Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \(x^2 + 1\); class number \(1\).
Level 130.1
| Norm: | 130 |
| Ideal: | \((9 i - 7) = \left(i + 1\right) \cdot \left(-i - 2\right) \cdot \left(-2 i + 3\right) \) |
| Label: | 130.1 |
Modular form spaces
| Weight | 2 |
|---|---|
| Dimension of cuspidal subspace: | 1 |
| Dimension of new cuspidal subspace: | 1 |
Newforms
This space contains the following newform of dimension 1.
| label | weight | sign | base change | CM |
|---|---|---|---|---|
| 130.1-a | 2 | +1 | no | no |