Maass form invariants
Level: | \( 10 = 2 \cdot 5 \) |
Weight: | \( 0 \) |
Character: | 10.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(8.42338862094813782250280224667 \pm 2 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -0.14911412 \pm 1 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +0.10543961 \pm 1.4 \cdot 10^{-8} \) |
\(a_{7}= -1.32642196 \pm 1 \cdot 10^{-8} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= -0.97776498 \pm 1 \cdot 10^{-8} \) |
\(a_{10}= -0.31622777 \pm 1.0 \cdot 10^{-8} \) | \(a_{11}= +1.67605934 \pm 1 \cdot 10^{-8} \) | \(a_{12}= -0.07455706 \pm 1.4 \cdot 10^{-8} \) |
\(a_{13}= -0.57506067 \pm 1 \cdot 10^{-8} \) | \(a_{14}= +0.93792196 \pm 1.5 \cdot 10^{-8} \) | \(a_{15}= -0.06668586 \pm 1.4 \cdot 10^{-8} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +1.37759571 \pm 1 \cdot 10^{-8} \) | \(a_{18}= +0.69138425 \pm 1.4 \cdot 10^{-8} \) |
\(a_{19}= +0.52860462 \pm 1 \cdot 10^{-8} \) | \(a_{20}= +0.22360680 \pm 8.4 \cdot 10^{-8} \) | \(a_{21}= +0.19778825 \pm 1 \cdot 10^{-8} \) |
\(a_{22}= -1.18515292 \pm 1.4 \cdot 10^{-8} \) | \(a_{23}= +0.04410534 \pm 1 \cdot 10^{-8} \) | \(a_{24}= +0.05271980 \pm 1.4 \cdot 10^{-8} \) |
\(a_{25}= +0.2 \) | \(a_{26}= +0.40662930 \pm 1.5 \cdot 10^{-8} \) | \(a_{27}= +0.29491269 \pm 1 \cdot 10^{-8} \) |
\(a_{28}= -0.66321098 \pm 1.5 \cdot 10^{-8} \) | \(a_{29}= +1.30709968 \pm 1 \cdot 10^{-8} \) | \(a_{30}= +0.04715403 \pm 1.4 \cdot 10^{-8} \) |
\(a_{31}= +0.61019073 \pm 1 \cdot 10^{-8} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -0.24992412 \pm 1 \cdot 10^{-8} \) |
\(a_{34}= -0.97410727 \pm 1.3 \cdot 10^{-8} \) | \(a_{35}= -0.59319393 \pm 1.5 \cdot 10^{-8} \) | \(a_{36}= -0.48888249 \pm 1.4 \cdot 10^{-8} \) |
\(a_{37}= +1.43214181 \pm 1 \cdot 10^{-8} \) | \(a_{38}= -0.37377991 \pm 1.4 \cdot 10^{-8} \) | \(a_{39}= +0.08574967 \pm 1 \cdot 10^{-8} \) |
\(a_{40}= -0.15811388 \pm 1.2 \cdot 10^{-7} \) | \(a_{41}= +0.23082620 \pm 1 \cdot 10^{-8} \) | \(a_{42}= -0.13985741 \pm 1.9 \cdot 10^{-8} \) |
\(a_{43}= -0.18740678 \pm 1 \cdot 10^{-8} \) | \(a_{44}= +0.83802967 \pm 1.4 \cdot 10^{-8} \) | \(a_{45}= -0.43726979 \pm 1.4 \cdot 10^{-8} \) |
\(a_{46}= -0.03118719 \pm 1.6 \cdot 10^{-8} \) | \(a_{47}= +0.51320320 \pm 1 \cdot 10^{-8} \) | \(a_{48}= -0.03727853 \pm 1.4 \cdot 10^{-8} \) |
\(a_{49}= +0.75939522 \pm 1 \cdot 10^{-8} \) | \(a_{50}= -0.14142136 \pm 1.5 \cdot 10^{-7} \) | \(a_{51}= -0.20541898 \pm 1 \cdot 10^{-8} \) |
\(a_{52}= -0.28753033 \pm 1.5 \cdot 10^{-8} \) | \(a_{53}= -1.14453758 \pm 1 \cdot 10^{-8} \) | \(a_{54}= -0.20853476 \pm 1.5 \cdot 10^{-8} \) |
\(a_{55}= +0.74955652 \pm 1.4 \cdot 10^{-8} \) | \(a_{56}= +0.46896098 \pm 1.5 \cdot 10^{-8} \) | \(a_{57}= -0.07882241 \pm 1 \cdot 10^{-8} \) |
\(a_{58}= -0.92425905 \pm 1.7 \cdot 10^{-8} \) | \(a_{59}= -1.25066459 \pm 1 \cdot 10^{-8} \) | \(a_{60}= -0.03334293 \pm 1.4 \cdot 10^{-8} \) |
\(a_{61}= +1.43526192 \pm 1 \cdot 10^{-8} \) | \(a_{62}= -0.43147000 \pm 1.4 \cdot 10^{-8} \) | \(a_{63}= +1.29692894 \pm 1 \cdot 10^{-8} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -0.25717495 \pm 1.5 \cdot 10^{-8} \) | \(a_{66}= +0.17672304 \pm 1.8 \cdot 10^{-8} \) |
\(a_{67}= -0.85706649 \pm 1 \cdot 10^{-8} \) | \(a_{68}= +0.68879785 \pm 1.3 \cdot 10^{-8} \) | \(a_{69}= -0.00657673 \pm 1 \cdot 10^{-8} \) |
\(a_{70}= +0.41945145 \pm 1.5 \cdot 10^{-8} \) | \(a_{71}= +1.59939052 \pm 1 \cdot 10^{-8} \) | \(a_{72}= +0.34569212 \pm 1.4 \cdot 10^{-8} \) |
\(a_{73}= -1.08588632 \pm 1 \cdot 10^{-8} \) | \(a_{74}= -1.01267718 \pm 1.5 \cdot 10^{-8} \) | \(a_{75}= -0.02982282 \pm 1.4 \cdot 10^{-8} \) |
\(a_{76}= +0.26430231 \pm 1.4 \cdot 10^{-8} \) | \(a_{77}= -2.22316192 \pm 1 \cdot 10^{-8} \) | \(a_{78}= -0.06063417 \pm 1.9 \cdot 10^{-8} \) |
\(a_{79}= -0.50449526 \pm 1 \cdot 10^{-8} \) | \(a_{80}= +0.11180340 \pm 2.3 \cdot 10^{-7} \) | \(a_{81}= +0.93378933 \pm 1 \cdot 10^{-8} \) |
\(a_{82}= -0.16321877 \pm 1.3 \cdot 10^{-8} \) | \(a_{83}= +0.07061781 \pm 1 \cdot 10^{-8} \) | \(a_{84}= +0.09889412 \pm 1.9 \cdot 10^{-8} \) |
\(a_{85}= +0.61607953 \pm 1.3 \cdot 10^{-8} \) | \(a_{86}= +0.13251660 \pm 1.4 \cdot 10^{-8} \) | \(a_{87}= -0.19490702 \pm 1 \cdot 10^{-8} \) |
\(a_{88}= -0.59257646 \pm 1.4 \cdot 10^{-8} \) | \(a_{89}= +1.49800279 \pm 1 \cdot 10^{-8} \) | \(a_{90}= +0.30919643 \pm 1.4 \cdot 10^{-8} \) |
\(a_{91}= +0.76277310 \pm 1 \cdot 10^{-8} \) | \(a_{92}= +0.02205267 \pm 1.6 \cdot 10^{-8} \) | \(a_{93}= -0.09098806 \pm 1 \cdot 10^{-8} \) |
\(a_{94}= -0.36288946 \pm 1.3 \cdot 10^{-8} \) | \(a_{95}= +0.23639917 \pm 1.4 \cdot 10^{-8} \) | \(a_{96}= +0.02635990 \pm 1.4 \cdot 10^{-8} \) |
\(a_{97}= +0.02035646 \pm 1 \cdot 10^{-8} \) | \(a_{98}= -0.53697351 \pm 1.5 \cdot 10^{-8} \) | \(a_{99}= -1.63879212 \pm 1 \cdot 10^{-8} \) |
\(a_{100}= +0.1 \) | \(a_{101}= -0.01162937 \pm 1 \cdot 10^{-8} \) | \(a_{102}= +0.14525315 \pm 1.7 \cdot 10^{-8} \) |
\(a_{103}= +0.06551759 \pm 1 \cdot 10^{-8} \) | \(a_{104}= +0.20331465 \pm 1.5 \cdot 10^{-8} \) | \(a_{105}= +0.08845359 \pm 1.9 \cdot 10^{-8} \) |
\(a_{106}= +0.80931028 \pm 1.5 \cdot 10^{-8} \) | \(a_{107}= -1.69238801 \pm 1 \cdot 10^{-8} \) | \(a_{108}= +0.14745635 \pm 1.5 \cdot 10^{-8} \) |
\(a_{109}= +0.58986126 \pm 1 \cdot 10^{-8} \) | \(a_{110}= -0.53001650 \pm 1.4 \cdot 10^{-8} \) | \(a_{111}= -0.21355257 \pm 1 \cdot 10^{-8} \) |
\(a_{112}= -0.33160549 \pm 1.5 \cdot 10^{-8} \) | \(a_{113}= +0.55003288 \pm 1 \cdot 10^{-8} \) | \(a_{114}= +0.05573586 \pm 1.8 \cdot 10^{-8} \) |
\(a_{115}= +0.01972451 \pm 1.6 \cdot 10^{-8} \) | \(a_{116}= +0.65354984 \pm 1.7 \cdot 10^{-8} \) | \(a_{117}= +0.56227418 \pm 1 \cdot 10^{-8} \) |
\(a_{118}= +0.88435341 \pm 1.3 \cdot 10^{-8} \) | \(a_{119}= -1.82727320 \pm 1 \cdot 10^{-8} \) | \(a_{120}= +0.02357701 \pm 1.4 \cdot 10^{-8} \) |
\(a_{121}= +1.80917491 \pm 1 \cdot 10^{-8} \) | \(a_{122}= -1.01488343 \pm 1.5 \cdot 10^{-8} \) | \(a_{123}= -0.03441945 \pm 1 \cdot 10^{-8} \) |
\(a_{124}= +0.30509536 \pm 1.4 \cdot 10^{-8} \) | \(a_{125}= +0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -0.91706725 \pm 2.0 \cdot 10^{-8} \) |
\(a_{127}= +1.44365470 \pm 1 \cdot 10^{-8} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= +0.02794500 \pm 1 \cdot 10^{-8} \) |
\(a_{130}= +0.18185015 \pm 1.5 \cdot 10^{-8} \) | \(a_{131}= -0.61272227 \pm 1 \cdot 10^{-8} \) | \(a_{132}= -0.12496206 \pm 1.8 \cdot 10^{-8} \) |
\(a_{133}= -0.70115278 \pm 1 \cdot 10^{-8} \) | \(a_{134}= +0.60603752 \pm 1.4 \cdot 10^{-8} \) | \(a_{135}= +0.13188896 \pm 1.5 \cdot 10^{-8} \) |
\(a_{136}= -0.48705363 \pm 1.3 \cdot 10^{-8} \) | \(a_{137}= +0.19579000 \pm 1 \cdot 10^{-8} \) | \(a_{138}= +0.00465045 \pm 2.1 \cdot 10^{-8} \) |
\(a_{139}= -0.23574934 \pm 1 \cdot 10^{-8} \) | \(a_{140}= -0.29659697 \pm 1.5 \cdot 10^{-8} \) | \(a_{141}= -0.07652585 \pm 1 \cdot 10^{-8} \) |
\(a_{142}= -1.13093988 \pm 1.4 \cdot 10^{-8} \) | \(a_{143}= -0.96383580 \pm 1 \cdot 10^{-8} \) | \(a_{144}= -0.24444124 \pm 1.4 \cdot 10^{-8} \) |
\(a_{145}= +0.58455275 \pm 1.7 \cdot 10^{-8} \) | \(a_{146}= +0.76783758 \pm 1.6 \cdot 10^{-8} \) | \(a_{147}= -0.11323655 \pm 1 \cdot 10^{-8} \) |
\(a_{148}= +0.71607090 \pm 1.5 \cdot 10^{-8} \) | \(a_{149}= +0.05154915 \pm 1 \cdot 10^{-8} \) | \(a_{150}= +0.02108792 \pm 1.4 \cdot 10^{-8} \) |
\(a_{151}= +0.07604967 \pm 1 \cdot 10^{-8} \) | \(a_{152}= -0.18688996 \pm 1.4 \cdot 10^{-8} \) | \(a_{153}= -1.34696484 \pm 1 \cdot 10^{-8} \) |
\(a_{154}= +1.57201287 \pm 1.9 \cdot 10^{-8} \) | \(a_{155}= +0.27288559 \pm 1.4 \cdot 10^{-8} \) | \(a_{156}= +0.04287483 \pm 1.9 \cdot 10^{-8} \) |
\(a_{157}= +1.91740485 \pm 1 \cdot 10^{-8} \) | \(a_{158}= +0.35673202 \pm 1.5 \cdot 10^{-8} \) | \(a_{159}= +0.17066672 \pm 1 \cdot 10^{-8} \) |
\(a_{160}= -0.07905694 \pm 3.8 \cdot 10^{-7} \) | \(a_{161}= -0.05850229 \pm 1 \cdot 10^{-8} \) | \(a_{162}= -0.66028877 \pm 1.3 \cdot 10^{-8} \) |
\(a_{163}= +0.55297517 \pm 1 \cdot 10^{-8} \) | \(a_{164}= +0.11541310 \pm 1.3 \cdot 10^{-8} \) | \(a_{165}= -0.11176946 \pm 1.8 \cdot 10^{-8} \) |
\(a_{166}= -0.04993433 \pm 1.6 \cdot 10^{-8} \) | \(a_{167}= -1.64150510 \pm 1 \cdot 10^{-8} \) | \(a_{168}= -0.06992871 \pm 1.9 \cdot 10^{-8} \) |
\(a_{169}= -0.66930523 \pm 1 \cdot 10^{-8} \) | \(a_{170}= -0.43563401 \pm 1.3 \cdot 10^{-8} \) | \(a_{171}= -0.51685109 \pm 1 \cdot 10^{-8} \) |
\(a_{172}= -0.09370339 \pm 1.4 \cdot 10^{-8} \) | \(a_{173}= +1.53903908 \pm 1 \cdot 10^{-8} \) | \(a_{174}= +0.13782008 \pm 2.1 \cdot 10^{-8} \) |
\(a_{175}= -0.26528439 \pm 1.5 \cdot 10^{-8} \) | \(a_{176}= +0.41901484 \pm 1.4 \cdot 10^{-8} \) | \(a_{177}= +0.18649175 \pm 1 \cdot 10^{-8} \) |
\(a_{178}= -1.05924793 \pm 1.6 \cdot 10^{-8} \) | \(a_{179}= -1.44188850 \pm 1 \cdot 10^{-8} \) | \(a_{180}= -0.21863490 \pm 1.4 \cdot 10^{-8} \) |
\(a_{181}= +0.04742167 \pm 1 \cdot 10^{-8} \) | \(a_{182}= -0.53936203 \pm 2.0 \cdot 10^{-8} \) | \(a_{183}= -0.21401782 \pm 1 \cdot 10^{-8} \) |
\(a_{184}= -0.01559359 \pm 1.6 \cdot 10^{-8} \) | \(a_{185}= +0.64047329 \pm 1.5 \cdot 10^{-8} \) | \(a_{186}= +0.06433827 \pm 1.8 \cdot 10^{-8} \) |
\(a_{187}= +2.30893215 \pm 1 \cdot 10^{-8} \) | \(a_{188}= +0.25660160 \pm 1.3 \cdot 10^{-8} \) | \(a_{189}= -0.39117867 \pm 1 \cdot 10^{-8} \) |
\(a_{190}= -0.16715946 \pm 1.4 \cdot 10^{-8} \) | \(a_{191}= +0.41454304 \pm 1 \cdot 10^{-8} \) | \(a_{192}= -0.01863927 \pm 1.4 \cdot 10^{-8} \) |
\(a_{193}= +0.95707264 \pm 1 \cdot 10^{-8} \) | \(a_{194}= -0.01439419 \pm 1.7 \cdot 10^{-8} \) | \(a_{195}= +0.03834842 \pm 1.9 \cdot 10^{-8} \) |
\(a_{196}= +0.37969761 \pm 1.5 \cdot 10^{-8} \) | \(a_{197}= -0.28197766 \pm 1 \cdot 10^{-8} \) | \(a_{198}= +1.15880102 \pm 1.8 \cdot 10^{-8} \) |
\(a_{199}= -0.80743421 \pm 1 \cdot 10^{-8} \) | \(a_{200}= -0.07071068 \pm 4.7 \cdot 10^{-7} \) | \(a_{201}= +0.12780072 \pm 1 \cdot 10^{-8} \) |
\(a_{202}= +0.00822321 \pm 1.5 \cdot 10^{-8} \) | \(a_{203}= -1.73376572 \pm 1 \cdot 10^{-8} \) | \(a_{204}= -0.10270949 \pm 1.7 \cdot 10^{-8} \) |
\(a_{205}= +0.10322861 \pm 1.3 \cdot 10^{-8} \) | \(a_{206}= -0.04632793 \pm 1.7 \cdot 10^{-8} \) | \(a_{207}= -0.04312466 \pm 1 \cdot 10^{-8} \) |
\(a_{208}= -0.14376517 \pm 1.5 \cdot 10^{-8} \) | \(a_{209}= +0.88597272 \pm 1 \cdot 10^{-8} \) | \(a_{210}= -0.06254614 \pm 1.9 \cdot 10^{-8} \) |
\(a_{211}= -0.42741828 \pm 1 \cdot 10^{-8} \) | \(a_{212}= -0.57226879 \pm 1.5 \cdot 10^{-8} \) | \(a_{213}= -0.23849171 \pm 1 \cdot 10^{-8} \) |
\(a_{214}= +1.19669904 \pm 1.3 \cdot 10^{-8} \) | \(a_{215}= -0.08381086 \pm 1.4 \cdot 10^{-8} \) | \(a_{216}= -0.10426738 \pm 1.5 \cdot 10^{-8} \) |
\(a_{217}= -0.80937038 \pm 1 \cdot 10^{-8} \) | \(a_{218}= -0.41709490 \pm 1.5 \cdot 10^{-8} \) | \(a_{219}= +0.16192099 \pm 1 \cdot 10^{-8} \) |
\(a_{220}= +0.37477826 \pm 1.4 \cdot 10^{-8} \) | \(a_{221}= -0.79220111 \pm 1 \cdot 10^{-8} \) | \(a_{222}= +0.15100447 \pm 1.9 \cdot 10^{-8} \) |
\(a_{223}= +0.03399930 \pm 1 \cdot 10^{-8} \) | \(a_{224}= +0.23448049 \pm 1.5 \cdot 10^{-8} \) | \(a_{225}= -0.19555300 \pm 1.4 \cdot 10^{-8} \) |
\(a_{226}= -0.38893198 \pm 1.4 \cdot 10^{-8} \) | \(a_{227}= +1.07322453 \pm 1 \cdot 10^{-8} \) | \(a_{228}= -0.03941121 \pm 1.8 \cdot 10^{-8} \) |
\(a_{229}= -0.27431723 \pm 1 \cdot 10^{-8} \) | \(a_{230}= -0.01394733 \pm 1.6 \cdot 10^{-8} \) | \(a_{231}= +0.33150484 \pm 1 \cdot 10^{-8} \) |
\(a_{232}= -0.46212952 \pm 1.7 \cdot 10^{-8} \) | \(a_{233}= -0.87896564 \pm 1 \cdot 10^{-8} \) | \(a_{234}= -0.39758789 \pm 1.9 \cdot 10^{-8} \) |
\(a_{235}= +0.22951145 \pm 1.3 \cdot 10^{-8} \) | \(a_{236}= -0.62533230 \pm 1.3 \cdot 10^{-8} \) | \(a_{237}= +0.07522737 \pm 1 \cdot 10^{-8} \) |
\(a_{238}= +1.29207727 \pm 1.8 \cdot 10^{-8} \) | \(a_{239}= +1.83354288 \pm 1 \cdot 10^{-8} \) | \(a_{240}= -0.01667147 \pm 1.4 \cdot 10^{-8} \) |
\(a_{241}= +1.33598496 \pm 1 \cdot 10^{-8} \) | \(a_{242}= -1.27927985 \pm 1.4 \cdot 10^{-8} \) | \(a_{243}= -0.43415387 \pm 1 \cdot 10^{-8} \) |
\(a_{244}= +0.71763096 \pm 1.5 \cdot 10^{-8} \) | \(a_{245}= +0.33961187 \pm 1.5 \cdot 10^{-8} \) | \(a_{246}= +0.02433822 \pm 1.7 \cdot 10^{-8} \) |
\(a_{247}= -0.30397973 \pm 1 \cdot 10^{-8} \) | \(a_{248}= -0.21573500 \pm 1.4 \cdot 10^{-8} \) | \(a_{249}= -0.01053011 \pm 1 \cdot 10^{-8} \) |
\(a_{250}= -0.06324555 \pm 5.5 \cdot 10^{-7} \) | \(a_{251}= +0.49299321 \pm 1 \cdot 10^{-8} \) | \(a_{252}= +0.64846447 \pm 2.0 \cdot 10^{-8} \) |
\(a_{253}= +0.07392317 \pm 1 \cdot 10^{-8} \) | \(a_{254}= -1.02081803 \pm 1.6 \cdot 10^{-8} \) | \(a_{255}= -0.09186616 \pm 1.7 \cdot 10^{-8} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +1.09353814 \pm 1 \cdot 10^{-8} \) | \(a_{258}= -0.01976010 \pm 1.9 \cdot 10^{-8} \) |
\(a_{259}= -1.89962434 \pm 1 \cdot 10^{-8} \) | \(a_{260}= -0.12858747 \pm 1.5 \cdot 10^{-8} \) | \(a_{261}= -1.27803629 \pm 1 \cdot 10^{-8} \) |
\(a_{262}= +0.43326007 \pm 1.5 \cdot 10^{-8} \) | \(a_{263}= +0.71020076 \pm 1 \cdot 10^{-8} \) | \(a_{264}= +0.08836152 \pm 1.8 \cdot 10^{-8} \) |
\(a_{265}= -0.51185277 \pm 1.5 \cdot 10^{-8} \) | \(a_{266}= +0.49578989 \pm 1.9 \cdot 10^{-8} \) | \(a_{267}= -0.22337337 \pm 1 \cdot 10^{-8} \) |
\(a_{268}= -0.42853324 \pm 1.4 \cdot 10^{-8} \) | \(a_{269}= -1.15564889 \pm 1 \cdot 10^{-8} \) | \(a_{270}= -0.09325958 \pm 1.5 \cdot 10^{-8} \) |
\(a_{271}= -0.68279463 \pm 1 \cdot 10^{-8} \) | \(a_{272}= +0.34439893 \pm 1.3 \cdot 10^{-8} \) | \(a_{273}= -0.11374024 \pm 1 \cdot 10^{-8} \) |
\(a_{274}= -0.13844444 \pm 1.5 \cdot 10^{-8} \) | \(a_{275}= +0.33521187 \pm 1.4 \cdot 10^{-8} \) | \(a_{276}= -0.00328836 \pm 2.1 \cdot 10^{-8} \) |
\(a_{277}= -0.17871494 \pm 1 \cdot 10^{-8} \) | \(a_{278}= +0.16669996 \pm 1.5 \cdot 10^{-8} \) | \(a_{279}= -0.59662312 \pm 1 \cdot 10^{-8} \) |
\(a_{280}= +0.20972573 \pm 1.5 \cdot 10^{-8} \) | \(a_{281}= +1.03706749 \pm 1 \cdot 10^{-8} \) | \(a_{282}= +0.05411194 \pm 1.7 \cdot 10^{-8} \) |
\(a_{283}= +0.85861378 \pm 1 \cdot 10^{-8} \) | \(a_{284}= +0.79969526 \pm 1.4 \cdot 10^{-8} \) | \(a_{285}= -0.03525046 \pm 1.8 \cdot 10^{-8} \) |
\(a_{286}= +0.68153483 \pm 1.9 \cdot 10^{-8} \) | \(a_{287}= -0.30617294 \pm 1 \cdot 10^{-8} \) | \(a_{288}= +0.17284606 \pm 1.4 \cdot 10^{-8} \) |
\(a_{289}= +0.89776993 \pm 1 \cdot 10^{-8} \) | \(a_{290}= -0.41334121 \pm 1.7 \cdot 10^{-8} \) | \(a_{291}= -0.00303544 \pm 1 \cdot 10^{-8} \) |
\(a_{292}= -0.54294316 \pm 1.6 \cdot 10^{-8} \) | \(a_{293}= +1.23000044 \pm 1 \cdot 10^{-8} \) | \(a_{294}= +0.08007033 \pm 1.9 \cdot 10^{-8} \) |
\(a_{295}= -0.55931421 \pm 1.3 \cdot 10^{-8} \) | \(a_{296}= -0.50633859 \pm 1.5 \cdot 10^{-8} \) | \(a_{297}= +0.49429117 \pm 1 \cdot 10^{-8} \) |
\(a_{298}= -0.03645075 \pm 1.6 \cdot 10^{-8} \) | \(a_{299}= -0.02536325 \pm 1 \cdot 10^{-8} \) | \(a_{300}= -0.01491141 \pm 1.4 \cdot 10^{-8} \) |
\(a_{301}= +0.24858046 \pm 1 \cdot 10^{-8} \) | \(a_{302}= -0.05377524 \pm 1.7 \cdot 10^{-8} \) | \(a_{303}= +0.00173410 \pm 1 \cdot 10^{-8} \) |
\(a_{304}= +0.13215116 \pm 1.4 \cdot 10^{-8} \) | \(a_{305}= +0.64186864 \pm 1.5 \cdot 10^{-8} \) | \(a_{306}= +0.95244797 \pm 1.7 \cdot 10^{-8} \) |
\(a_{307}= -0.96022799 \pm 1 \cdot 10^{-8} \) | \(a_{308}= -1.11158096 \pm 1.9 \cdot 10^{-8} \) | \(a_{309}= -0.00976960 \pm 1 \cdot 10^{-8} \) |
\(a_{310}= -0.19295925 \pm 1.4 \cdot 10^{-8} \) | \(a_{311}= -1.72415131 \pm 1 \cdot 10^{-8} \) | \(a_{312}= -0.03031709 \pm 1.9 \cdot 10^{-8} \) |
\(a_{313}= -1.47737245 \pm 1 \cdot 10^{-8} \) | \(a_{314}= -1.35580997 \pm 1.2 \cdot 10^{-8} \) | \(a_{315}= +0.58000425 \pm 2.0 \cdot 10^{-8} \) |
\(a_{316}= -0.25224763 \pm 1.5 \cdot 10^{-8} \) | \(a_{317}= -0.02345308 \pm 1 \cdot 10^{-8} \) | \(a_{318}= -0.12067959 \pm 1.9 \cdot 10^{-8} \) |
\(a_{319}= +2.19077663 \pm 1 \cdot 10^{-8} \) | \(a_{320}= +0.05590170 \pm 6.9 \cdot 10^{-7} \) | \(a_{321}= +0.25235895 \pm 1 \cdot 10^{-8} \) |
\(a_{322}= +0.04136737 \pm 2.2 \cdot 10^{-8} \) | \(a_{323}= +0.72820346 \pm 1 \cdot 10^{-8} \) | \(a_{324}= +0.46689467 \pm 1.3 \cdot 10^{-8} \) |
\(a_{325}= -0.11501213 \pm 1.5 \cdot 10^{-8} \) | \(a_{326}= -0.39101249 \pm 1.6 \cdot 10^{-8} \) | \(a_{327}= -0.08795665 \pm 1 \cdot 10^{-8} \) |
\(a_{328}= -0.08160939 \pm 1.3 \cdot 10^{-8} \) | \(a_{329}= -0.68072400 \pm 1 \cdot 10^{-8} \) | \(a_{330}= +0.07903295 \pm 1.8 \cdot 10^{-8} \) |
\(a_{331}= -0.21046524 \pm 1 \cdot 10^{-8} \) | \(a_{332}= +0.03530890 \pm 1.6 \cdot 10^{-8} \) | \(a_{333}= -1.40029810 \pm 1 \cdot 10^{-8} \) |
\(a_{334}= +1.16071939 \pm 1.4 \cdot 10^{-8} \) | \(a_{335}= -0.38329178 \pm 1.4 \cdot 10^{-8} \) | \(a_{336}= +0.04944706 \pm 1.9 \cdot 10^{-8} \) |
\(a_{337}= +0.77346172 \pm 1 \cdot 10^{-8} \) | \(a_{338}= +0.47327027 \pm 1.3 \cdot 10^{-8} \) | \(a_{339}= -0.08201767 \pm 1 \cdot 10^{-8} \) |
\(a_{340}= +0.30803976 \pm 1.3 \cdot 10^{-8} \) | \(a_{341}= +1.02271587 \pm 1 \cdot 10^{-8} \) | \(a_{342}= +0.36546891 \pm 1.8 \cdot 10^{-8} \) |
\(a_{343}= +0.31914347 \pm 1 \cdot 10^{-8} \) | \(a_{344}= +0.06625830 \pm 1.4 \cdot 10^{-8} \) | \(a_{345}= -0.00294120 \pm 2.1 \cdot 10^{-8} \) |
\(a_{346}= -1.08826497 \pm 1.5 \cdot 10^{-8} \) | \(a_{347}= +0.41964483 \pm 1 \cdot 10^{-8} \) | \(a_{348}= -0.09745351 \pm 2.1 \cdot 10^{-8} \) |
\(a_{349}= +0.28698781 \pm 1 \cdot 10^{-8} \) | \(a_{350}= +0.18758439 \pm 1.5 \cdot 10^{-8} \) | \(a_{351}= -0.16959269 \pm 1 \cdot 10^{-8} \) |
\(a_{352}= -0.29628823 \pm 1.4 \cdot 10^{-8} \) | \(a_{353}= -0.94182030 \pm 1 \cdot 10^{-8} \) | \(a_{354}= -0.13186958 \pm 1.8 \cdot 10^{-8} \) |
\(a_{355}= +0.71526919 \pm 1.4 \cdot 10^{-8} \) | \(a_{356}= +0.74900139 \pm 1.6 \cdot 10^{-8} \) | \(a_{357}= +0.27247224 \pm 1 \cdot 10^{-8} \) |
\(a_{358}= +1.01956914 \pm 1.5 \cdot 10^{-8} \) | \(a_{359}= -1.28059544 \pm 1 \cdot 10^{-8} \) | \(a_{360}= +0.15459822 \pm 1.4 \cdot 10^{-8} \) |
\(a_{361}= -0.72057715 \pm 1 \cdot 10^{-8} \) | \(a_{362}= -0.03353218 \pm 1.4 \cdot 10^{-8} \) | \(a_{363}= -0.26977353 \pm 1 \cdot 10^{-8} \) |
\(a_{364}= +0.38138655 \pm 2.0 \cdot 10^{-8} \) | \(a_{365}= -0.48562312 \pm 1.6 \cdot 10^{-8} \) | \(a_{366}= +0.15133345 \pm 1.9 \cdot 10^{-8} \) |
\(a_{367}= -0.31091158 \pm 1 \cdot 10^{-8} \) | \(a_{368}= +0.01102634 \pm 1.6 \cdot 10^{-8} \) | \(a_{369}= -0.22569377 \pm 1 \cdot 10^{-8} \) |
\(a_{370}= -0.45288300 \pm 1.5 \cdot 10^{-8} \) | \(a_{371}= +1.51813978 \pm 1 \cdot 10^{-8} \) | \(a_{372}= -0.04549403 \pm 1.8 \cdot 10^{-8} \) |
\(a_{373}= +0.62780990 \pm 1 \cdot 10^{-8} \) | \(a_{374}= -1.63266158 \pm 1.7 \cdot 10^{-8} \) | \(a_{375}= -0.01333717 \pm 1.4 \cdot 10^{-8} \) |
\(a_{376}= -0.18144473 \pm 1.3 \cdot 10^{-8} \) | \(a_{377}= -0.75166161 \pm 1 \cdot 10^{-8} \) | \(a_{378}= +0.27660509 \pm 2.0 \cdot 10^{-8} \) |
\(a_{379}= -0.25464558 \pm 1 \cdot 10^{-8} \) | \(a_{380}= +0.11819959 \pm 1.4 \cdot 10^{-8} \) | \(a_{381}= -0.21526930 \pm 1 \cdot 10^{-8} \) |
\(a_{382}= -0.29312619 \pm 1.4 \cdot 10^{-8} \) | \(a_{383}= +0.63689896 \pm 1 \cdot 10^{-8} \) | \(a_{384}= +0.01317995 \pm 1.4 \cdot 10^{-8} \) |
\(a_{385}= -0.99422823 \pm 1.9 \cdot 10^{-8} \) | \(a_{386}= -0.67675255 \pm 1.6 \cdot 10^{-8} \) | \(a_{387}= +0.18323978 \pm 1 \cdot 10^{-8} \) |
\(a_{388}= +0.01017823 \pm 1.7 \cdot 10^{-8} \) | \(a_{389}= +1.26053240 \pm 1 \cdot 10^{-8} \) | \(a_{390}= -0.02711643 \pm 1.9 \cdot 10^{-8} \) |
\(a_{391}= +0.06075933 \pm 1 \cdot 10^{-8} \) | \(a_{392}= -0.26848675 \pm 1.5 \cdot 10^{-8} \) | \(a_{393}= +0.09136554 \pm 1 \cdot 10^{-8} \) |
\(a_{394}= +0.19938832 \pm 1.6 \cdot 10^{-8} \) | \(a_{395}= -0.22561714 \pm 1.5 \cdot 10^{-8} \) | \(a_{396}= -0.81939606 \pm 1.8 \cdot 10^{-8} \) |
\(a_{397}= -0.66319019 \pm 1 \cdot 10^{-8} \) | \(a_{398}= +0.57094220 \pm 1.5 \cdot 10^{-8} \) | \(a_{399}= +0.10455178 \pm 1 \cdot 10^{-8} \) |
\(a_{400}= +0.05 \) | \(a_{401}= +1.08180144 \pm 1 \cdot 10^{-8} \) | \(a_{402}= -0.09036875 \pm 1.8 \cdot 10^{-8} \) |
\(a_{403}= -0.35089669 \pm 1 \cdot 10^{-8} \) | \(a_{404}= -0.00581469 \pm 1.5 \cdot 10^{-8} \) | \(a_{405}= +0.41760328 \pm 1.3 \cdot 10^{-8} \) |
\(a_{406}= +1.22595750 \pm 2.2 \cdot 10^{-8} \) | \(a_{407}= +2.40035465 \pm 1 \cdot 10^{-8} \) | \(a_{408}= +0.07262658 \pm 1.7 \cdot 10^{-8} \) |
\(a_{409}= -0.96504371 \pm 1 \cdot 10^{-8} \) | \(a_{410}= -0.07299365 \pm 1.3 \cdot 10^{-8} \) | \(a_{411}= -0.02919505 \pm 1 \cdot 10^{-8} \) |
\(a_{412}= +0.03275879 \pm 1.7 \cdot 10^{-8} \) | \(a_{413}= +1.65890898 \pm 1 \cdot 10^{-8} \) | \(a_{414}= +0.03049374 \pm 2.1 \cdot 10^{-8} \) |
\(a_{415}= +0.03158124 \pm 1.6 \cdot 10^{-8} \) | \(a_{416}= +0.10165732 \pm 1.5 \cdot 10^{-8} \) | \(a_{417}= +0.03515356 \pm 1 \cdot 10^{-8} \) |
\(a_{418}= -0.62647732 \pm 1.8 \cdot 10^{-8} \) | \(a_{419}= -1.19459477 \pm 1 \cdot 10^{-8} \) | \(a_{420}= +0.04422680 \pm 1.9 \cdot 10^{-8} \) |
\(a_{421}= -0.16305713 \pm 1 \cdot 10^{-8} \) | \(a_{422}= +0.30223037 \pm 1.6 \cdot 10^{-8} \) | \(a_{423}= -0.50179212 \pm 1 \cdot 10^{-8} \) |
\(a_{424}= +0.40465514 \pm 1.5 \cdot 10^{-8} \) | \(a_{425}= +0.27551914 \pm 1.3 \cdot 10^{-8} \) | \(a_{426}= +0.16863911 \pm 1.8 \cdot 10^{-8} \) |
\(a_{427}= -1.90376292 \pm 1 \cdot 10^{-8} \) | \(a_{428}= -0.84619401 \pm 1.3 \cdot 10^{-8} \) | \(a_{429}= +0.14372153 \pm 1 \cdot 10^{-8} \) |
\(a_{430}= +0.05926323 \pm 1.4 \cdot 10^{-8} \) | \(a_{431}= -1.73773383 \pm 1 \cdot 10^{-8} \) | \(a_{432}= +0.07372817 \pm 1.5 \cdot 10^{-8} \) |
\(a_{433}= -0.37364386 \pm 1 \cdot 10^{-8} \) | \(a_{434}= +0.57231129 \pm 1.9 \cdot 10^{-8} \) | \(a_{435}= -0.08716507 \pm 2.1 \cdot 10^{-8} \) |
\(a_{436}= +0.29493063 \pm 1.5 \cdot 10^{-8} \) | \(a_{437}= +0.02331429 \pm 1 \cdot 10^{-8} \) | \(a_{438}= -0.11449543 \pm 2.0 \cdot 10^{-8} \) |
\(a_{439}= +0.97126120 \pm 1 \cdot 10^{-8} \) | \(a_{440}= -0.26500825 \pm 1.4 \cdot 10^{-8} \) | \(a_{441}= -0.74251005 \pm 1 \cdot 10^{-8} \) |
\(a_{442}= +0.56017077 \pm 1.7 \cdot 10^{-8} \) | \(a_{443}= -1.41588313 \pm 1 \cdot 10^{-8} \) | \(a_{444}= -0.10677628 \pm 1.9 \cdot 10^{-8} \) |
\(a_{445}= +0.66992721 \pm 1.6 \cdot 10^{-8} \) | \(a_{446}= -0.02404113 \pm 1.5 \cdot 10^{-8} \) | \(a_{447}= -0.00768671 \pm 1 \cdot 10^{-8} \) |
\(a_{448}= -0.16580275 \pm 1.5 \cdot 10^{-8} \) | \(a_{449}= +0.33381306 \pm 1 \cdot 10^{-8} \) | \(a_{450}= +0.13827685 \pm 1.4 \cdot 10^{-8} \) |
\(a_{451}= +0.38687841 \pm 1 \cdot 10^{-8} \) | \(a_{452}= +0.27501644 \pm 1.4 \cdot 10^{-8} \) | \(a_{453}= -0.01134008 \pm 1 \cdot 10^{-8} \) |
\(a_{454}= -0.75888434 \pm 1.5 \cdot 10^{-8} \) | \(a_{455}= +0.34112250 \pm 2.0 \cdot 10^{-8} \) | \(a_{456}= +0.02786793 \pm 1.8 \cdot 10^{-8} \) |
\(a_{457}= -0.61937565 \pm 1 \cdot 10^{-8} \) | \(a_{458}= +0.19397158 \pm 1.3 \cdot 10^{-8} \) | \(a_{459}= +0.40627046 \pm 1 \cdot 10^{-8} \) |
\(a_{460}= +0.00986225 \pm 1.6 \cdot 10^{-8} \) | \(a_{461}= +0.20475290 \pm 1 \cdot 10^{-8} \) | \(a_{462}= -0.23440932 \pm 2.3 \cdot 10^{-8} \) |
\(a_{463}= +0.95075545 \pm 1 \cdot 10^{-8} \) | \(a_{464}= +0.32677492 \pm 1.7 \cdot 10^{-8} \) | \(a_{465}= -0.04069110 \pm 1.8 \cdot 10^{-8} \) |
\(a_{466}= +0.62152256 \pm 1.6 \cdot 10^{-8} \) | \(a_{467}= +0.95523896 \pm 1 \cdot 10^{-8} \) | \(a_{468}= +0.28113709 \pm 1.9 \cdot 10^{-8} \) |
\(a_{469}= +1.13683181 \pm 1 \cdot 10^{-8} \) | \(a_{470}= -0.16228910 \pm 1.3 \cdot 10^{-8} \) | \(a_{471}= -0.28591214 \pm 1 \cdot 10^{-8} \) |
\(a_{472}= +0.44217671 \pm 1.3 \cdot 10^{-8} \) | \(a_{473}= -0.31410488 \pm 1 \cdot 10^{-8} \) | \(a_{474}= -0.05319378 \pm 1.9 \cdot 10^{-8} \) |
\(a_{475}= +0.10572092 \pm 1.4 \cdot 10^{-8} \) | \(a_{476}= -0.91363660 \pm 1.8 \cdot 10^{-8} \) | \(a_{477}= +1.11908876 \pm 1 \cdot 10^{-8} \) |
\(a_{478}= -1.29651060 \pm 1.5 \cdot 10^{-8} \) | \(a_{479}= +0.00793277 \pm 1 \cdot 10^{-8} \) | \(a_{480}= +0.01178851 \pm 1.4 \cdot 10^{-8} \) |
\(a_{481}= -0.82356842 \pm 1 \cdot 10^{-8} \) | \(a_{482}= -0.94468402 \pm 1.4 \cdot 10^{-8} \) | \(a_{483}= +0.00872352 \pm 1 \cdot 10^{-8} \) |
\(a_{484}= +0.90458746 \pm 1.4 \cdot 10^{-8} \) | \(a_{485}= +0.00910369 \pm 1.7 \cdot 10^{-8} \) | \(a_{486}= +0.30699314 \pm 1.5 \cdot 10^{-8} \) |
\(a_{487}= -0.65074097 \pm 1 \cdot 10^{-8} \) | \(a_{488}= -0.50744172 \pm 1.5 \cdot 10^{-8} \) | \(a_{489}= -0.08245641 \pm 1 \cdot 10^{-8} \) |
\(a_{490}= -0.24014185 \pm 1.5 \cdot 10^{-8} \) | \(a_{491}= +0.89864813 \pm 1 \cdot 10^{-8} \) | \(a_{492}= -0.01720972 \pm 1.7 \cdot 10^{-8} \) |
\(a_{493}= +1.80065491 \pm 1 \cdot 10^{-8} \) | \(a_{494}= +0.21494613 \pm 1.8 \cdot 10^{-8} \) | \(a_{495}= -0.73289012 \pm 1.8 \cdot 10^{-8} \) |
\(a_{496}= +0.15254768 \pm 1.4 \cdot 10^{-8} \) | \(a_{497}= -2.12146671 \pm 1 \cdot 10^{-8} \) | \(a_{498}= +0.00744591 \pm 2.1 \cdot 10^{-8} \) |
\(a_{499}= -0.51954263 \pm 1 \cdot 10^{-8} \) | \(a_{500}= +0.04472136 \pm 9.8 \cdot 10^{-7} \) | \(a_{501}= +0.24477159 \pm 1 \cdot 10^{-8} \) |
\(a_{502}= -0.34859884 \pm 1.5 \cdot 10^{-8} \) | \(a_{503}= -0.55363356 \pm 1 \cdot 10^{-8} \) | \(a_{504}= -0.45853362 \pm 2.0 \cdot 10^{-8} \) |
\(a_{505}= -0.00520081 \pm 1.5 \cdot 10^{-8} \) | \(a_{506}= -0.05227157 \pm 2.0 \cdot 10^{-8} \) | \(a_{507}= +0.09980286 \pm 1 \cdot 10^{-8} \) |
\(a_{508}= +0.72182735 \pm 1.6 \cdot 10^{-8} \) | \(a_{509}= -1.07700350 \pm 1 \cdot 10^{-8} \) | \(a_{510}= +0.06495918 \pm 1.7 \cdot 10^{-8} \) |
\(a_{511}= +1.44034346 \pm 1 \cdot 10^{-8} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +0.15589221 \pm 1 \cdot 10^{-8} \) |
\(a_{514}= -0.77324823 \pm 1.4 \cdot 10^{-8} \) | \(a_{515}= +0.02930036 \pm 1.7 \cdot 10^{-8} \) | \(a_{516}= +0.01397250 \pm 1.9 \cdot 10^{-8} \) |
\(a_{517}= +0.86015902 \pm 1 \cdot 10^{-8} \) | \(a_{518}= +1.34323725 \pm 2.0 \cdot 10^{-8} \) | \(a_{519}= -0.22949246 \pm 1 \cdot 10^{-8} \) |
\(a_{520}= +0.09092508 \pm 1.5 \cdot 10^{-8} \) | \(a_{521}= -1.89154813 \pm 1 \cdot 10^{-8} \) | \(a_{522}= +0.90370813 \pm 2.1 \cdot 10^{-8} \) |
\(a_{523}= -0.95021004 \pm 1 \cdot 10^{-8} \) | \(a_{524}= -0.30636114 \pm 1.5 \cdot 10^{-8} \) | \(a_{525}= +0.03955765 \pm 1.9 \cdot 10^{-8} \) |
\(a_{526}= -0.50218778 \pm 1.6 \cdot 10^{-8} \) | \(a_{527}= +0.84059613 \pm 1 \cdot 10^{-8} \) | \(a_{528}= -0.06248103 \pm 1.8 \cdot 10^{-8} \) |
\(a_{529}= -0.99805472 \pm 1 \cdot 10^{-8} \) | \(a_{530}= +0.36193456 \pm 1.5 \cdot 10^{-8} \) | \(a_{531}= +1.22285604 \pm 1 \cdot 10^{-8} \) |
\(a_{532}= -0.35057639 \pm 1.9 \cdot 10^{-8} \) | \(a_{533}= -0.13273907 \pm 1 \cdot 10^{-8} \) | \(a_{534}= +0.15794883 \pm 2.0 \cdot 10^{-8} \) |
\(a_{535}= -0.75685893 \pm 1.3 \cdot 10^{-8} \) | \(a_{536}= +0.30301876 \pm 1.4 \cdot 10^{-8} \) | \(a_{537}= +0.21500594 \pm 1 \cdot 10^{-8} \) |
\(a_{538}= +0.81716716 \pm 1.7 \cdot 10^{-8} \) | \(a_{539}= +1.27279145 \pm 1 \cdot 10^{-8} \) | \(a_{540}= +0.06594448 \pm 1.5 \cdot 10^{-8} \) |
\(a_{541}= -0.12515639 \pm 1 \cdot 10^{-8} \) | \(a_{542}= +0.48280871 \pm 1.7 \cdot 10^{-8} \) | \(a_{543}= -0.00707124 \pm 1 \cdot 10^{-8} \) |
\(a_{544}= -0.24352682 \pm 1.3 \cdot 10^{-8} \) | \(a_{545}= +0.26379398 \pm 1.5 \cdot 10^{-8} \) | \(a_{546}= +0.08042650 \pm 2.4 \cdot 10^{-8} \) |
\(a_{547}= +0.25947560 \pm 1 \cdot 10^{-8} \) | \(a_{548}= +0.09789500 \pm 1.5 \cdot 10^{-8} \) | \(a_{549}= -1.40334884 \pm 1 \cdot 10^{-8} \) |
\(a_{550}= -0.23703058 \pm 1.4 \cdot 10^{-8} \) | \(a_{551}= +0.69093894 \pm 1 \cdot 10^{-8} \) | \(a_{552}= +0.00232522 \pm 2.1 \cdot 10^{-8} \) |
\(a_{553}= +0.66917359 \pm 1 \cdot 10^{-8} \) | \(a_{554}= +0.12637054 \pm 1.4 \cdot 10^{-8} \) | \(a_{555}= -0.09550361 \pm 1.9 \cdot 10^{-8} \) |
\(a_{556}= -0.11787467 \pm 1.5 \cdot 10^{-8} \) | \(a_{557}= +1.20300159 \pm 1 \cdot 10^{-8} \) | \(a_{558}= +0.42187626 \pm 1.8 \cdot 10^{-8} \) |
\(a_{559}= +0.10777027 \pm 1 \cdot 10^{-8} \) | \(a_{560}= -0.14829848 \pm 1.5 \cdot 10^{-8} \) | \(a_{561}= -0.34429439 \pm 1 \cdot 10^{-8} \) |
\(a_{562}= -0.73331745 \pm 1.3 \cdot 10^{-8} \) | \(a_{563}= -0.27543641 \pm 1 \cdot 10^{-8} \) | \(a_{564}= -0.03826292 \pm 1.7 \cdot 10^{-8} \) |
\(a_{565}= +0.24598218 \pm 1.4 \cdot 10^{-8} \) | \(a_{566}= -0.60713162 \pm 1.4 \cdot 10^{-8} \) | \(a_{567}= -1.23859868 \pm 1 \cdot 10^{-8} \) |
\(a_{568}= -0.56546994 \pm 1.4 \cdot 10^{-8} \) | \(a_{569}= +0.57116010 \pm 1 \cdot 10^{-8} \) | \(a_{570}= +0.02492584 \pm 1.8 \cdot 10^{-8} \) |
\(a_{571}= +0.41422096 \pm 1 \cdot 10^{-8} \) | \(a_{572}= -0.48191790 \pm 1.9 \cdot 10^{-8} \) | \(a_{573}= -0.06181422 \pm 1 \cdot 10^{-8} \) |
\(a_{574}= +0.21649696 \pm 1.8 \cdot 10^{-8} \) | \(a_{575}= +0.00882107 \pm 1.6 \cdot 10^{-8} \) | \(a_{576}= -0.12222062 \pm 1.4 \cdot 10^{-8} \) |
\(a_{577}= -0.25725734 \pm 1 \cdot 10^{-8} \) | \(a_{578}= -0.63481920 \pm 1.4 \cdot 10^{-8} \) | \(a_{579}= -0.14271305 \pm 1 \cdot 10^{-8} \) |
\(a_{580}= +0.29227637 \pm 1.7 \cdot 10^{-8} \) | \(a_{581}= -0.09366901 \pm 1 \cdot 10^{-8} \) | \(a_{582}= +0.00214638 \pm 2.1 \cdot 10^{-8} \) |
\(a_{583}= -1.91831290 \pm 1 \cdot 10^{-8} \) | \(a_{584}= +0.38391879 \pm 1.6 \cdot 10^{-8} \) | \(a_{585}= +0.25145666 \pm 1.9 \cdot 10^{-8} \) |
\(a_{586}= -0.86974165 \pm 1.2 \cdot 10^{-8} \) | \(a_{587}= -0.22453346 \pm 1 \cdot 10^{-8} \) | \(a_{588}= -0.05661828 \pm 1.9 \cdot 10^{-8} \) |
\(a_{589}= +0.32254964 \pm 1 \cdot 10^{-8} \) | \(a_{590}= +0.39549487 \pm 1.3 \cdot 10^{-8} \) | \(a_{591}= +0.04204685 \pm 1 \cdot 10^{-8} \) |
\(a_{592}= +0.35803545 \pm 1.5 \cdot 10^{-8} \) | \(a_{593}= -0.29187651 \pm 1 \cdot 10^{-8} \) | \(a_{594}= -0.34951664 \pm 1.9 \cdot 10^{-8} \) |
\(a_{595}= -0.81718142 \pm 1.8 \cdot 10^{-8} \) | \(a_{596}= +0.02577457 \pm 1.6 \cdot 10^{-8} \) | \(a_{597}= +0.12039984 \pm 1 \cdot 10^{-8} \) |
\(a_{598}= +0.01793452 \pm 2.1 \cdot 10^{-8} \) | \(a_{599}= +1.70123251 \pm 1 \cdot 10^{-8} \) | \(a_{600}= +0.01054396 \pm 1.4 \cdot 10^{-8} \) |
\(a_{601}= +0.31583598 \pm 1 \cdot 10^{-8} \) | \(a_{602}= -0.17577293 \pm 2.0 \cdot 10^{-8} \) | \(a_{603}= +0.83800959 \pm 1 \cdot 10^{-8} \) |
\(a_{604}= +0.03802483 \pm 1.7 \cdot 10^{-8} \) | \(a_{605}= +0.80908762 \pm 1.4 \cdot 10^{-8} \) | \(a_{606}= -0.00122620 \pm 1.9 \cdot 10^{-8} \) |
\(a_{607}= +0.84002242 \pm 1 \cdot 10^{-8} \) | \(a_{608}= -0.09344498 \pm 1.4 \cdot 10^{-8} \) | \(a_{609}= +0.25852896 \pm 1 \cdot 10^{-8} \) |
\(a_{610}= -0.45386967 \pm 1.5 \cdot 10^{-8} \) | \(a_{611}= -0.29512297 \pm 1 \cdot 10^{-8} \) | \(a_{612}= -0.67348242 \pm 1.7 \cdot 10^{-8} \) |
\(a_{613}= +1.67933693 \pm 1 \cdot 10^{-8} \) | \(a_{614}= +0.67898372 \pm 1.5 \cdot 10^{-8} \) | \(a_{615}= -0.01539284 \pm 1.7 \cdot 10^{-8} \) |
\(a_{616}= +0.78600643 \pm 1.9 \cdot 10^{-8} \) | \(a_{617}= -1.90767469 \pm 1 \cdot 10^{-8} \) | \(a_{618}= +0.00690815 \pm 2.1 \cdot 10^{-8} \) |
\(a_{619}= +0.47274249 \pm 1 \cdot 10^{-8} \) | \(a_{620}= +0.13644279 \pm 1.4 \cdot 10^{-8} \) | \(a_{621}= +0.01300722 \pm 1 \cdot 10^{-8} \) |
\(a_{622}= +1.21915909 \pm 1.3 \cdot 10^{-8} \) | \(a_{623}= -1.98698379 \pm 1 \cdot 10^{-8} \) | \(a_{624}= +0.02143742 \pm 1.9 \cdot 10^{-8} \) |
\(a_{625}= +0.04 \) | \(a_{626}= +1.04466008 \pm 1.5 \cdot 10^{-8} \) | \(a_{627}= -0.13211104 \pm 1 \cdot 10^{-8} \) |
\(a_{628}= +0.95870242 \pm 1.2 \cdot 10^{-8} \) | \(a_{629}= +1.97291240 \pm 1 \cdot 10^{-8} \) | \(a_{630}= -0.41012494 \pm 2.0 \cdot 10^{-8} \) |
\(a_{631}= -1.51362943 \pm 1 \cdot 10^{-8} \) | \(a_{632}= +0.17836601 \pm 1.5 \cdot 10^{-8} \) | \(a_{633}= +0.06373410 \pm 1 \cdot 10^{-8} \) |
\(a_{634}= +0.01658383 \pm 1.5 \cdot 10^{-8} \) | \(a_{635}= +0.64562201 \pm 1.6 \cdot 10^{-8} \) | \(a_{636}= +0.08533336 \pm 1.9 \cdot 10^{-8} \) |
\(a_{637}= -0.43669832 \pm 1 \cdot 10^{-8} \) | \(a_{638}= -1.54911301 \pm 2.1 \cdot 10^{-8} \) | \(a_{639}= -1.56382804 \pm 1 \cdot 10^{-8} \) |
\(a_{640}= -0.03952847 \pm 1.2 \cdot 10^{-6} \) | \(a_{641}= -1.23731710 \pm 1 \cdot 10^{-8} \) | \(a_{642}= -0.17844473 \pm 1.7 \cdot 10^{-8} \) |
\(a_{643}= +0.02768095 \pm 1 \cdot 10^{-8} \) | \(a_{644}= -0.02925115 \pm 2.2 \cdot 10^{-8} \) | \(a_{645}= +0.01249738 \pm 1.9 \cdot 10^{-8} \) |
\(a_{646}= -0.51491760 \pm 1.6 \cdot 10^{-8} \) | \(a_{647}= +1.06222269 \pm 1 \cdot 10^{-8} \) | \(a_{648}= -0.33014438 \pm 1.3 \cdot 10^{-8} \) |
\(a_{649}= -2.09618807 \pm 1 \cdot 10^{-8} \) | \(a_{650}= +0.08132586 \pm 1.5 \cdot 10^{-8} \) | \(a_{651}= +0.12068855 \pm 1 \cdot 10^{-8} \) |
\(a_{652}= +0.27648759 \pm 1.6 \cdot 10^{-8} \) | \(a_{653}= +0.81152561 \pm 1 \cdot 10^{-8} \) | \(a_{654}= +0.06219474 \pm 1.9 \cdot 10^{-8} \) |
\(a_{655}= -0.27401773 \pm 1.5 \cdot 10^{-8} \) | \(a_{656}= +0.05770655 \pm 1.3 \cdot 10^{-8} \) | \(a_{657}= +1.06174161 \pm 1 \cdot 10^{-8} \) |
\(a_{658}= +0.48134455 \pm 1.9 \cdot 10^{-8} \) | \(a_{659}= -1.28232283 \pm 1 \cdot 10^{-8} \) | \(a_{660}= -0.05588473 \pm 1.8 \cdot 10^{-8} \) |
\(a_{661}= -0.48977314 \pm 1 \cdot 10^{-8} \) | \(a_{662}= +0.14882140 \pm 1.4 \cdot 10^{-8} \) | \(a_{663}= +0.11812837 \pm 1 \cdot 10^{-8} \) |
\(a_{664}= -0.02496717 \pm 1.6 \cdot 10^{-8} \) | \(a_{665}= -0.31356506 \pm 1.9 \cdot 10^{-8} \) | \(a_{666}= +0.99016028 \pm 1.9 \cdot 10^{-8} \) |
\(a_{667}= +0.05765008 \pm 1 \cdot 10^{-8} \) | \(a_{668}= -0.82075255 \pm 1.4 \cdot 10^{-8} \) | \(a_{669}= -0.00506978 \pm 1 \cdot 10^{-8} \) |
\(a_{670}= +0.27102822 \pm 1.4 \cdot 10^{-8} \) | \(a_{671}= +2.40558414 \pm 1 \cdot 10^{-8} \) | \(a_{672}= -0.03496435 \pm 1.9 \cdot 10^{-8} \) |
\(a_{673}= +1.32102080 \pm 1 \cdot 10^{-8} \) | \(a_{674}= -0.54692002 \pm 1.6 \cdot 10^{-8} \) | \(a_{675}= +0.05898254 \pm 1.5 \cdot 10^{-8} \) |
\(a_{676}= -0.33465261 \pm 1.3 \cdot 10^{-8} \) | \(a_{677}= -1.02778155 \pm 1 \cdot 10^{-8} \) | \(a_{678}= +0.05799525 \pm 1.8 \cdot 10^{-8} \) |
\(a_{679}= -0.02700126 \pm 1 \cdot 10^{-8} \) | \(a_{680}= -0.21781701 \pm 1.3 \cdot 10^{-8} \) | \(a_{681}= -0.16003293 \pm 1 \cdot 10^{-8} \) |
\(a_{682}= -0.72316933 \pm 1.8 \cdot 10^{-8} \) | \(a_{683}= -0.93715112 \pm 1 \cdot 10^{-8} \) | \(a_{684}= -0.25842554 \pm 1.8 \cdot 10^{-8} \) |
\(a_{685}= +0.08755995 \pm 1.5 \cdot 10^{-8} \) | \(a_{686}= -0.22566851 \pm 1.3 \cdot 10^{-8} \) | \(a_{687}= +0.04090457 \pm 1 \cdot 10^{-8} \) |
\(a_{688}= -0.04685169 \pm 1.4 \cdot 10^{-8} \) | \(a_{689}= +0.65817854 \pm 1 \cdot 10^{-8} \) | \(a_{690}= +0.00207974 \pm 2.1 \cdot 10^{-8} \) |
\(a_{691}= +1.06348034 \pm 1 \cdot 10^{-8} \) | \(a_{692}= +0.76951954 \pm 1.5 \cdot 10^{-8} \) | \(a_{693}= +2.17372986 \pm 1 \cdot 10^{-8} \) |
\(a_{694}= -0.29673370 \pm 1.7 \cdot 10^{-8} \) | \(a_{695}= -0.10543031 \pm 1.5 \cdot 10^{-8} \) | \(a_{696}= +0.06891004 \pm 2.1 \cdot 10^{-8} \) |
\(a_{697}= +0.31798518 \pm 1 \cdot 10^{-8} \) | \(a_{698}= -0.20293103 \pm 1.4 \cdot 10^{-8} \) | \(a_{699}= +0.13106619 \pm 1 \cdot 10^{-8} \) |
\(a_{700}= -0.13264220 \pm 1.5 \cdot 10^{-8} \) | \(a_{701}= -1.65002146 \pm 1 \cdot 10^{-8} \) | \(a_{702}= +0.11992014 \pm 2.0 \cdot 10^{-8} \) |
\(a_{703}= +0.75703678 \pm 1 \cdot 10^{-8} \) | \(a_{704}= +0.20950742 \pm 1.4 \cdot 10^{-8} \) | \(a_{705}= -0.03422340 \pm 1.7 \cdot 10^{-8} \) |
\(a_{706}= +0.66596752 \pm 1.6 \cdot 10^{-8} \) | \(a_{707}= +0.01542545 \pm 1 \cdot 10^{-8} \) | \(a_{708}= +0.09324588 \pm 1.8 \cdot 10^{-8} \) |
\(a_{709}= -0.61759739 \pm 1 \cdot 10^{-8} \) | \(a_{710}= -0.50577169 \pm 1.4 \cdot 10^{-8} \) | \(a_{711}= +0.49327780 \pm 1 \cdot 10^{-8} \) |
\(a_{712}= -0.52962396 \pm 1.6 \cdot 10^{-8} \) | \(a_{713}= +0.02691267 \pm 1 \cdot 10^{-8} \) | \(a_{714}= -0.19266697 \pm 2.2 \cdot 10^{-8} \) |
\(a_{715}= -0.43104047 \pm 1.9 \cdot 10^{-8} \) | \(a_{716}= -0.72094425 \pm 1.5 \cdot 10^{-8} \) | \(a_{717}= -0.27340714 \pm 1 \cdot 10^{-8} \) |
\(a_{718}= +0.90551772 \pm 1.6 \cdot 10^{-8} \) | \(a_{719}= +0.48668979 \pm 1 \cdot 10^{-8} \) | \(a_{720}= -0.10931745 \pm 1.4 \cdot 10^{-8} \) |
\(a_{721}= -0.08690397 \pm 1 \cdot 10^{-8} \) | \(a_{722}= +0.50952499 \pm 1.3 \cdot 10^{-8} \) | \(a_{723}= -0.19921423 \pm 1 \cdot 10^{-8} \) |
\(a_{724}= +0.02371083 \pm 1.4 \cdot 10^{-8} \) | \(a_{725}= +0.26141994 \pm 1.7 \cdot 10^{-8} \) | \(a_{726}= +0.19075869 \pm 1.8 \cdot 10^{-8} \) |
\(a_{727}= +1.11566023 \pm 1 \cdot 10^{-8} \) | \(a_{728}= -0.26968101 \pm 2.0 \cdot 10^{-8} \) | \(a_{729}= -0.86905086 \pm 1 \cdot 10^{-8} \) |
\(a_{730}= +0.34338740 \pm 1.6 \cdot 10^{-8} \) | \(a_{731}= -0.25817077 \pm 1 \cdot 10^{-8} \) | \(a_{732}= -0.10700891 \pm 1.9 \cdot 10^{-8} \) |
\(a_{733}= -1.75710185 \pm 1 \cdot 10^{-8} \) | \(a_{734}= +0.21984769 \pm 1.5 \cdot 10^{-8} \) | \(a_{735}= -0.05064093 \pm 1.9 \cdot 10^{-8} \) |
\(a_{736}= -0.00779680 \pm 1.6 \cdot 10^{-8} \) | \(a_{737}= -1.43649429 \pm 1 \cdot 10^{-8} \) | \(a_{738}= +0.15958960 \pm 1.8 \cdot 10^{-8} \) |
\(a_{739}= -0.23210156 \pm 1 \cdot 10^{-8} \) | \(a_{740}= +0.32023664 \pm 1.5 \cdot 10^{-8} \) | \(a_{741}= +0.04532767 \pm 1 \cdot 10^{-8} \) |
\(a_{742}= -1.07348693 \pm 2.0 \cdot 10^{-8} \) | \(a_{743}= -1.29115690 \pm 1 \cdot 10^{-8} \) | \(a_{744}= +0.03216914 \pm 1.8 \cdot 10^{-8} \) |
\(a_{745}= +0.02305348 \pm 1.6 \cdot 10^{-8} \) | \(a_{746}= -0.44392864 \pm 1.8 \cdot 10^{-8} \) | \(a_{747}= -0.06904762 \pm 1 \cdot 10^{-8} \) |
\(a_{748}= +1.15446607 \pm 1.7 \cdot 10^{-8} \) | \(a_{749}= +2.24482063 \pm 1 \cdot 10^{-8} \) | \(a_{750}= +0.00943081 \pm 1.4 \cdot 10^{-8} \) |
\(a_{751}= +0.48953731 \pm 1 \cdot 10^{-8} \) | \(a_{752}= +0.12830080 \pm 1.3 \cdot 10^{-8} \) | \(a_{753}= -0.07351225 \pm 1 \cdot 10^{-8} \) |
\(a_{754}= +0.53150502 \pm 2.1 \cdot 10^{-8} \) | \(a_{755}= +0.03401045 \pm 1.7 \cdot 10^{-8} \) | \(a_{756}= -0.19558933 \pm 2.0 \cdot 10^{-8} \) |
\(a_{757}= -1.22654031 \pm 1 \cdot 10^{-8} \) | \(a_{758}= +0.18006162 \pm 1.6 \cdot 10^{-8} \) | \(a_{759}= -0.01102299 \pm 1 \cdot 10^{-8} \) |
\(a_{760}= -0.08357973 \pm 1.4 \cdot 10^{-8} \) | \(a_{761}= -0.65636430 \pm 1 \cdot 10^{-8} \) | \(a_{762}= +0.15221839 \pm 2.0 \cdot 10^{-8} \) |
\(a_{763}= -0.78240493 \pm 1 \cdot 10^{-8} \) | \(a_{764}= +0.20727152 \pm 1.4 \cdot 10^{-8} \) | \(a_{765}= -0.60238099 \pm 1.7 \cdot 10^{-8} \) |
\(a_{766}= -0.45035557 \pm 1.6 \cdot 10^{-8} \) | \(a_{767}= +0.71920801 \pm 1 \cdot 10^{-8} \) | \(a_{768}= -0.00931963 \pm 1.4 \cdot 10^{-8} \) |
\(a_{769}= -0.24407886 \pm 1 \cdot 10^{-8} \) | \(a_{770}= +0.70302553 \pm 1.9 \cdot 10^{-8} \) | \(a_{771}= -0.16306198 \pm 1 \cdot 10^{-8} \) |
\(a_{772}= +0.47853632 \pm 1.6 \cdot 10^{-8} \) | \(a_{773}= +0.66226298 \pm 1 \cdot 10^{-8} \) | \(a_{774}= -0.12957009 \pm 1.9 \cdot 10^{-8} \) |
\(a_{775}= +0.12203815 \pm 1.4 \cdot 10^{-8} \) | \(a_{776}= -0.00719710 \pm 1.7 \cdot 10^{-8} \) | \(a_{777}= +0.28326082 \pm 1 \cdot 10^{-8} \) |
\(a_{778}= -0.89133101 \pm 1.5 \cdot 10^{-8} \) | \(a_{779}= +0.12201580 \pm 1 \cdot 10^{-8} \) | \(a_{780}= +0.01917421 \pm 1.9 \cdot 10^{-8} \) |
\(a_{781}= +2.68067342 \pm 1 \cdot 10^{-8} \) | \(a_{782}= -0.04296333 \pm 1.9 \cdot 10^{-8} \) | \(a_{783}= +0.38548028 \pm 1 \cdot 10^{-8} \) |
\(a_{784}= +0.18984880 \pm 1.5 \cdot 10^{-8} \) | \(a_{785}= +0.85748952 \pm 1.2 \cdot 10^{-8} \) | \(a_{786}= -0.06460520 \pm 1.9 \cdot 10^{-8} \) |
\(a_{787}= +1.55880831 \pm 1 \cdot 10^{-8} \) | \(a_{788}= -0.14098883 \pm 1.6 \cdot 10^{-8} \) | \(a_{789}= -0.10590096 \pm 1 \cdot 10^{-8} \) |
\(a_{790}= +0.15953541 \pm 1.5 \cdot 10^{-8} \) | \(a_{791}= -0.72957569 \pm 1 \cdot 10^{-8} \) | \(a_{792}= +0.57940051 \pm 1.8 \cdot 10^{-8} \) |
\(a_{793}= -0.82536267 \pm 1 \cdot 10^{-8} \) | \(a_{794}= +0.46894628 \pm 1.6 \cdot 10^{-8} \) | \(a_{795}= +0.07632448 \pm 1.9 \cdot 10^{-8} \) |
\(a_{796}= -0.40371710 \pm 1.5 \cdot 10^{-8} \) | \(a_{797}= +0.43365466 \pm 1 \cdot 10^{-8} \) | \(a_{798}= -0.07392927 \pm 2.3 \cdot 10^{-8} \) |
\(a_{799}= +0.70698653 \pm 1 \cdot 10^{-8} \) | \(a_{800}= -0.03535534 \pm 1.4 \cdot 10^{-6} \) | \(a_{801}= -1.46469466 \pm 1 \cdot 10^{-8} \) |
\(a_{802}= -0.76494913 \pm 1.5 \cdot 10^{-8} \) | \(a_{803}= -1.82000990 \pm 1 \cdot 10^{-8} \) | \(a_{804}= +0.06390036 \pm 1.8 \cdot 10^{-8} \) |
\(a_{805}= -0.02616302 \pm 2.2 \cdot 10^{-8} \) | \(a_{806}= +0.24812143 \pm 1.8 \cdot 10^{-8} \) | \(a_{807}= +0.17232357 \pm 1 \cdot 10^{-8} \) |
\(a_{808}= +0.00411160 \pm 1.5 \cdot 10^{-8} \) | \(a_{809}= +0.82296538 \pm 1 \cdot 10^{-8} \) | \(a_{810}= -0.29529011 \pm 1.3 \cdot 10^{-8} \) |
\(a_{811}= +0.58436730 \pm 1 \cdot 10^{-8} \) | \(a_{812}= -0.86688286 \pm 2.2 \cdot 10^{-8} \) | \(a_{813}= +0.10181432 \pm 1 \cdot 10^{-8} \) |
\(a_{814}= -1.69730705 \pm 1.9 \cdot 10^{-8} \) | \(a_{815}= +0.24729802 \pm 1.6 \cdot 10^{-8} \) | \(a_{816}= -0.05135474 \pm 1.7 \cdot 10^{-8} \) |
\(a_{817}= -0.09906409 \pm 1 \cdot 10^{-8} \) | \(a_{818}= +0.68238895 \pm 1.7 \cdot 10^{-8} \) | \(a_{819}= -0.74581282 \pm 1 \cdot 10^{-8} \) |
\(a_{820}= +0.05161431 \pm 1.3 \cdot 10^{-8} \) | \(a_{821}= -0.69544162 \pm 1 \cdot 10^{-8} \) | \(a_{822}= +0.02064402 \pm 2.0 \cdot 10^{-8} \) |
\(a_{823}= -0.39220219 \pm 1 \cdot 10^{-8} \) | \(a_{824}= -0.02316397 \pm 1.7 \cdot 10^{-8} \) | \(a_{825}= -0.04998482 \pm 1.8 \cdot 10^{-8} \) |
\(a_{826}= -1.17302579 \pm 1.9 \cdot 10^{-8} \) | \(a_{827}= -0.16188911 \pm 1 \cdot 10^{-8} \) | \(a_{828}= -0.02156233 \pm 2.1 \cdot 10^{-8} \) |
\(a_{829}= -0.23285563 \pm 1 \cdot 10^{-8} \) | \(a_{830}= -0.02233131 \pm 1.6 \cdot 10^{-8} \) | \(a_{831}= +0.02664892 \pm 1 \cdot 10^{-8} \) |
\(a_{832}= -0.07188258 \pm 1.5 \cdot 10^{-8} \) | \(a_{833}= +1.04613959 \pm 1 \cdot 10^{-8} \) | \(a_{834}= -0.02485732 \pm 1.9 \cdot 10^{-8} \) |
\(a_{835}= -0.73410340 \pm 1.4 \cdot 10^{-8} \) | \(a_{836}= +0.44298636 \pm 1.8 \cdot 10^{-8} \) | \(a_{837}= +0.17995299 \pm 1 \cdot 10^{-8} \) |
\(a_{838}= +0.84470607 \pm 1.4 \cdot 10^{-8} \) | \(a_{839}= +0.36013826 \pm 1 \cdot 10^{-8} \) | \(a_{840}= -0.03127307 \pm 1.9 \cdot 10^{-8} \) |
\(a_{841}= +0.70850957 \pm 1 \cdot 10^{-8} \) | \(a_{842}= +0.11529880 \pm 1.5 \cdot 10^{-8} \) | \(a_{843}= -0.15464141 \pm 1 \cdot 10^{-8} \) |
\(a_{844}= -0.21370914 \pm 1.6 \cdot 10^{-8} \) | \(a_{845}= -0.29932240 \pm 1.3 \cdot 10^{-8} \) | \(a_{846}= +0.35482061 \pm 1.8 \cdot 10^{-8} \) |
\(a_{847}= -2.39972933 \pm 1 \cdot 10^{-8} \) | \(a_{848}= -0.28613439 \pm 1.5 \cdot 10^{-8} \) | \(a_{849}= -0.12803144 \pm 1 \cdot 10^{-8} \) |
\(a_{850}= -0.19482145 \pm 1.3 \cdot 10^{-8} \) | \(a_{851}= +0.06316510 \pm 1 \cdot 10^{-8} \) | \(a_{852}= -0.11924586 \pm 1.8 \cdot 10^{-8} \) |
\(a_{853}= +1.82794656 \pm 1 \cdot 10^{-8} \) | \(a_{854}= +1.34616367 \pm 2.0 \cdot 10^{-8} \) | \(a_{855}= -0.23114283 \pm 1.8 \cdot 10^{-8} \) |
\(a_{856}= +0.59834952 \pm 1.3 \cdot 10^{-8} \) | \(a_{857}= +1.49009472 \pm 1 \cdot 10^{-8} \) | \(a_{858}= -0.10162647 \pm 2.3 \cdot 10^{-8} \) |
\(a_{859}= -0.46211999 \pm 1 \cdot 10^{-8} \) | \(a_{860}= -0.04190543 \pm 1.4 \cdot 10^{-8} \) | \(a_{861}= +0.04565471 \pm 1 \cdot 10^{-8} \) |
\(a_{862}= +1.22876338 \pm 1.3 \cdot 10^{-8} \) | \(a_{863}= +0.46039147 \pm 1 \cdot 10^{-8} \) | \(a_{864}= -0.05213369 \pm 1.5 \cdot 10^{-8} \) |
\(a_{865}= +0.68827920 \pm 1.5 \cdot 10^{-8} \) | \(a_{866}= +0.26420611 \pm 1.4 \cdot 10^{-8} \) | \(a_{867}= -0.13387018 \pm 1 \cdot 10^{-8} \) |
\(a_{868}= -0.40468519 \pm 1.9 \cdot 10^{-8} \) | \(a_{869}= -0.84556400 \pm 1 \cdot 10^{-8} \) | \(a_{870}= +0.06163501 \pm 2.1 \cdot 10^{-8} \) |
\(a_{871}= +0.49286522 \pm 1 \cdot 10^{-8} \) | \(a_{872}= -0.20854745 \pm 1.5 \cdot 10^{-8} \) | \(a_{873}= -0.01990384 \pm 1 \cdot 10^{-8} \) |
\(a_{874}= -0.01648569 \pm 2.0 \cdot 10^{-8} \) | \(a_{875}= -0.11863879 \pm 1.5 \cdot 10^{-8} \) | \(a_{876}= +0.08096049 \pm 2.0 \cdot 10^{-8} \) |
\(a_{877}= -0.86080448 \pm 1 \cdot 10^{-8} \) | \(a_{878}= -0.68678538 \pm 1.5 \cdot 10^{-8} \) | \(a_{879}= -0.18341044 \pm 1 \cdot 10^{-8} \) |
\(a_{880}= +0.18738913 \pm 1.4 \cdot 10^{-8} \) | \(a_{881}= -0.68764217 \pm 1 \cdot 10^{-8} \) | \(a_{882}= +0.52503389 \pm 2.0 \cdot 10^{-8} \) |
\(a_{883}= +1.45867798 \pm 1 \cdot 10^{-8} \) | \(a_{884}= -0.39610055 \pm 1.7 \cdot 10^{-8} \) | \(a_{885}= +0.08340165 \pm 1.8 \cdot 10^{-8} \) |
\(a_{886}= +1.00118057 \pm 1.7 \cdot 10^{-8} \) | \(a_{887}= -0.52014829 \pm 1 \cdot 10^{-8} \) | \(a_{888}= +0.07550223 \pm 1.9 \cdot 10^{-8} \) |
\(a_{889}= -1.91489530 \pm 1 \cdot 10^{-8} \) | \(a_{890}= -0.47371007 \pm 1.6 \cdot 10^{-8} \) | \(a_{891}= +1.56508633 \pm 1 \cdot 10^{-8} \) |
\(a_{892}= +0.01699965 \pm 1.5 \cdot 10^{-8} \) | \(a_{893}= +0.27128159 \pm 1 \cdot 10^{-8} \) | \(a_{894}= +0.00543532 \pm 2.1 \cdot 10^{-8} \) |
\(a_{895}= -0.64483214 \pm 1.5 \cdot 10^{-8} \) | \(a_{896}= +0.11724025 \pm 1.5 \cdot 10^{-8} \) | \(a_{897}= +0.00378202 \pm 1 \cdot 10^{-8} \) |
\(a_{898}= -0.23604148 \pm 1.4 \cdot 10^{-8} \) | \(a_{899}= +0.79758011 \pm 1 \cdot 10^{-8} \) | \(a_{900}= -0.09777650 \pm 1.4 \cdot 10^{-8} \) |
\(a_{901}= -1.57671005 \pm 1 \cdot 10^{-8} \) | \(a_{902}= -0.27356434 \pm 1.7 \cdot 10^{-8} \) | \(a_{903}= -0.03706686 \pm 1 \cdot 10^{-8} \) |
\(a_{904}= -0.19446599 \pm 1.4 \cdot 10^{-8} \) | \(a_{905}= +0.02120761 \pm 1.4 \cdot 10^{-8} \) | \(a_{906}= +0.00801865 \pm 2.1 \cdot 10^{-8} \) |
\(a_{907}= +0.27100755 \pm 1 \cdot 10^{-8} \) | \(a_{908}= +0.53661226 \pm 1.5 \cdot 10^{-8} \) | \(a_{909}= +0.01137079 \pm 1 \cdot 10^{-8} \) |
\(a_{910}= -0.24121003 \pm 2.0 \cdot 10^{-8} \) | \(a_{911}= -1.39212056 \pm 1 \cdot 10^{-8} \) | \(a_{912}= -0.01970560 \pm 1.8 \cdot 10^{-8} \) |
\(a_{913}= +0.11835964 \pm 1 \cdot 10^{-8} \) | \(a_{914}= +0.43796472 \pm 1.5 \cdot 10^{-8} \) | \(a_{915}= -0.09571168 \pm 1.9 \cdot 10^{-8} \) |
\(a_{916}= -0.13715862 \pm 1.3 \cdot 10^{-8} \) | \(a_{917}= +0.81272828 \pm 1 \cdot 10^{-8} \) | \(a_{918}= -0.28727659 \pm 1.8 \cdot 10^{-8} \) |
\(a_{919}= -0.12589239 \pm 1 \cdot 10^{-8} \) | \(a_{920}= -0.00697367 \pm 1.6 \cdot 10^{-8} \) | \(a_{921}= +0.14318355 \pm 1 \cdot 10^{-8} \) |
\(a_{922}= -0.14478217 \pm 1.4 \cdot 10^{-8} \) | \(a_{923}= -0.91974658 \pm 1 \cdot 10^{-8} \) | \(a_{924}= +0.16575242 \pm 2.3 \cdot 10^{-8} \) |
\(a_{925}= +0.28642836 \pm 1.5 \cdot 10^{-8} \) | \(a_{926}= -0.67228562 \pm 1.5 \cdot 10^{-8} \) | \(a_{927}= -0.06406080 \pm 1 \cdot 10^{-8} \) |
\(a_{928}= -0.23106476 \pm 1.7 \cdot 10^{-8} \) | \(a_{929}= +0.42383982 \pm 1 \cdot 10^{-8} \) | \(a_{930}= +0.02877295 \pm 1.8 \cdot 10^{-8} \) |
\(a_{931}= +0.40141982 \pm 1 \cdot 10^{-8} \) | \(a_{932}= -0.43948282 \pm 1.6 \cdot 10^{-8} \) | \(a_{933}= +0.25709531 \pm 1 \cdot 10^{-8} \) |
\(a_{934}= -0.67545594 \pm 1.2 \cdot 10^{-8} \) | \(a_{935}= +1.03258585 \pm 1.7 \cdot 10^{-8} \) | \(a_{936}= -0.19879394 \pm 1.9 \cdot 10^{-8} \) |
\(a_{937}= +1.11237038 \pm 1 \cdot 10^{-8} \) | \(a_{938}= -0.80386148 \pm 1.9 \cdot 10^{-8} \) | \(a_{939}= +0.22029710 \pm 1 \cdot 10^{-8} \) |
\(a_{940}= +0.11475572 \pm 1.3 \cdot 10^{-8} \) | \(a_{941}= +0.20468428 \pm 1 \cdot 10^{-8} \) | \(a_{942}= +0.20217041 \pm 1.7 \cdot 10^{-8} \) |
\(a_{943}= +0.01018067 \pm 1 \cdot 10^{-8} \) | \(a_{944}= -0.31266615 \pm 1.3 \cdot 10^{-8} \) | \(a_{945}= -0.17494042 \pm 2.0 \cdot 10^{-8} \) |
\(a_{946}= +0.22210569 \pm 1.8 \cdot 10^{-8} \) | \(a_{947}= -0.91971904 \pm 1 \cdot 10^{-8} \) | \(a_{948}= +0.03761368 \pm 1.9 \cdot 10^{-8} \) |
\(a_{949}= +0.62445051 \pm 1 \cdot 10^{-8} \) | \(a_{950}= -0.07475598 \pm 1.4 \cdot 10^{-8} \) | \(a_{951}= +0.00349719 \pm 1 \cdot 10^{-8} \) |
\(a_{952}= +0.64603863 \pm 1.8 \cdot 10^{-8} \) | \(a_{953}= -1.73290999 \pm 1 \cdot 10^{-8} \) | \(a_{954}= -0.79131525 \pm 1.9 \cdot 10^{-8} \) |
\(a_{955}= +0.18538928 \pm 1.4 \cdot 10^{-8} \) | \(a_{956}= +0.91677144 \pm 1.5 \cdot 10^{-8} \) | \(a_{957}= -0.32667574 \pm 1 \cdot 10^{-8} \) |
\(a_{958}= -0.00560931 \pm 1.5 \cdot 10^{-8} \) | \(a_{959}= -0.25970016 \pm 1 \cdot 10^{-8} \) | \(a_{960}= -0.00833573 \pm 1.4 \cdot 10^{-8} \) |
\(a_{961}= -0.62766727 \pm 1 \cdot 10^{-8} \) | \(a_{962}= +0.58235082 \pm 2.0 \cdot 10^{-8} \) | \(a_{963}= +1.65475773 \pm 1 \cdot 10^{-8} \) |
\(a_{964}= +0.66799248 \pm 1.4 \cdot 10^{-8} \) | \(a_{965}= +0.42801589 \pm 1.6 \cdot 10^{-8} \) | \(a_{966}= -0.00616846 \pm 2.6 \cdot 10^{-8} \) |
\(a_{967}= +1.57531303 \pm 1 \cdot 10^{-8} \) | \(a_{968}= -0.63963992 \pm 1.4 \cdot 10^{-8} \) | \(a_{969}= -0.10858542 \pm 1 \cdot 10^{-8} \) |
\(a_{970}= -0.00643728 \pm 1.7 \cdot 10^{-8} \) | \(a_{971}= +0.57919541 \pm 1 \cdot 10^{-8} \) | \(a_{972}= -0.21707693 \pm 1.5 \cdot 10^{-8} \) |
\(a_{973}= +0.31270311 \pm 1 \cdot 10^{-8} \) | \(a_{974}= +0.46014335 \pm 1.4 \cdot 10^{-8} \) | \(a_{975}= +0.01714993 \pm 1.9 \cdot 10^{-8} \) |
\(a_{976}= +0.35881548 \pm 1.5 \cdot 10^{-8} \) | \(a_{977}= -1.06034523 \pm 1 \cdot 10^{-8} \) | \(a_{978}= +0.05830549 \pm 2.0 \cdot 10^{-8} \) |
\(a_{979}= +2.51074156 \pm 1 \cdot 10^{-8} \) | \(a_{980}= +0.16980593 \pm 1.5 \cdot 10^{-8} \) | \(a_{981}= -0.57674569 \pm 1 \cdot 10^{-8} \) |
\(a_{982}= -0.63544018 \pm 1.6 \cdot 10^{-8} \) | \(a_{983}= -0.38812696 \pm 1 \cdot 10^{-8} \) | \(a_{984}= +0.01216911 \pm 1.7 \cdot 10^{-8} \) |
\(a_{985}= -0.12610424 \pm 1.6 \cdot 10^{-8} \) | \(a_{986}= -1.27325530 \pm 1.9 \cdot 10^{-8} \) | \(a_{987}= +0.10150556 \pm 1 \cdot 10^{-8} \) |
\(a_{988}= -0.15198986 \pm 1.8 \cdot 10^{-8} \) | \(a_{989}= -0.00826564 \pm 1 \cdot 10^{-8} \) | \(a_{990}= +0.51823157 \pm 1.8 \cdot 10^{-8} \) |
\(a_{991}= -1.07015993 \pm 1 \cdot 10^{-8} \) | \(a_{992}= -0.10786750 \pm 1.4 \cdot 10^{-8} \) | \(a_{993}= +0.03138334 \pm 1 \cdot 10^{-8} \) |
\(a_{994}= +1.50010350 \pm 1.9 \cdot 10^{-8} \) | \(a_{995}= -0.36109556 \pm 1.5 \cdot 10^{-8} \) | \(a_{996}= -0.00526506 \pm 2.1 \cdot 10^{-8} \) |
\(a_{997}= -1.18813632 \pm 1 \cdot 10^{-8} \) | \(a_{998}= +0.36737211 \pm 1.5 \cdot 10^{-8} \) | \(a_{999}= +0.42235679 \pm 1 \cdot 10^{-8} \) |
\(a_{1000}= -0.03162278 \pm 1.7 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000