.1 = \( \left(7\right) \) \( 10 \)
\( 59 \) 59.1 = \( \left(59, a + 21\right) \) \( 14 \)
\( 59 \) 59.2 = \( \left(59, a + 37\right) \) \( -14 \)
\( 61 \) 61.1 = \( \left(61, a + 24\right) \) \( 2 \)
\( 61 \) 61.2 = \( \left(61, a + 36\right) \) \( 2 \)
\( 71 \) 71.1 = \( \left(71, a + 11\right) \) \( 6 \)
\( 71 \) 71.2 = \( \left(71, a + 59\right) \) \( -6 \)
\( 79 \) 79.1 = \( \left(79, a + 17\right) \) \( 0 \)
\( 79 \) 79.2 = \( \left(79, a + 61\right) \) \( 0 \)
Display number of eigenvalues