Base field: \(\Q(\sqrt{-83}) \)
Generator \(a\), with minimal polynomial \(x^2 - x + 21\); class number \(3\).
Form
Weight: | 2 | |
Level: | 63.3 = \( \left(21, 3 a\right) \) | |
Level norm: | 63 | |
Dimension: | 1 | |
CM: | no | |
Base change: | no | |
Newspace: | 2.0.83.1-63.3 (dimension 2) | |
Sign of functional equation: | $+1$ | |
Analytic rank: | \(0\) |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
\( 3 \) | 3.1 = \( \left(3, a\right) \) | \( -1 \) |
\( 3 \) | 3.2 = \( \left(3, a + 2\right) \) | \( 1 \) |
\( 7 \) | 7.1 = \( \left(7, a\right) \) | \( 1 \) |
Hecke eigenvalues
The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 100 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.
$N(\mathfrak{p})$ | $\mathfrak{p}$ | $a_{\mathfrak{p}}$ |
---|---|---|
\( 4 \) | 4.1 = \( \left(2\right) \) | \( 1 \) |
\( 7 \) | 7.2 = \( \left(7, a + 6\right) \) | \( 4 \) |
\( 11 \) | 11.1 = \( \left(11, a + 3\right) \) | \( -2 \) |
\( 11 \) | 11.2 = \( \left(11, a + 7\right) \) | \( 4 \) |
\( 17 \) | 17.1 = \( \left(17, a + 5\right) \) | \( 0 \) |
\( 17 \) | 17.2 = \( \left(17, a + 11\right) \) | \( 2 \) |
\( 23 \) | 23.1 = \( \left(a + 1\right) \) | \( 0 \) |
\( 23 \) | 23.2 = \( \left(a - 2\right) \) | \( -6 \) |
\( 25 \) | 25.1 = \( \left(5\right) \) | \( 2 \) |
\( 29 \) | 29.1 = \( \left(29, a + 13\right) \) | \( -6 \) |
\( 29 \) | 29.2 = \( \left(29, a + 15\right) \) | \( 2 \) |
\( 31 \) | 31.1 = \( \left(31, a + 8\right) \) | \( 4 \) |
\( 31 \) | 31.2 = \( \left(31, a + 22\right) \) | \( -4 \) |
\( 37 \) | 37.1 = \( \left(37, a + 9\right) \) | \( 6 \) |
\( 37 \) | 37.2 = \( \left(37, a + 27\right) \) | \( 2 \) |
\( 41 \) | 41.1 = \( \left(a + 4\right) \) | \( 0 \) |
\( 41 \) | 41.2 = \( \left(a - 5\right) \) | \( 10 \) |
\( 59 \) | 59.1 = \( \left(59, a + 12\right) \) | \( 0 \) |
\( 59 \) | 59.2 = \( \left(59, a + 46\right) \) | \( 4 \) |
\( 61 \) | 61.1 = \( \left(61, a + 25\right) \) | \( 2 \) |