Properties

Label 2.0.52.1-242.1-b
Base field \(\Q(\sqrt{-13}) \)
Weight $2$
Level norm $242$
Level \( \left(242, a + 201\right) \)
Dimension $1$
CM no
Base change no
Sign $-1$
Analytic rank \(0\)

Related objects

Downloads

Learn more

Base field: \(\Q(\sqrt{-13}) \)

Generator \(a\), with minimal polynomial \(x^2 + 13\); class number \(2\).

Form

Weight: 2
Level: 242.1 = \( \left(242, a + 201\right) \)
Level norm: 242
Dimension: 1
CM: no
Base change: no
Newspace:2.0.52.1-242.1 (dimension 2)
Sign of functional equation: $-1$
Analytic rank: \(0\)

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 2 \) 2.1 = \( \left(2, a + 1\right) \) \( -1 \)
\( 11 \) 11.1 = \( \left(11, a + 3\right) \) \( -1 \)

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 100 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
\( 7 \) 7.1 = \( \left(7, a + 1\right) \) \( 0 \)
\( 7 \) 7.2 = \( \left(7, a + 6\right) \) \( 2 \)
\( 9 \) 9.1 = \( \left(3\right) \) \( -1 \)
\( 11 \) 11.2 = \( \left(11, a + 8\right) \) \( -4 \)
\( 13 \) 13.1 = \( \left(a\right) \) \( -3 \)
\( 17 \) 17.1 = \( \left(a + 2\right) \) \( 7 \)
\( 17 \) 17.2 = \( \left(a - 2\right) \) \( -6 \)
\( 19 \) 19.1 = \( \left(19, a + 5\right) \) \( 6 \)
\( 19 \) 19.2 = \( \left(19, a + 14\right) \) \( 2 \)
\( 25 \) 25.1 = \( \left(5\right) \) \( -7 \)
\( 29 \) 29.1 = \( \left(a + 4\right) \) \( -3 \)
\( 29 \) 29.2 = \( \left(a - 4\right) \) \( 2 \)
\( 31 \) 31.1 = \( \left(31, a + 7\right) \) \( -6 \)
\( 31 \) 31.2 = \( \left(31, a + 24\right) \) \( 2 \)
\( 47 \) 47.1 = \( \left(47, a + 9\right) \) \( -2 \)
\( 47 \) 47.2 = \( \left(47, a + 38\right) \) \( -10 \)
\( 53 \) 53.1 = \( \left(-2 a + 1\right) \) \( -13 \)
\( 53 \) 53.2 = \( \left(-2 a - 1\right) \) \( 6 \)
\( 59 \) 59.1 = \( \left(59, a + 20\right) \) \( 6 \)
\( 59 \) 59.2 = \( \left(59, a + 39\right) \) \( -8 \)
Display number of eigenvalues