Properties

Label 2.0.83.1-27.2-a
Base field \(\Q(\sqrt{-83}) \)
Weight $2$
Level norm $27$
Level \( \left(9, 3 a\right) \)
Dimension $1$
CM no
Base change no
Sign $-1$
Analytic rank \(0\)

Related objects

Downloads

Learn more

Base field: \(\Q(\sqrt{-83}) \)

Generator \(a\), with minimal polynomial \(x^2 - x + 21\); class number \(3\).

Form

Weight: 2
Level: 27.2 = \( \left(9, 3 a\right) \)
Level norm: 27
Dimension: 1
CM: no
Base change: no, but is a twist of the base change of a form over \(\mathbb{Q}\)
Newspace:2.0.83.1-27.2 (dimension 7)
Sign of functional equation: $-1$
Analytic rank: \(0\)

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 3 \) 3.1 = \( \left(3, a\right) \) \( -1 \)
\( 3 \) 3.2 = \( \left(3, a + 2\right) \) \( -1 \)

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 100 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
\( 4 \) 4.1 = \( \left(2\right) \) \( -3 \)
\( 7 \) 7.1 = \( \left(7, a\right) \) \( -2 \)
\( 7 \) 7.2 = \( \left(7, a + 6\right) \) \( -2 \)
\( 11 \) 11.1 = \( \left(11, a + 3\right) \) \( -1 \)
\( 11 \) 11.2 = \( \left(11, a + 7\right) \) \( 1 \)
\( 17 \) 17.1 = \( \left(17, a + 5\right) \) \( 0 \)
\( 17 \) 17.2 = \( \left(17, a + 11\right) \) \( 0 \)
\( 23 \) 23.1 = \( \left(a + 1\right) \) \( -9 \)
\( 23 \) 23.2 = \( \left(a - 2\right) \) \( 9 \)
\( 25 \) 25.1 = \( \left(5\right) \) \( -1 \)
\( 29 \) 29.1 = \( \left(29, a + 13\right) \) \( 2 \)
\( 29 \) 29.2 = \( \left(29, a + 15\right) \) \( -2 \)
\( 31 \) 31.1 = \( \left(31, a + 8\right) \) \( 8 \)
\( 31 \) 31.2 = \( \left(31, a + 22\right) \) \( 8 \)
\( 37 \) 37.1 = \( \left(37, a + 9\right) \) \( 1 \)
\( 37 \) 37.2 = \( \left(37, a + 27\right) \) \( 1 \)
\( 41 \) 41.1 = \( \left(a + 4\right) \) \( 2 \)
\( 41 \) 41.2 = \( \left(a - 5\right) \) \( -2 \)
\( 59 \) 59.1 = \( \left(59, a + 12\right) \) \( 9 \)
\( 59 \) 59.2 = \( \left(59, a + 46\right) \) \( -9 \)
Display number of eigenvalues