Base field: \(\Q(\sqrt{-2}) \)
Generator \(a\), with minimal polynomial \(x^2 + 2\); class number \(1\).
Form
Weight: | 2 | |
Level: | 5202.5 = \( \left(51 a\right) \) | |
Level norm: | 5202 | |
Dimension: | 1 | |
CM: | no | |
Base change: | no | |
Newspace: | 2.0.8.1-5202.5 (dimension 9) | |
Sign of functional equation: | $+1$ | |
Analytic rank: | \(0\) | |
L-ratio: | 5 |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
\( 2 \) | 2.1 = \( \left(a\right) \) | \( -1 \) |
\( 3 \) | 3.1 = \( \left(-a - 1\right) \) | \( -1 \) |
\( 3 \) | 3.2 = \( \left(a - 1\right) \) | \( 1 \) |
\( 17 \) | 17.1 = \( \left(-2 a + 3\right) \) | \( -1 \) |
\( 17 \) | 17.2 = \( \left(2 a + 3\right) \) | \( 1 \) |
Hecke eigenvalues
The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.
$N(\mathfrak{p})$ | $\mathfrak{p}$ | $a_{\mathfrak{p}}$ |
---|---|---|
\( 11 \) | 11.1 = \( \left(a + 3\right) \) | \( 4 \) |
\( 11 \) | 11.2 = \( \left(a - 3\right) \) | \( 6 \) |
\( 19 \) | 19.1 = \( \left(-3 a + 1\right) \) | \( 0 \) |
\( 19 \) | 19.2 = \( \left(3 a + 1\right) \) | \( 2 \) |
\( 25 \) | 25.1 = \( \left(5\right) \) | \( 6 \) |
\( 41 \) | 41.1 = \( \left(-4 a - 3\right) \) | \( -10 \) |
\( 41 \) | 41.2 = \( \left(4 a - 3\right) \) | \( -6 \) |
\( 43 \) | 43.1 = \( \left(-3 a - 5\right) \) | \( 4 \) |
\( 43 \) | 43.2 = \( \left(3 a - 5\right) \) | \( 4 \) |
\( 49 \) | 49.1 = \( \left(7\right) \) | \( 8 \) |
\( 59 \) | 59.1 = \( \left(-5 a + 3\right) \) | \( 0 \) |
\( 59 \) | 59.2 = \( \left(-5 a - 3\right) \) | \( -6 \) |
\( 67 \) | 67.1 = \( \left(-3 a + 7\right) \) | \( 2 \) |
\( 67 \) | 67.2 = \( \left(3 a + 7\right) \) | \( -16 \) |
\( 73 \) | 73.1 = \( \left(-6 a + 1\right) \) | \( 2 \) |
\( 73 \) | 73.2 = \( \left(6 a + 1\right) \) | \( -10 \) |
\( 83 \) | 83.1 = \( \left(a + 9\right) \) | \( -10 \) |
\( 83 \) | 83.2 = \( \left(a - 9\right) \) | \( -8 \) |
\( 89 \) | 89.1 = \( \left(-2 a + 9\right) \) | \( 18 \) |
\( 89 \) | 89.2 = \( \left(2 a + 9\right) \) | \( -10 \) |