Maass form invariants
Level: | \( 10 = 2 \cdot 5 \) |
Weight: | \( 0 \) |
Character: | 10.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(11.5070658355015821787757222496 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -1.92061742 \pm 3.3 \cdot 10^{-6} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -1.35808160 \pm 3.4 \cdot 10^{-6} \) |
\(a_{7}= -0.28622395 \pm 4.2 \cdot 10^{-6} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +2.68877128 \pm 3.6 \cdot 10^{-6} \) |
\(a_{10}= +0.31622777 \pm 1.0 \cdot 10^{-8} \) | \(a_{11}= -0.23979952 \pm 3.2 \cdot 10^{-6} \) | \(a_{12}= -0.96030871 \pm 3.4 \cdot 10^{-6} \) |
\(a_{13}= +1.37587517 \pm 3.7 \cdot 10^{-6} \) | \(a_{14}= -0.20239090 \pm 4.2 \cdot 10^{-6} \) | \(a_{15}= -0.85892622 \pm 3.4 \cdot 10^{-6} \) |
\(a_{16}= +0.25 \) | \(a_{17}= -0.16599162 \pm 2.2 \cdot 10^{-6} \) | \(a_{18}= +1.90124841 \pm 3.6 \cdot 10^{-6} \) |
\(a_{19}= -1.75538402 \pm 2.9 \cdot 10^{-6} \) | \(a_{20}= +0.22360680 \pm 8.4 \cdot 10^{-8} \) | \(a_{21}= +0.54972671 \pm 3.5 \cdot 10^{-6} \) |
\(a_{22}= -0.16956387 \pm 3.2 \cdot 10^{-6} \) | \(a_{23}= -0.43328219 \pm 5.1 \cdot 10^{-6} \) | \(a_{24}= -0.67904080 \pm 3.4 \cdot 10^{-6} \) |
\(a_{25}= +0.2 \) | \(a_{26}= +0.97289066 \pm 3.7 \cdot 10^{-6} \) | \(a_{27}= -3.24348355 \pm 4.1 \cdot 10^{-6} \) |
\(a_{28}= -0.14311198 \pm 4.2 \cdot 10^{-6} \) | \(a_{29}= -0.18207357 \pm 5.3 \cdot 10^{-6} \) | \(a_{30}= -0.60735256 \pm 3.4 \cdot 10^{-6} \) |
\(a_{31}= -1.12708452 \pm 3.1 \cdot 10^{-6} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +0.46056314 \pm 2.6 \cdot 10^{-6} \) |
\(a_{34}= -0.11737380 \pm 2.2 \cdot 10^{-6} \) | \(a_{35}= -0.12800324 \pm 4.2 \cdot 10^{-6} \) | \(a_{36}= +1.34438564 \pm 3.6 \cdot 10^{-6} \) |
\(a_{37}= -0.19800640 \pm 4.0 \cdot 10^{-6} \) | \(a_{38}= -1.24124395 \pm 2.9 \cdot 10^{-6} \) | \(a_{39}= -2.64252982 \pm 3.0 \cdot 10^{-6} \) |
\(a_{40}= +0.15811388 \pm 1.2 \cdot 10^{-7} \) | \(a_{41}= -0.97725182 \pm 2.6 \cdot 10^{-6} \) | \(a_{42}= +0.38871548 \pm 7.6 \cdot 10^{-6} \) |
\(a_{43}= +1.00649805 \pm 3.6 \cdot 10^{-6} \) | \(a_{44}= -0.11989976 \pm 3.2 \cdot 10^{-6} \) | \(a_{45}= +1.20245507 \pm 3.6 \cdot 10^{-6} \) |
\(a_{46}= -0.30637677 \pm 5.1 \cdot 10^{-6} \) | \(a_{47}= +0.93662237 \pm 2.7 \cdot 10^{-6} \) | \(a_{48}= -0.48015436 \pm 3.4 \cdot 10^{-6} \) |
\(a_{49}= -0.91807585 \pm 4.2 \cdot 10^{-6} \) | \(a_{50}= +0.14142136 \pm 1.5 \cdot 10^{-7} \) | \(a_{51}= +0.31880639 \pm 2.7 \cdot 10^{-6} \) |
\(a_{52}= +0.68793758 \pm 3.7 \cdot 10^{-6} \) | \(a_{53}= -0.86311544 \pm 3.8 \cdot 10^{-6} \) | \(a_{54}= -2.29348921 \pm 4.1 \cdot 10^{-6} \) |
\(a_{55}= -0.10724161 \pm 3.2 \cdot 10^{-6} \) | \(a_{56}= -0.10119545 \pm 4.2 \cdot 10^{-6} \) | \(a_{57}= +3.37142114 \pm 2.5 \cdot 10^{-6} \) |
\(a_{58}= -0.12874546 \pm 5.3 \cdot 10^{-6} \) | \(a_{59}= -0.20721015 \pm 2.8 \cdot 10^{-6} \) | \(a_{60}= -0.42946311 \pm 3.4 \cdot 10^{-6} \) |
\(a_{61}= -0.63093942 \pm 3.8 \cdot 10^{-6} \) | \(a_{62}= -0.79696911 \pm 3.1 \cdot 10^{-6} \) | \(a_{63}= -0.76959074 \pm 3.5 \cdot 10^{-6} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +0.61531008 \pm 3.7 \cdot 10^{-6} \) | \(a_{66}= +0.32566732 \pm 6.6 \cdot 10^{-6} \) |
\(a_{67}= +0.60598395 \pm 3.0 \cdot 10^{-6} \) | \(a_{68}= -0.08299581 \pm 2.2 \cdot 10^{-6} \) | \(a_{69}= +0.83216932 \pm 3.2 \cdot 10^{-6} \) |
\(a_{70}= -0.09051196 \pm 4.2 \cdot 10^{-6} \) | \(a_{71}= +0.07557237 \pm 3.2 \cdot 10^{-6} \) | \(a_{72}= +0.95062420 \pm 3.6 \cdot 10^{-6} \) |
\(a_{73}= -0.22660826 \pm 4.8 \cdot 10^{-6} \) | \(a_{74}= -0.14001167 \pm 4.0 \cdot 10^{-6} \) | \(a_{75}= -0.38412348 \pm 3.4 \cdot 10^{-6} \) |
\(a_{76}= -0.87769201 \pm 2.9 \cdot 10^{-6} \) | \(a_{77}= +0.06863637 \pm 3.8 \cdot 10^{-6} \) | \(a_{78}= -1.86855076 \pm 7.1 \cdot 10^{-6} \) |
\(a_{79}= -1.27138339 \pm 4.2 \cdot 10^{-6} \) | \(a_{80}= +0.11180340 \pm 2.3 \cdot 10^{-7} \) | \(a_{81}= +3.54071973 \pm 2.2 \cdot 10^{-6} \) |
\(a_{82}= -0.69102139 \pm 2.6 \cdot 10^{-6} \) | \(a_{83}= -0.88792457 \pm 5.1 \cdot 10^{-6} \) | \(a_{84}= +0.27486336 \pm 7.6 \cdot 10^{-6} \) |
\(a_{85}= -0.07423371 \pm 2.2 \cdot 10^{-6} \) | \(a_{86}= +0.71170160 \pm 3.6 \cdot 10^{-6} \) | \(a_{87}= +0.34969367 \pm 3.2 \cdot 10^{-6} \) |
\(a_{88}= -0.08478193 \pm 3.2 \cdot 10^{-6} \) | \(a_{89}= -1.20244367 \pm 4.9 \cdot 10^{-6} \) | \(a_{90}= +0.85026414 \pm 3.6 \cdot 10^{-6} \) |
\(a_{91}= -0.39380843 \pm 2.4 \cdot 10^{-6} \) | \(a_{92}= -0.21664109 \pm 5.1 \cdot 10^{-6} \) | \(a_{93}= +2.16469817 \pm 2.7 \cdot 10^{-6} \) |
\(a_{94}= +0.66229203 \pm 2.7 \cdot 10^{-6} \) | \(a_{95}= -0.78503160 \pm 2.9 \cdot 10^{-6} \) | \(a_{96}= -0.33952040 \pm 3.4 \cdot 10^{-6} \) |
\(a_{97}= -0.56842154 \pm 5.5 \cdot 10^{-6} \) | \(a_{98}= -0.64917766 \pm 4.2 \cdot 10^{-6} \) | \(a_{99}= -0.64476607 \pm 2.1 \cdot 10^{-6} \) |
\(a_{100}= +0.1 \) | \(a_{101}= +1.23307444 \pm 3.9 \cdot 10^{-6} \) | \(a_{102}= +0.22543016 \pm 5.6 \cdot 10^{-6} \) |
\(a_{103}= -0.09979640 \pm 5.5 \cdot 10^{-6} \) | \(a_{104}= +0.48644533 \pm 3.7 \cdot 10^{-6} \) | \(a_{105}= +0.24584526 \pm 7.6 \cdot 10^{-6} \) |
\(a_{106}= -0.61031478 \pm 3.8 \cdot 10^{-6} \) | \(a_{107}= -1.17097163 \pm 2.2 \cdot 10^{-6} \) | \(a_{108}= -1.62174177 \pm 4.1 \cdot 10^{-6} \) |
\(a_{109}= -0.48105266 \pm 4.0 \cdot 10^{-6} \) | \(a_{110}= -0.07583127 \pm 3.2 \cdot 10^{-6} \) | \(a_{111}= +0.38029454 \pm 3.3 \cdot 10^{-6} \) |
\(a_{112}= -0.07155599 \pm 4.2 \cdot 10^{-6} \) | \(a_{113}= -1.11378191 \pm 3.2 \cdot 10^{-6} \) | \(a_{114}= +2.38395475 \pm 6.3 \cdot 10^{-6} \) |
\(a_{115}= -0.19376968 \pm 5.1 \cdot 10^{-6} \) | \(a_{116}= -0.09103679 \pm 5.3 \cdot 10^{-6} \) | \(a_{117}= +3.69941364 \pm 3.0 \cdot 10^{-6} \) |
\(a_{118}= -0.14651970 \pm 2.8 \cdot 10^{-6} \) | \(a_{119}= +0.04751078 \pm 2.5 \cdot 10^{-6} \) | \(a_{120}= -0.30367628 \pm 3.4 \cdot 10^{-6} \) |
\(a_{121}= -0.94249619 \pm 3.5 \cdot 10^{-6} \) | \(a_{122}= -0.44614154 \pm 3.8 \cdot 10^{-6} \) | \(a_{123}= +1.87692688 \pm 3.5 \cdot 10^{-6} \) |
\(a_{124}= -0.56354226 \pm 3.1 \cdot 10^{-6} \) | \(a_{125}= +0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -0.54418283 \pm 7.8 \cdot 10^{-6} \) |
\(a_{127}= -0.55607354 \pm 4.8 \cdot 10^{-6} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -1.93309769 \pm 3.8 \cdot 10^{-6} \) |
\(a_{130}= +0.43508993 \pm 3.7 \cdot 10^{-6} \) | \(a_{131}= -1.48552117 \pm 3.6 \cdot 10^{-6} \) | \(a_{132}= +0.23028157 \pm 6.6 \cdot 10^{-6} \) |
\(a_{133}= +0.50243295 \pm 3.4 \cdot 10^{-6} \) | \(a_{134}= +0.42849536 \pm 3.0 \cdot 10^{-6} \) | \(a_{135}= -1.45052994 \pm 4.1 \cdot 10^{-6} \) |
\(a_{136}= -0.05868690 \pm 2.2 \cdot 10^{-6} \) | \(a_{137}= +0.99669680 \pm 4.3 \cdot 10^{-6} \) | \(a_{138}= +0.58843257 \pm 8.5 \cdot 10^{-6} \) |
\(a_{139}= +1.88902488 \pm 4.0 \cdot 10^{-6} \) | \(a_{140}= -0.06400162 \pm 4.2 \cdot 10^{-6} \) | \(a_{141}= -1.79889323 \pm 2.0 \cdot 10^{-6} \) |
\(a_{142}= +0.05343773 \pm 3.2 \cdot 10^{-6} \) | \(a_{143}= -0.32993421 \pm 2.9 \cdot 10^{-6} \) | \(a_{144}= +0.67219282 \pm 3.6 \cdot 10^{-6} \) |
\(a_{145}= -0.08142578 \pm 5.3 \cdot 10^{-6} \) | \(a_{146}= -0.16023623 \pm 4.8 \cdot 10^{-6} \) | \(a_{147}= +1.76327247 \pm 2.5 \cdot 10^{-6} \) |
\(a_{148}= -0.09900320 \pm 4.0 \cdot 10^{-6} \) | \(a_{149}= -1.10893773 \pm 5.1 \cdot 10^{-6} \) | \(a_{150}= -0.27161632 \pm 3.4 \cdot 10^{-6} \) |
\(a_{151}= +1.75878071 \pm 5.8 \cdot 10^{-6} \) | \(a_{152}= -0.62062197 \pm 2.9 \cdot 10^{-6} \) | \(a_{153}= -0.44631349 \pm 2.4 \cdot 10^{-6} \) |
\(a_{154}= +0.04853324 \pm 7.5 \cdot 10^{-6} \) | \(a_{155}= -0.50404752 \pm 3.1 \cdot 10^{-6} \) | \(a_{156}= -1.32126491 \pm 7.1 \cdot 10^{-6} \) |
\(a_{157}= +0.11177766 \pm 2.0 \cdot 10^{-6} \) | \(a_{158}= -0.89900381 \pm 4.2 \cdot 10^{-6} \) | \(a_{159}= +1.65771455 \pm 3.1 \cdot 10^{-6} \) |
\(a_{160}= +0.07905694 \pm 3.8 \cdot 10^{-7} \) | \(a_{161}= +0.12401574 \pm 2.8 \cdot 10^{-6} \) | \(a_{162}= +2.50366693 \pm 2.2 \cdot 10^{-6} \) |
\(a_{163}= +0.69980477 \pm 4.6 \cdot 10^{-6} \) | \(a_{164}= -0.48862591 \pm 2.6 \cdot 10^{-6} \) | \(a_{165}= +0.20597010 \pm 6.6 \cdot 10^{-6} \) |
\(a_{166}= -0.62785748 \pm 5.1 \cdot 10^{-6} \) | \(a_{167}= -0.93330712 \pm 2.9 \cdot 10^{-6} \) | \(a_{168}= +0.19435774 \pm 7.6 \cdot 10^{-6} \) |
\(a_{169}= +0.89303248 \pm 2.3 \cdot 10^{-6} \) | \(a_{170}= -0.05249116 \pm 2.2 \cdot 10^{-6} \) | \(a_{171}= -4.71982615 \pm 2.2 \cdot 10^{-6} \) |
\(a_{172}= +0.50324903 \pm 3.6 \cdot 10^{-6} \) | \(a_{173}= -0.08178855 \pm 3.8 \cdot 10^{-6} \) | \(a_{174}= +0.24727077 \pm 8.7 \cdot 10^{-6} \) |
\(a_{175}= -0.05724479 \pm 4.2 \cdot 10^{-6} \) | \(a_{176}= -0.05994988 \pm 3.2 \cdot 10^{-6} \) | \(a_{177}= +0.39797143 \pm 2.3 \cdot 10^{-6} \) |
\(a_{178}= -0.85025607 \pm 4.9 \cdot 10^{-6} \) | \(a_{179}= -0.30611049 \pm 3.7 \cdot 10^{-6} \) | \(a_{180}= +0.60122754 \pm 3.6 \cdot 10^{-6} \) |
\(a_{181}= +0.58421608 \pm 3.2 \cdot 10^{-6} \) | \(a_{182}= -0.27846461 \pm 7.9 \cdot 10^{-6} \) | \(a_{183}= +1.21179325 \pm 2.4 \cdot 10^{-6} \) |
\(a_{184}= -0.15318839 \pm 5.1 \cdot 10^{-6} \) | \(a_{185}= -0.08855115 \pm 4.0 \cdot 10^{-6} \) | \(a_{186}= +1.53067276 \pm 6.5 \cdot 10^{-6} \) |
\(a_{187}= +0.03980471 \pm 2.1 \cdot 10^{-6} \) | \(a_{188}= +0.46831118 \pm 2.7 \cdot 10^{-6} \) | \(a_{189}= +0.92836268 \pm 3.9 \cdot 10^{-6} \) |
\(a_{190}= -0.55510117 \pm 2.9 \cdot 10^{-6} \) | \(a_{191}= +1.00974290 \pm 3.0 \cdot 10^{-6} \) | \(a_{192}= -0.24007718 \pm 3.4 \cdot 10^{-6} \) |
\(a_{193}= +0.00523235 \pm 4.5 \cdot 10^{-6} \) | \(a_{194}= -0.40193473 \pm 5.5 \cdot 10^{-6} \) | \(a_{195}= -1.18177526 \pm 7.1 \cdot 10^{-6} \) |
\(a_{196}= -0.45903792 \pm 4.2 \cdot 10^{-6} \) | \(a_{197}= +1.51035082 \pm 4.8 \cdot 10^{-6} \) | \(a_{198}= -0.45591846 \pm 6.9 \cdot 10^{-6} \) |
\(a_{199}= -0.78633197 \pm 4.4 \cdot 10^{-6} \) | \(a_{200}= +0.07071068 \pm 4.7 \cdot 10^{-7} \) | \(a_{201}= -1.16386333 \pm 3.5 \cdot 10^{-6} \) |
\(a_{202}= +0.87191530 \pm 3.9 \cdot 10^{-6} \) | \(a_{203}= +0.05211382 \pm 5.6 \cdot 10^{-6} \) | \(a_{204}= +0.15940320 \pm 5.6 \cdot 10^{-6} \) |
\(a_{205}= -0.43704030 \pm 2.6 \cdot 10^{-6} \) | \(a_{206}= -0.07056671 \pm 5.5 \cdot 10^{-6} \) | \(a_{207}= -1.16499670 \pm 3.6 \cdot 10^{-6} \) |
\(a_{208}= +0.34396879 \pm 3.7 \cdot 10^{-6} \) | \(a_{209}= +0.42094025 \pm 3.1 \cdot 10^{-6} \) | \(a_{210}= +0.17383885 \pm 7.6 \cdot 10^{-6} \) |
\(a_{211}= +0.78054859 \pm 4.8 \cdot 10^{-6} \) | \(a_{212}= -0.43155772 \pm 3.8 \cdot 10^{-6} \) | \(a_{213}= -0.14514561 \pm 3.2 \cdot 10^{-6} \) |
\(a_{214}= -0.82800198 \pm 2.2 \cdot 10^{-6} \) | \(a_{215}= +0.45011961 \pm 3.6 \cdot 10^{-6} \) | \(a_{216}= -1.14674461 \pm 4.1 \cdot 10^{-6} \) |
\(a_{217}= +0.32259859 \pm 3.5 \cdot 10^{-6} \) | \(a_{218}= -0.34015560 \pm 4.0 \cdot 10^{-6} \) | \(a_{219}= +0.43522777 \pm 3.7 \cdot 10^{-6} \) |
\(a_{220}= -0.05362080 \pm 3.2 \cdot 10^{-6} \) | \(a_{221}= -0.22838374 \pm 2.0 \cdot 10^{-6} \) | \(a_{222}= +0.26890885 \pm 7.4 \cdot 10^{-6} \) |
\(a_{223}= -0.23763733 \pm 4.4 \cdot 10^{-6} \) | \(a_{224}= -0.05059772 \pm 4.2 \cdot 10^{-6} \) | \(a_{225}= +0.53775426 \pm 3.6 \cdot 10^{-6} \) |
\(a_{226}= -0.78756274 \pm 3.2 \cdot 10^{-6} \) | \(a_{227}= +0.11622537 \pm 3.8 \cdot 10^{-6} \) | \(a_{228}= +1.68571057 \pm 6.3 \cdot 10^{-6} \) |
\(a_{229}= -1.24817435 \pm 2.5 \cdot 10^{-6} \) | \(a_{230}= -0.13701586 \pm 5.1 \cdot 10^{-6} \) | \(a_{231}= -0.13182420 \pm 2.9 \cdot 10^{-6} \) |
\(a_{232}= -0.06437273 \pm 5.3 \cdot 10^{-6} \) | \(a_{233}= +1.14571564 \pm 4.7 \cdot 10^{-6} \) | \(a_{234}= +2.61588047 \pm 7.3 \cdot 10^{-6} \) |
\(a_{235}= +0.41887026 \pm 2.7 \cdot 10^{-6} \) | \(a_{236}= -0.10360508 \pm 2.8 \cdot 10^{-6} \) | \(a_{237}= +2.44184108 \pm 3.1 \cdot 10^{-6} \) |
\(a_{238}= +0.03359519 \pm 6.4 \cdot 10^{-6} \) | \(a_{239}= -0.67844473 \pm 4.3 \cdot 10^{-6} \) | \(a_{240}= -0.21473156 \pm 3.4 \cdot 10^{-6} \) |
\(a_{241}= -0.19436298 \pm 3.2 \cdot 10^{-6} \) | \(a_{242}= -0.66644545 \pm 3.5 \cdot 10^{-6} \) | \(a_{243}= -3.55688445 \pm 4.1 \cdot 10^{-6} \) |
\(a_{244}= -0.31546971 \pm 3.8 \cdot 10^{-6} \) | \(a_{245}= -0.41057600 \pm 4.2 \cdot 10^{-6} \) | \(a_{246}= +1.32718772 \pm 6.0 \cdot 10^{-6} \) |
\(a_{247}= -2.41518929 \pm 2.5 \cdot 10^{-6} \) | \(a_{248}= -0.39848455 \pm 3.1 \cdot 10^{-6} \) | \(a_{249}= +1.70536339 \pm 3.4 \cdot 10^{-6} \) |
\(a_{250}= +0.06324555 \pm 5.5 \cdot 10^{-7} \) | \(a_{251}= -0.12334441 \pm 3.9 \cdot 10^{-6} \) | \(a_{252}= -0.38479537 \pm 7.8 \cdot 10^{-6} \) |
\(a_{253}= +0.10390086 \pm 3.1 \cdot 10^{-6} \) | \(a_{254}= -0.39320337 \pm 4.8 \cdot 10^{-6} \) | \(a_{255}= +0.14257455 \pm 5.6 \cdot 10^{-6} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= +1.32994152 \pm 3.4 \cdot 10^{-6} \) | \(a_{258}= -1.36690649 \pm 7.0 \cdot 10^{-6} \) |
\(a_{259}= +0.05667417 \pm 2.6 \cdot 10^{-6} \) | \(a_{260}= +0.30765504 \pm 3.7 \cdot 10^{-6} \) | \(a_{261}= -0.48955419 \pm 3.7 \cdot 10^{-6} \) |
\(a_{262}= -1.05042209 \pm 3.6 \cdot 10^{-6} \) | \(a_{263}= +1.13496544 \pm 5.1 \cdot 10^{-6} \) | \(a_{264}= +0.16283366 \pm 6.6 \cdot 10^{-6} \) |
\(a_{265}= -0.38599696 \pm 3.8 \cdot 10^{-6} \) | \(a_{266}= +0.35527375 \pm 7.1 \cdot 10^{-6} \) | \(a_{267}= +2.30943425 \pm 3.3 \cdot 10^{-6} \) |
\(a_{268}= +0.30299197 \pm 3.0 \cdot 10^{-6} \) | \(a_{269}= +0.31624326 \pm 5.7 \cdot 10^{-6} \) | \(a_{270}= -1.02567956 \pm 4.1 \cdot 10^{-6} \) |
\(a_{271}= -1.03616641 \pm 5.7 \cdot 10^{-6} \) | \(a_{272}= -0.04149790 \pm 2.2 \cdot 10^{-6} \) | \(a_{273}= +0.75635533 \pm 2.7 \cdot 10^{-6} \) |
\(a_{274}= +0.70477107 \pm 4.3 \cdot 10^{-6} \) | \(a_{275}= -0.04795990 \pm 3.2 \cdot 10^{-6} \) | \(a_{276}= +0.41608466 \pm 8.5 \cdot 10^{-6} \) |
\(a_{277}= -0.88060883 \pm 3.5 \cdot 10^{-6} \) | \(a_{278}= +1.33574231 \pm 4.0 \cdot 10^{-6} \) | \(a_{279}= -3.03047250 \pm 3.3 \cdot 10^{-6} \) |
\(a_{280}= -0.04525598 \pm 4.2 \cdot 10^{-6} \) | \(a_{281}= +0.00103057 \pm 2.6 \cdot 10^{-6} \) | \(a_{282}= -1.27200960 \pm 6.1 \cdot 10^{-6} \) |
\(a_{283}= +1.18207048 \pm 3.2 \cdot 10^{-6} \) | \(a_{284}= +0.03778618 \pm 3.2 \cdot 10^{-6} \) | \(a_{285}= +1.50774537 \pm 6.3 \cdot 10^{-6} \) |
\(a_{286}= -0.23329872 \pm 7.0 \cdot 10^{-6} \) | \(a_{287}= +0.27971288 \pm 2.4 \cdot 10^{-6} \) | \(a_{288}= +0.47531210 \pm 3.6 \cdot 10^{-6} \) |
\(a_{289}= -0.97244678 \pm 3.5 \cdot 10^{-6} \) | \(a_{290}= -0.05757672 \pm 5.3 \cdot 10^{-6} \) | \(a_{291}= +1.09172031 \pm 3.4 \cdot 10^{-6} \) |
\(a_{292}= -0.11330413 \pm 4.8 \cdot 10^{-6} \) | \(a_{293}= +0.69279104 \pm 1.5 \cdot 10^{-6} \) | \(a_{294}= +1.24682192 \pm 7.6 \cdot 10^{-6} \) |
\(a_{295}= -0.09266720 \pm 2.8 \cdot 10^{-6} \) | \(a_{296}= -0.07000583 \pm 4.0 \cdot 10^{-6} \) | \(a_{297}= +0.77778581 \pm 3.2 \cdot 10^{-6} \) |
\(a_{298}= -0.78413739 \pm 5.1 \cdot 10^{-6} \) | \(a_{299}= -0.59614220 \pm 5.3 \cdot 10^{-6} \) | \(a_{300}= -0.19206174 \pm 3.4 \cdot 10^{-6} \) |
\(a_{301}= -0.28808385 \pm 4.1 \cdot 10^{-6} \) | \(a_{302}= +1.24364576 \pm 5.8 \cdot 10^{-6} \) | \(a_{303}= -2.36826425 \pm 4.3 \cdot 10^{-6} \) |
\(a_{304}= -0.43884601 \pm 2.9 \cdot 10^{-6} \) | \(a_{305}= -0.28216469 \pm 3.8 \cdot 10^{-6} \) | \(a_{306}= -0.31559130 \pm 5.8 \cdot 10^{-6} \) |
\(a_{307}= +0.35594042 \pm 4.2 \cdot 10^{-6} \) | \(a_{308}= +0.03431818 \pm 7.5 \cdot 10^{-6} \) | \(a_{309}= +0.19167070 \pm 3.5 \cdot 10^{-6} \) |
\(a_{310}= -0.35641542 \pm 3.1 \cdot 10^{-6} \) | \(a_{311}= -0.73388958 \pm 2.1 \cdot 10^{-6} \) | \(a_{312}= -0.93427538 \pm 7.1 \cdot 10^{-6} \) |
\(a_{313}= -1.53354238 \pm 4.2 \cdot 10^{-6} \) | \(a_{314}= +0.07903874 \pm 2.0 \cdot 10^{-6} \) | \(a_{315}= -0.34417144 \pm 7.8 \cdot 10^{-6} \) |
\(a_{316}= -0.63569169 \pm 4.2 \cdot 10^{-6} \) | \(a_{317}= -0.41253641 \pm 4.2 \cdot 10^{-6} \) | \(a_{318}= +1.17218120 \pm 7.2 \cdot 10^{-6} \) |
\(a_{319}= +0.04366116 \pm 4.0 \cdot 10^{-6} \) | \(a_{320}= +0.05590170 \pm 6.9 \cdot 10^{-7} \) | \(a_{321}= +2.24898852 \pm 1.9 \cdot 10^{-6} \) |
\(a_{322}= +0.08769237 \pm 9.4 \cdot 10^{-6} \) | \(a_{323}= +0.29137903 \pm 1.9 \cdot 10^{-6} \) | \(a_{324}= +1.77035986 \pm 2.2 \cdot 10^{-6} \) |
\(a_{325}= +0.27517503 \pm 3.7 \cdot 10^{-6} \) | \(a_{326}= +0.49483670 \pm 4.6 \cdot 10^{-6} \) | \(a_{327}= +0.92391812 \pm 2.9 \cdot 10^{-6} \) |
\(a_{328}= -0.34551070 \pm 2.6 \cdot 10^{-6} \) | \(a_{329}= -0.26808376 \pm 2.0 \cdot 10^{-6} \) | \(a_{330}= +0.14564285 \pm 6.6 \cdot 10^{-6} \) |
\(a_{331}= -0.40380161 \pm 3.3 \cdot 10^{-6} \) | \(a_{332}= -0.44396228 \pm 5.1 \cdot 10^{-6} \) | \(a_{333}= -0.53239392 \pm 3.7 \cdot 10^{-6} \) |
\(a_{334}= -0.65994779 \pm 3.0 \cdot 10^{-6} \) | \(a_{335}= +0.27100426 \pm 3.0 \cdot 10^{-6} \) | \(a_{336}= +0.13743168 \pm 7.6 \cdot 10^{-6} \) |
\(a_{337}= +0.74706703 \pm 4.7 \cdot 10^{-6} \) | \(a_{338}= +0.63146932 \pm 2.3 \cdot 10^{-6} \) | \(a_{339}= +2.13914893 \pm 2.9 \cdot 10^{-6} \) |
\(a_{340}= -0.03711685 \pm 2.2 \cdot 10^{-6} \) | \(a_{341}= +0.27027433 \pm 2.1 \cdot 10^{-6} \) | \(a_{342}= -3.33742108 \pm 6.5 \cdot 10^{-6} \) |
\(a_{343}= +0.54899925 \pm 2.6 \cdot 10^{-6} \) | \(a_{344}= +0.35585080 \pm 3.6 \cdot 10^{-6} \) | \(a_{345}= +0.37215743 \pm 8.5 \cdot 10^{-6} \) |
\(a_{346}= -0.05783324 \pm 3.8 \cdot 10^{-6} \) | \(a_{347}= +1.31470260 \pm 5.4 \cdot 10^{-6} \) | \(a_{348}= +0.17484684 \pm 8.7 \cdot 10^{-6} \) |
\(a_{349}= -0.47075069 \pm 3.5 \cdot 10^{-6} \) | \(a_{350}= -0.04047818 \pm 4.2 \cdot 10^{-6} \) | \(a_{351}= -4.46262847 \pm 3.6 \cdot 10^{-6} \) |
\(a_{352}= -0.04239097 \pm 3.2 \cdot 10^{-6} \) | \(a_{353}= -1.25980139 \pm 4.6 \cdot 10^{-6} \) | \(a_{354}= +0.28140830 \pm 6.2 \cdot 10^{-6} \) |
\(a_{355}= +0.03379699 \pm 3.2 \cdot 10^{-6} \) | \(a_{356}= -0.60122183 \pm 4.9 \cdot 10^{-6} \) | \(a_{357}= -0.09125003 \pm 2.8 \cdot 10^{-6} \) |
\(a_{358}= -0.21645280 \pm 3.7 \cdot 10^{-6} \) | \(a_{359}= +0.49283660 \pm 5.0 \cdot 10^{-6} \) | \(a_{360}= +0.42513207 \pm 3.6 \cdot 10^{-6} \) |
\(a_{361}= +2.08137307 \pm 2.8 \cdot 10^{-6} \) | \(a_{362}= +0.41310315 \pm 3.2 \cdot 10^{-6} \) | \(a_{363}= +1.81017460 \pm 2.7 \cdot 10^{-6} \) |
\(a_{364}= -0.19690421 \pm 7.9 \cdot 10^{-6} \) | \(a_{365}= -0.10134229 \pm 4.8 \cdot 10^{-6} \) | \(a_{366}= +0.85686722 \pm 7.2 \cdot 10^{-6} \) |
\(a_{367}= -1.51304372 \pm 4.2 \cdot 10^{-6} \) | \(a_{368}= -0.10832055 \pm 5.1 \cdot 10^{-6} \) | \(a_{369}= -2.62760664 \pm 3.4 \cdot 10^{-6} \) |
\(a_{370}= -0.06261512 \pm 4.0 \cdot 10^{-6} \) | \(a_{371}= +0.24704431 \pm 2.8 \cdot 10^{-6} \) | \(a_{372}= +1.08234909 \pm 6.5 \cdot 10^{-6} \) |
\(a_{373}= -0.69298822 \pm 6.4 \cdot 10^{-6} \) | \(a_{374}= +0.02814618 \pm 5.5 \cdot 10^{-6} \) | \(a_{375}= -0.17178524 \pm 3.4 \cdot 10^{-6} \) |
\(a_{376}= +0.33114601 \pm 2.7 \cdot 10^{-6} \) | \(a_{377}= -0.25051051 \pm 4.3 \cdot 10^{-6} \) | \(a_{378}= +0.65645155 \pm 8.3 \cdot 10^{-6} \) |
\(a_{379}= -0.86183667 \pm 4.7 \cdot 10^{-6} \) | \(a_{380}= -0.39251580 \pm 2.9 \cdot 10^{-6} \) | \(a_{381}= +1.06800453 \pm 3.4 \cdot 10^{-6} \) |
\(a_{382}= +0.71399605 \pm 3.0 \cdot 10^{-6} \) | \(a_{383}= -1.67326874 \pm 4.7 \cdot 10^{-6} \) | \(a_{384}= -0.16976020 \pm 3.4 \cdot 10^{-6} \) |
\(a_{385}= +0.03069512 \pm 7.5 \cdot 10^{-6} \) | \(a_{386}= +0.00369983 \pm 4.5 \cdot 10^{-6} \) | \(a_{387}= +2.70624306 \pm 3.7 \cdot 10^{-6} \) |
\(a_{388}= -0.28421077 \pm 5.5 \cdot 10^{-6} \) | \(a_{389}= +0.69384091 \pm 3.7 \cdot 10^{-6} \) | \(a_{390}= -0.83564130 \pm 7.1 \cdot 10^{-6} \) |
\(a_{391}= +0.07192121 \pm 1.8 \cdot 10^{-6} \) | \(a_{392}= -0.32458883 \pm 4.2 \cdot 10^{-6} \) | \(a_{393}= +2.85311784 \pm 2.6 \cdot 10^{-6} \) |
\(a_{394}= +1.06797931 \pm 4.8 \cdot 10^{-6} \) | \(a_{395}= -0.56857994 \pm 4.2 \cdot 10^{-6} \) | \(a_{396}= -0.32238304 \pm 6.9 \cdot 10^{-6} \) |
\(a_{397}= +0.42487706 \pm 4.7 \cdot 10^{-6} \) | \(a_{398}= -0.55602067 \pm 4.4 \cdot 10^{-6} \) | \(a_{399}= -0.96498148 \pm 2.8 \cdot 10^{-6} \) |
\(a_{400}= +0.05 \) | \(a_{401}= +0.86317650 \pm 4.1 \cdot 10^{-6} \) | \(a_{402}= -0.82297565 \pm 6.4 \cdot 10^{-6} \) |
\(a_{403}= -1.55072761 \pm 2.3 \cdot 10^{-6} \) | \(a_{404}= +0.61653722 \pm 3.9 \cdot 10^{-6} \) | \(a_{405}= +1.58345800 \pm 2.2 \cdot 10^{-6} \) |
\(a_{406}= +0.03685003 \pm 9.5 \cdot 10^{-6} \) | \(a_{407}= +0.04748184 \pm 1.9 \cdot 10^{-6} \) | \(a_{408}= +0.11271508 \pm 5.6 \cdot 10^{-6} \) |
\(a_{409}= -1.33434645 \pm 5.3 \cdot 10^{-6} \) | \(a_{410}= -0.30903416 \pm 2.6 \cdot 10^{-6} \) | \(a_{411}= -1.91427324 \pm 2.4 \cdot 10^{-6} \) |
\(a_{412}= -0.04989820 \pm 5.5 \cdot 10^{-6} \) | \(a_{413}= +0.05930851 \pm 3.6 \cdot 10^{-6} \) | \(a_{414}= -0.82377707 \pm 8.8 \cdot 10^{-6} \) |
\(a_{415}= -0.39709194 \pm 5.1 \cdot 10^{-6} \) | \(a_{416}= +0.24322267 \pm 3.7 \cdot 10^{-6} \) | \(a_{417}= -3.62809410 \pm 3.9 \cdot 10^{-6} \) |
\(a_{418}= +0.29764971 \pm 6.2 \cdot 10^{-6} \) | \(a_{419}= +1.19087107 \pm 3.5 \cdot 10^{-6} \) | \(a_{420}= +0.12292263 \pm 7.6 \cdot 10^{-6} \) |
\(a_{421}= +1.28575176 \pm 4.1 \cdot 10^{-6} \) | \(a_{422}= +0.55193120 \pm 4.8 \cdot 10^{-6} \) | \(a_{423}= +2.51836332 \pm 2.6 \cdot 10^{-6} \) |
\(a_{424}= -0.30515739 \pm 3.8 \cdot 10^{-6} \) | \(a_{425}= -0.03319832 \pm 2.2 \cdot 10^{-6} \) | \(a_{426}= -0.10263344 \pm 6.6 \cdot 10^{-6} \) |
\(a_{427}= +0.18058998 \pm 5.3 \cdot 10^{-6} \) | \(a_{428}= -0.58548582 \pm 2.2 \cdot 10^{-6} \) | \(a_{429}= +0.63367739 \pm 2.5 \cdot 10^{-6} \) |
\(a_{430}= +0.31828263 \pm 3.6 \cdot 10^{-6} \) | \(a_{431}= -0.59818497 \pm 2.5 \cdot 10^{-6} \) | \(a_{432}= -0.81087089 \pm 4.1 \cdot 10^{-6} \) |
\(a_{433}= +0.14072198 \pm 3.0 \cdot 10^{-6} \) | \(a_{434}= +0.22811165 \pm 7.3 \cdot 10^{-6} \) | \(a_{435}= +0.15638776 \pm 8.7 \cdot 10^{-6} \) |
\(a_{436}= -0.24052633 \pm 4.0 \cdot 10^{-6} \) | \(a_{437}= +0.76057663 \pm 2.7 \cdot 10^{-6} \) | \(a_{438}= +0.30775250 \pm 8.2 \cdot 10^{-6} \) |
\(a_{439}= -0.24953405 \pm 4.4 \cdot 10^{-6} \) | \(a_{440}= -0.03791563 \pm 3.2 \cdot 10^{-6} \) | \(a_{441}= -2.46849598 \pm 3.0 \cdot 10^{-6} \) |
\(a_{442}= -0.16149169 \pm 5.9 \cdot 10^{-6} \) | \(a_{443}= +0.48649678 \pm 5.8 \cdot 10^{-6} \) | \(a_{444}= +0.19014727 \pm 7.4 \cdot 10^{-6} \) |
\(a_{445}= -0.53774916 \pm 4.9 \cdot 10^{-6} \) | \(a_{446}= -0.16803497 \pm 4.4 \cdot 10^{-6} \) | \(a_{447}= +2.12984513 \pm 4.8 \cdot 10^{-6} \) |
\(a_{448}= -0.03577799 \pm 4.2 \cdot 10^{-6} \) | \(a_{449}= +1.72028730 \pm 3.5 \cdot 10^{-6} \) | \(a_{450}= +0.38024968 \pm 3.6 \cdot 10^{-6} \) |
\(a_{451}= +0.23434452 \pm 1.7 \cdot 10^{-6} \) | \(a_{452}= -0.55689095 \pm 3.2 \cdot 10^{-6} \) | \(a_{453}= -3.37794486 \pm 4.5 \cdot 10^{-6} \) |
\(a_{454}= +0.08218375 \pm 3.8 \cdot 10^{-6} \) | \(a_{455}= -0.17611648 \pm 7.9 \cdot 10^{-6} \) | \(a_{456}= +1.19197737 \pm 6.3 \cdot 10^{-6} \) |
\(a_{457}= +0.31899364 \pm 4.0 \cdot 10^{-6} \) | \(a_{458}= -0.88259255 \pm 2.6 \cdot 10^{-6} \) | \(a_{459}= +0.53839108 \pm 2.1 \cdot 10^{-6} \) |
\(a_{460}= -0.09688484 \pm 5.1 \cdot 10^{-6} \) | \(a_{461}= +1.79165195 \pm 3.5 \cdot 10^{-6} \) | \(a_{462}= -0.09321379 \pm 1.0 \cdot 10^{-5} \) |
\(a_{463}= -1.56793461 \pm 3.8 \cdot 10^{-6} \) | \(a_{464}= -0.04551839 \pm 5.3 \cdot 10^{-6} \) | \(a_{465}= +0.96808245 \pm 6.5 \cdot 10^{-6} \) |
\(a_{466}= +0.81014330 \pm 4.7 \cdot 10^{-6} \) | \(a_{467}= +1.13997518 \pm 1.7 \cdot 10^{-6} \) | \(a_{468}= +1.84970682 \pm 7.3 \cdot 10^{-6} \) |
\(a_{469}= -0.17344712 \pm 2.4 \cdot 10^{-6} \) | \(a_{470}= +0.29618600 \pm 2.7 \cdot 10^{-6} \) | \(a_{471}= -0.21468211 \pm 1.4 \cdot 10^{-6} \) |
\(a_{472}= -0.07325985 \pm 2.8 \cdot 10^{-6} \) | \(a_{473}= -0.24135775 \pm 2.4 \cdot 10^{-6} \) | \(a_{474}= +1.72664239 \pm 7.6 \cdot 10^{-6} \) |
\(a_{475}= -0.35107680 \pm 2.9 \cdot 10^{-6} \) | \(a_{476}= +0.02375539 \pm 6.4 \cdot 10^{-6} \) | \(a_{477}= -2.32072001 \pm 3.5 \cdot 10^{-6} \) |
\(a_{478}= -0.47973287 \pm 4.3 \cdot 10^{-6} \) | \(a_{479}= -1.65799439 \pm 4.4 \cdot 10^{-6} \) | \(a_{480}= -0.15183814 \pm 3.4 \cdot 10^{-6} \) |
\(a_{481}= -0.27243209 \pm 4.0 \cdot 10^{-6} \) | \(a_{482}= -0.13743538 \pm 3.2 \cdot 10^{-6} \) | \(a_{483}= -0.23818679 \pm 2.6 \cdot 10^{-6} \) |
\(a_{484}= -0.47124809 \pm 3.5 \cdot 10^{-6} \) | \(a_{485}= -0.25420584 \pm 5.5 \cdot 10^{-6} \) | \(a_{486}= -2.51509711 \pm 4.1 \cdot 10^{-6} \) |
\(a_{487}= +1.47949085 \pm 2.8 \cdot 10^{-6} \) | \(a_{488}= -0.22307077 \pm 3.8 \cdot 10^{-6} \) | \(a_{489}= -1.34405723 \pm 3.9 \cdot 10^{-6} \) |
\(a_{490}= -0.29032107 \pm 4.2 \cdot 10^{-6} \) | \(a_{491}= +0.03536979 \pm 5.0 \cdot 10^{-6} \) | \(a_{492}= +0.93846344 \pm 6.0 \cdot 10^{-6} \) |
\(a_{493}= +0.03022269 \pm 2.1 \cdot 10^{-6} \) | \(a_{494}= -1.70779672 \pm 6.6 \cdot 10^{-6} \) | \(a_{495}= -0.28834815 \pm 6.9 \cdot 10^{-6} \) |
\(a_{496}= -0.28177113 \pm 3.1 \cdot 10^{-6} \) | \(a_{497}= -0.02163062 \pm 4.2 \cdot 10^{-6} \) | \(a_{498}= +1.20587402 \pm 8.5 \cdot 10^{-6} \) |
\(a_{499}= +1.41891739 \pm 4.3 \cdot 10^{-6} \) | \(a_{500}= +0.04472136 \pm 9.8 \cdot 10^{-7} \) | \(a_{501}= +1.79252592 \pm 2.4 \cdot 10^{-6} \) |
\(a_{502}= -0.08721767 \pm 3.9 \cdot 10^{-6} \) | \(a_{503}= +0.06172854 \pm 4.8 \cdot 10^{-6} \) | \(a_{504}= -0.27209142 \pm 7.8 \cdot 10^{-6} \) |
\(a_{505}= +0.55144765 \pm 3.9 \cdot 10^{-6} \) | \(a_{506}= +0.07346900 \pm 8.4 \cdot 10^{-6} \) | \(a_{507}= -1.71517374 \pm 1.4 \cdot 10^{-6} \) |
\(a_{508}= -0.27803677 \pm 4.8 \cdot 10^{-6} \) | \(a_{509}= -0.22235785 \pm 3.1 \cdot 10^{-6} \) | \(a_{510}= +0.10081543 \pm 5.6 \cdot 10^{-6} \) |
\(a_{511}= +0.06486071 \pm 6.3 \cdot 10^{-6} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +5.69355920 \pm 2.7 \cdot 10^{-6} \) |
\(a_{514}= +0.94041067 \pm 3.4 \cdot 10^{-6} \) | \(a_{515}= -0.04463031 \pm 5.5 \cdot 10^{-6} \) | \(a_{516}= -0.96654885 \pm 7.0 \cdot 10^{-6} \) |
\(a_{517}= -0.22460160 \pm 1.3 \cdot 10^{-6} \) | \(a_{518}= +0.04007469 \pm 8.3 \cdot 10^{-6} \) | \(a_{519}= +0.15708452 \pm 3.7 \cdot 10^{-6} \) |
\(a_{520}= +0.21754497 \pm 3.7 \cdot 10^{-6} \) | \(a_{521}= +0.16825886 \pm 3.6 \cdot 10^{-6} \) | \(a_{522}= -0.34616709 \pm 8.9 \cdot 10^{-6} \) |
\(a_{523}= -1.59694458 \pm 4.5 \cdot 10^{-6} \) | \(a_{524}= -0.74276058 \pm 3.6 \cdot 10^{-6} \) | \(a_{525}= +0.10994534 \pm 7.6 \cdot 10^{-6} \) |
\(a_{526}= +0.80254176 \pm 5.1 \cdot 10^{-6} \) | \(a_{527}= +0.18708658 \pm 1.4 \cdot 10^{-6} \) | \(a_{528}= +0.11514079 \pm 6.6 \cdot 10^{-6} \) |
\(a_{529}= -0.81226655 \pm 5.5 \cdot 10^{-6} \) | \(a_{530}= -0.27294107 \pm 3.8 \cdot 10^{-6} \) | \(a_{531}= -0.55714071 \pm 1.5 \cdot 10^{-6} \) |
\(a_{532}= +0.25121648 \pm 7.1 \cdot 10^{-6} \) | \(a_{533}= -1.34457652 \pm 2.4 \cdot 10^{-6} \) | \(a_{534}= +1.63301662 \pm 8.3 \cdot 10^{-6} \) |
\(a_{535}= -0.52367443 \pm 2.2 \cdot 10^{-6} \) | \(a_{536}= +0.21424768 \pm 3.0 \cdot 10^{-6} \) | \(a_{537}= +0.58792113 \pm 3.8 \cdot 10^{-6} \) |
\(a_{538}= +0.22361775 \pm 5.7 \cdot 10^{-6} \) | \(a_{539}= +0.22015415 \pm 2.8 \cdot 10^{-6} \) | \(a_{540}= -0.72526497 \pm 4.1 \cdot 10^{-6} \) |
\(a_{541}= -0.59269956 \pm 4.3 \cdot 10^{-6} \) | \(a_{542}= -0.73268029 \pm 5.7 \cdot 10^{-6} \) | \(a_{543}= -1.12205558 \pm 2.1 \cdot 10^{-6} \) |
\(a_{544}= -0.02934345 \pm 2.2 \cdot 10^{-6} \) | \(a_{545}= -0.21513329 \pm 4.0 \cdot 10^{-6} \) | \(a_{546}= +0.53482398 \pm 1.1 \cdot 10^{-5} \) |
\(a_{547}= +0.66950723 \pm 4.2 \cdot 10^{-6} \) | \(a_{548}= +0.49834840 \pm 4.3 \cdot 10^{-6} \) | \(a_{549}= -1.69645180 \pm 3.3 \cdot 10^{-6} \) |
\(a_{550}= -0.03391277 \pm 3.2 \cdot 10^{-6} \) | \(a_{551}= +0.31960904 \pm 3.5 \cdot 10^{-6} \) | \(a_{552}= +0.29421628 \pm 8.5 \cdot 10^{-6} \) |
\(a_{553}= +0.36390038 \pm 2.4 \cdot 10^{-6} \) | \(a_{554}= -0.62268448 \pm 3.5 \cdot 10^{-6} \) | \(a_{555}= +0.17007289 \pm 7.4 \cdot 10^{-6} \) |
\(a_{556}= +0.94451244 \pm 4.0 \cdot 10^{-6} \) | \(a_{557}= +0.82401543 \pm 5.2 \cdot 10^{-6} \) | \(a_{558}= -2.14286765 \pm 6.7 \cdot 10^{-6} \) |
\(a_{559}= +1.38481568 \pm 2.8 \cdot 10^{-6} \) | \(a_{560}= -0.03200081 \pm 4.2 \cdot 10^{-6} \) | \(a_{561}= -0.07644962 \pm 2.1 \cdot 10^{-6} \) |
\(a_{562}= +0.00072872 \pm 2.6 \cdot 10^{-6} \) | \(a_{563}= +1.43080668 \pm 3.1 \cdot 10^{-6} \) | \(a_{564}= -0.89944662 \pm 6.1 \cdot 10^{-6} \) |
\(a_{565}= -0.49809841 \pm 3.2 \cdot 10^{-6} \) | \(a_{566}= +0.83585005 \pm 3.2 \cdot 10^{-6} \) | \(a_{567}= -1.01343880 \pm 2.5 \cdot 10^{-6} \) |
\(a_{568}= +0.02671887 \pm 3.2 \cdot 10^{-6} \) | \(a_{569}= -0.24270967 \pm 4.3 \cdot 10^{-6} \) | \(a_{570}= +1.06613697 \pm 6.3 \cdot 10^{-6} \) |
\(a_{571}= -0.55880419 \pm 4.2 \cdot 10^{-6} \) | \(a_{572}= -0.16496710 \pm 7.0 \cdot 10^{-6} \) | \(a_{573}= -1.93932981 \pm 3.2 \cdot 10^{-6} \) |
\(a_{574}= +0.19778687 \pm 6.8 \cdot 10^{-6} \) | \(a_{575}= -0.08665644 \pm 5.1 \cdot 10^{-6} \) | \(a_{576}= +0.33609641 \pm 3.6 \cdot 10^{-6} \) |
\(a_{577}= -1.66637495 \pm 4.7 \cdot 10^{-6} \) | \(a_{578}= -0.68762371 \pm 3.5 \cdot 10^{-6} \) | \(a_{579}= -0.01004935 \pm 4.1 \cdot 10^{-6} \) |
\(a_{580}= -0.04071289 \pm 5.3 \cdot 10^{-6} \) | \(a_{581}= +0.25414528 \pm 3.6 \cdot 10^{-6} \) | \(a_{582}= +0.77196284 \pm 8.9 \cdot 10^{-6} \) |
\(a_{583}= +0.20697467 \pm 1.9 \cdot 10^{-6} \) | \(a_{584}= -0.08011812 \pm 4.8 \cdot 10^{-6} \) | \(a_{585}= +1.65442808 \pm 7.3 \cdot 10^{-6} \) |
\(a_{586}= +0.48987725 \pm 1.5 \cdot 10^{-6} \) | \(a_{587}= +1.83157094 \pm 4.7 \cdot 10^{-6} \) | \(a_{588}= +0.88163624 \pm 7.6 \cdot 10^{-6} \) |
\(a_{589}= +1.97846616 \pm 1.9 \cdot 10^{-6} \) | \(a_{590}= -0.06552560 \pm 2.8 \cdot 10^{-6} \) | \(a_{591}= -2.90080610 \pm 2.7 \cdot 10^{-6} \) |
\(a_{592}= -0.04950160 \pm 4.0 \cdot 10^{-6} \) | \(a_{593}= +0.39948774 \pm 2.8 \cdot 10^{-6} \) | \(a_{594}= +0.54997762 \pm 7.4 \cdot 10^{-6} \) |
\(a_{595}= +0.02124747 \pm 6.4 \cdot 10^{-6} \) | \(a_{596}= -0.55446887 \pm 5.1 \cdot 10^{-6} \) | \(a_{597}= +1.51024288 \pm 3.1 \cdot 10^{-6} \) |
\(a_{598}= -0.42153619 \pm 8.9 \cdot 10^{-6} \) | \(a_{599}= +0.66311628 \pm 3.2 \cdot 10^{-6} \) | \(a_{600}= -0.13580816 \pm 3.4 \cdot 10^{-6} \) |
\(a_{601}= -1.02090629 \pm 4.1 \cdot 10^{-6} \) | \(a_{602}= -0.20370604 \pm 7.8 \cdot 10^{-6} \) | \(a_{603}= +1.62935224 \pm 4.0 \cdot 10^{-6} \) |
\(a_{604}= +0.87939035 \pm 5.8 \cdot 10^{-6} \) | \(a_{605}= -0.42149711 \pm 3.5 \cdot 10^{-6} \) | \(a_{606}= -1.67461571 \pm 7.3 \cdot 10^{-6} \) |
\(a_{607}= -1.94584877 \pm 4.5 \cdot 10^{-6} \) | \(a_{608}= -0.31031099 \pm 2.9 \cdot 10^{-6} \) | \(a_{609}= -0.10009071 \pm 3.7 \cdot 10^{-6} \) |
\(a_{610}= -0.19952056 \pm 3.8 \cdot 10^{-6} \) | \(a_{611}= +1.28867546 \pm 2.5 \cdot 10^{-6} \) | \(a_{612}= -0.22315675 \pm 5.8 \cdot 10^{-6} \) |
\(a_{613}= -0.49967142 \pm 2.7 \cdot 10^{-6} \) | \(a_{614}= +0.25168788 \pm 4.2 \cdot 10^{-6} \) | \(a_{615}= +0.83938722 \pm 6.0 \cdot 10^{-6} \) |
\(a_{616}= +0.02426662 \pm 7.5 \cdot 10^{-6} \) | \(a_{617}= +0.50479892 \pm 2.4 \cdot 10^{-6} \) | \(a_{618}= +0.13553165 \pm 8.9 \cdot 10^{-6} \) |
\(a_{619}= -1.62176509 \pm 5.4 \cdot 10^{-6} \) | \(a_{620}= -0.25202376 \pm 3.1 \cdot 10^{-6} \) | \(a_{621}= +1.40534364 \pm 4.7 \cdot 10^{-6} \) |
\(a_{622}= -0.51893830 \pm 2.1 \cdot 10^{-6} \) | \(a_{623}= +0.34416818 \pm 5.7 \cdot 10^{-6} \) | \(a_{624}= -0.66063245 \pm 7.1 \cdot 10^{-6} \) |
\(a_{625}= +0.04 \) | \(a_{626}= -1.08437821 \pm 4.2 \cdot 10^{-6} \) | \(a_{627}= -0.80846518 \pm 2.6 \cdot 10^{-6} \) |
\(a_{628}= +0.05588883 \pm 2.0 \cdot 10^{-6} \) | \(a_{629}= +0.03286740 \pm 1.9 \cdot 10^{-6} \) | \(a_{630}= -0.24336596 \pm 7.8 \cdot 10^{-6} \) |
\(a_{631}= +1.25249978 \pm 3.3 \cdot 10^{-6} \) | \(a_{632}= -0.44950191 \pm 4.2 \cdot 10^{-6} \) | \(a_{633}= -1.49913523 \pm 4.0 \cdot 10^{-6} \) |
\(a_{634}= -0.29170729 \pm 4.2 \cdot 10^{-6} \) | \(a_{635}= -0.24868365 \pm 4.8 \cdot 10^{-6} \) | \(a_{636}= +0.82885727 \pm 7.2 \cdot 10^{-6} \) |
\(a_{637}= -1.26315776 \pm 3.1 \cdot 10^{-6} \) | \(a_{638}= +0.03087310 \pm 8.6 \cdot 10^{-6} \) | \(a_{639}= +0.20319682 \pm 3.3 \cdot 10^{-6} \) |
\(a_{640}= +0.03952847 \pm 1.2 \cdot 10^{-6} \) | \(a_{641}= +0.79531882 \pm 3.3 \cdot 10^{-6} \) | \(a_{642}= +1.59027503 \pm 5.6 \cdot 10^{-6} \) |
\(a_{643}= -0.07306328 \pm 4.4 \cdot 10^{-6} \) | \(a_{644}= +0.06200787 \pm 9.4 \cdot 10^{-6} \) | \(a_{645}= -0.86450757 \pm 7.0 \cdot 10^{-6} \) |
\(a_{646}= +0.20603609 \pm 5.1 \cdot 10^{-6} \) | \(a_{647}= +1.11494365 \pm 4.7 \cdot 10^{-6} \) | \(a_{648}= +1.25183346 \pm 2.2 \cdot 10^{-6} \) |
\(a_{649}= +0.04968890 \pm 2.9 \cdot 10^{-6} \) | \(a_{650}= +0.19457813 \pm 3.7 \cdot 10^{-6} \) | \(a_{651}= -0.61958847 \pm 2.8 \cdot 10^{-6} \) |
\(a_{652}= +0.34990238 \pm 4.6 \cdot 10^{-6} \) | \(a_{653}= -1.94503156 \pm 2.8 \cdot 10^{-6} \) | \(a_{654}= +0.65330877 \pm 7.4 \cdot 10^{-6} \) |
\(a_{655}= -0.66434526 \pm 3.6 \cdot 10^{-6} \) | \(a_{656}= -0.24431296 \pm 2.6 \cdot 10^{-6} \) | \(a_{657}= -0.60929777 \pm 4.1 \cdot 10^{-6} \) |
\(a_{658}= -0.18956384 \pm 6.9 \cdot 10^{-6} \) | \(a_{659}= -0.30421271 \pm 4.5 \cdot 10^{-6} \) | \(a_{660}= +0.10298505 \pm 6.6 \cdot 10^{-6} \) |
\(a_{661}= +0.79865723 \pm 5.9 \cdot 10^{-6} \) | \(a_{662}= -0.28553085 \pm 3.3 \cdot 10^{-6} \) | \(a_{663}= +0.43863780 \pm 2.4 \cdot 10^{-6} \) |
\(a_{664}= -0.31392874 \pm 5.1 \cdot 10^{-6} \) | \(a_{665}= +0.22469485 \pm 7.1 \cdot 10^{-6} \) | \(a_{666}= -0.37645935 \pm 7.7 \cdot 10^{-6} \) |
\(a_{667}= +0.07888924 \pm 6.4 \cdot 10^{-6} \) | \(a_{668}= -0.46665356 \pm 3.0 \cdot 10^{-6} \) | \(a_{669}= +0.45641040 \pm 3.3 \cdot 10^{-6} \) |
\(a_{670}= +0.19162895 \pm 3.0 \cdot 10^{-6} \) | \(a_{671}= +0.15129897 \pm 2.9 \cdot 10^{-6} \) | \(a_{672}= +0.09717887 \pm 7.6 \cdot 10^{-6} \) |
\(a_{673}= +1.77663394 \pm 4.4 \cdot 10^{-6} \) | \(a_{674}= +0.52825616 \pm 4.7 \cdot 10^{-6} \) | \(a_{675}= -0.64869671 \pm 4.1 \cdot 10^{-6} \) |
\(a_{676}= +0.44651624 \pm 2.3 \cdot 10^{-6} \) | \(a_{677}= -0.12776129 \pm 3.2 \cdot 10^{-6} \) | \(a_{678}= +1.51260672 \pm 6.6 \cdot 10^{-6} \) |
\(a_{679}= +0.16269586 \pm 2.0 \cdot 10^{-6} \) | \(a_{680}= -0.02624558 \pm 2.2 \cdot 10^{-6} \) | \(a_{681}= -0.22322447 \pm 2.8 \cdot 10^{-6} \) |
\(a_{682}= +0.19111281 \pm 6.4 \cdot 10^{-6} \) | \(a_{683}= +0.05059249 \pm 5.5 \cdot 10^{-6} \) | \(a_{684}= -2.35991307 \pm 6.5 \cdot 10^{-6} \) |
\(a_{685}= +0.44573636 \pm 4.3 \cdot 10^{-6} \) | \(a_{686}= +0.38820109 \pm 2.6 \cdot 10^{-6} \) | \(a_{687}= +2.39726541 \pm 2.3 \cdot 10^{-6} \) |
\(a_{688}= +0.25162451 \pm 3.6 \cdot 10^{-6} \) | \(a_{689}= -1.18753910 \pm 3.5 \cdot 10^{-6} \) | \(a_{690}= +0.26315504 \pm 8.5 \cdot 10^{-6} \) |
\(a_{691}= +1.46703290 \pm 5.3 \cdot 10^{-6} \) | \(a_{692}= -0.04089428 \pm 3.8 \cdot 10^{-6} \) | \(a_{693}= +0.18454749 \pm 2.5 \cdot 10^{-6} \) |
\(a_{694}= +0.92963512 \pm 5.4 \cdot 10^{-6} \) | \(a_{695}= +0.84479761 \pm 4.0 \cdot 10^{-6} \) | \(a_{696}= +0.12363538 \pm 8.7 \cdot 10^{-6} \) |
\(a_{697}= +0.16221561 \pm 2.5 \cdot 10^{-6} \) | \(a_{698}= -0.33287100 \pm 3.5 \cdot 10^{-6} \) | \(a_{699}= -2.20048141 \pm 3.8 \cdot 10^{-6} \) |
\(a_{700}= -0.02862240 \pm 4.2 \cdot 10^{-6} \) | \(a_{701}= -1.72979906 \pm 4.7 \cdot 10^{-6} \) | \(a_{702}= -3.15555486 \pm 7.8 \cdot 10^{-6} \) |
\(a_{703}= +0.34757727 \pm 2.0 \cdot 10^{-6} \) | \(a_{704}= -0.02997494 \pm 3.2 \cdot 10^{-6} \) | \(a_{705}= -0.80448951 \pm 6.1 \cdot 10^{-6} \) |
\(a_{706}= -0.89081411 \pm 4.6 \cdot 10^{-6} \) | \(a_{707}= -0.35293544 \pm 3.3 \cdot 10^{-6} \) | \(a_{708}= +0.19898572 \pm 6.2 \cdot 10^{-6} \) |
\(a_{709}= -0.39047701 \pm 4.1 \cdot 10^{-6} \) | \(a_{710}= +0.02389808 \pm 3.2 \cdot 10^{-6} \) | \(a_{711}= -3.41845914 \pm 3.4 \cdot 10^{-6} \) |
\(a_{712}= -0.42512804 \pm 4.9 \cdot 10^{-6} \) | \(a_{713}= +0.48834565 \pm 3.0 \cdot 10^{-6} \) | \(a_{714}= -0.06452351 \pm 9.8 \cdot 10^{-6} \) |
\(a_{715}= -0.14755106 \pm 7.0 \cdot 10^{-6} \) | \(a_{716}= -0.15305524 \pm 3.7 \cdot 10^{-6} \) | \(a_{717}= +1.30303276 \pm 4.3 \cdot 10^{-6} \) |
\(a_{718}= +0.34848810 \pm 5.0 \cdot 10^{-6} \) | \(a_{719}= +0.17159548 \pm 3.8 \cdot 10^{-6} \) | \(a_{720}= +0.30061377 \pm 3.6 \cdot 10^{-6} \) |
\(a_{721}= +0.02856412 \pm 5.5 \cdot 10^{-6} \) | \(a_{722}= +1.47175301 \pm 2.8 \cdot 10^{-6} \) | \(a_{723}= +0.37329693 \pm 4.6 \cdot 10^{-6} \) |
\(a_{724}= +0.29210804 \pm 3.2 \cdot 10^{-6} \) | \(a_{725}= -0.03641471 \pm 5.3 \cdot 10^{-6} \) | \(a_{726}= +1.27998674 \pm 6.9 \cdot 10^{-6} \) |
\(a_{727}= -0.35583160 \pm 3.5 \cdot 10^{-6} \) | \(a_{728}= -0.13923231 \pm 7.9 \cdot 10^{-6} \) | \(a_{729}= +3.29069451 \pm 2.8 \cdot 10^{-6} \) |
\(a_{730}= -0.07165982 \pm 4.8 \cdot 10^{-6} \) | \(a_{731}= -0.16707024 \pm 2.6 \cdot 10^{-6} \) | \(a_{732}= +0.60589662 \pm 7.2 \cdot 10^{-6} \) |
\(a_{733}= -1.76720495 \pm 2.9 \cdot 10^{-6} \) | \(a_{734}= -1.06988347 \pm 4.2 \cdot 10^{-6} \) | \(a_{735}= +0.78855942 \pm 7.6 \cdot 10^{-6} \) |
\(a_{736}= -0.07659419 \pm 5.1 \cdot 10^{-6} \) | \(a_{737}= -0.14531466 \pm 1.3 \cdot 10^{-6} \) | \(a_{738}= -1.85799847 \pm 6.2 \cdot 10^{-6} \) |
\(a_{739}= +1.34900605 \pm 5.6 \cdot 10^{-6} \) | \(a_{740}= -0.04427558 \pm 4.0 \cdot 10^{-6} \) | \(a_{741}= +4.63865463 \pm 2.3 \cdot 10^{-6} \) |
\(a_{742}= +0.17468671 \pm 8.0 \cdot 10^{-6} \) | \(a_{743}= -1.21735073 \pm 4.2 \cdot 10^{-6} \) | \(a_{744}= +0.76533638 \pm 6.5 \cdot 10^{-6} \) |
\(a_{745}= -0.49593203 \pm 5.1 \cdot 10^{-6} \) | \(a_{746}= -0.49001667 \pm 6.4 \cdot 10^{-6} \) | \(a_{747}= -2.38742608 \pm 4.0 \cdot 10^{-6} \) |
\(a_{748}= +0.01990236 \pm 5.5 \cdot 10^{-6} \) | \(a_{749}= +0.33516013 \pm 2.7 \cdot 10^{-6} \) | \(a_{750}= -0.12147051 \pm 3.4 \cdot 10^{-6} \) |
\(a_{751}= +0.00465815 \pm 3.0 \cdot 10^{-6} \) | \(a_{752}= +0.23415559 \pm 2.7 \cdot 10^{-6} \) | \(a_{753}= +0.23689742 \pm 2.3 \cdot 10^{-6} \) |
\(a_{754}= -0.17713768 \pm 9.0 \cdot 10^{-6} \) | \(a_{755}= +0.78655064 \pm 5.8 \cdot 10^{-6} \) | \(a_{756}= +0.46418134 \pm 8.3 \cdot 10^{-6} \) |
\(a_{757}= -0.16536717 \pm 5.4 \cdot 10^{-6} \) | \(a_{758}= -0.60941056 \pm 4.7 \cdot 10^{-6} \) | \(a_{759}= -0.19955381 \pm 2.4 \cdot 10^{-6} \) |
\(a_{760}= -0.27755058 \pm 2.9 \cdot 10^{-6} \) | \(a_{761}= +0.49907168 \pm 2.9 \cdot 10^{-6} \) | \(a_{762}= +0.75519324 \pm 8.2 \cdot 10^{-6} \) |
\(a_{763}= +0.13768879 \pm 4.2 \cdot 10^{-6} \) | \(a_{764}= +0.50487145 \pm 3.0 \cdot 10^{-6} \) | \(a_{765}= -0.19959746 \pm 5.8 \cdot 10^{-6} \) |
\(a_{766}= -1.18317968 \pm 4.7 \cdot 10^{-6} \) | \(a_{767}= -0.28509531 \pm 2.3 \cdot 10^{-6} \) | \(a_{768}= -0.12003859 \pm 3.4 \cdot 10^{-6} \) |
\(a_{769}= -1.37752089 \pm 3.3 \cdot 10^{-6} \) | \(a_{770}= +0.02170473 \pm 7.5 \cdot 10^{-6} \) | \(a_{771}= -2.55430886 \pm 2.3 \cdot 10^{-6} \) |
\(a_{772}= +0.00261618 \pm 4.5 \cdot 10^{-6} \) | \(a_{773}= +0.08209768 \pm 5.7 \cdot 10^{-6} \) | \(a_{774}= +1.91360282 \pm 7.2 \cdot 10^{-6} \) |
\(a_{775}= -0.22541690 \pm 3.1 \cdot 10^{-6} \) | \(a_{776}= -0.20096736 \pm 5.5 \cdot 10^{-6} \) | \(a_{777}= -0.10884941 \pm 3.1 \cdot 10^{-6} \) |
\(a_{778}= +0.49061961 \pm 3.7 \cdot 10^{-6} \) | \(a_{779}= +1.71545223 \pm 2.0 \cdot 10^{-6} \) | \(a_{780}= -0.59088763 \pm 7.1 \cdot 10^{-6} \) |
\(a_{781}= -0.01812222 \pm 2.5 \cdot 10^{-6} \) | \(a_{782}= +0.05085598 \pm 7.4 \cdot 10^{-6} \) | \(a_{783}= +0.59055263 \pm 4.8 \cdot 10^{-6} \) |
\(a_{784}= -0.22951896 \pm 4.2 \cdot 10^{-6} \) | \(a_{785}= +0.04998849 \pm 2.0 \cdot 10^{-6} \) | \(a_{786}= +2.01745897 \pm 7.0 \cdot 10^{-6} \) |
\(a_{787}= +1.25964452 \pm 2.8 \cdot 10^{-6} \) | \(a_{788}= +0.75517541 \pm 4.8 \cdot 10^{-6} \) | \(a_{789}= -2.17983440 \pm 4.6 \cdot 10^{-6} \) |
\(a_{790}= -0.40204673 \pm 4.2 \cdot 10^{-6} \) | \(a_{791}= +0.31879106 \pm 3.5 \cdot 10^{-6} \) | \(a_{792}= -0.22795923 \pm 6.9 \cdot 10^{-6} \) |
\(a_{793}= -0.86809388 \pm 1.7 \cdot 10^{-6} \) | \(a_{794}= +0.30043345 \pm 4.7 \cdot 10^{-6} \) | \(a_{795}= +0.74135248 \pm 7.2 \cdot 10^{-6} \) |
\(a_{796}= -0.39316598 \pm 4.4 \cdot 10^{-6} \) | \(a_{797}= -0.74707952 \pm 4.6 \cdot 10^{-6} \) | \(a_{798}= -0.68234495 \pm 1.0 \cdot 10^{-5} \) |
\(a_{799}= -0.15547146 \pm 8.8 \cdot 10^{-7} \) | \(a_{800}= +0.03535534 \pm 1.4 \cdot 10^{-6} \) | \(a_{801}= -3.23309600 \pm 3.6 \cdot 10^{-6} \) |
\(a_{802}= +0.61035796 \pm 4.1 \cdot 10^{-6} \) | \(a_{803}= +0.05434055 \pm 4.6 \cdot 10^{-6} \) | \(a_{804}= -0.58193166 \pm 6.4 \cdot 10^{-6} \) |
\(a_{805}= +0.05546153 \pm 9.4 \cdot 10^{-6} \) | \(a_{806}= -1.09653001 \pm 6.8 \cdot 10^{-6} \) | \(a_{807}= -0.60738231 \pm 4.0 \cdot 10^{-6} \) |
\(a_{808}= +0.43595765 \pm 3.9 \cdot 10^{-6} \) | \(a_{809}= +0.25979968 \pm 4.8 \cdot 10^{-6} \) | \(a_{810}= +1.11967389 \pm 2.2 \cdot 10^{-6} \) |
\(a_{811}= +0.80914090 \pm 2.9 \cdot 10^{-6} \) | \(a_{812}= +0.02605691 \pm 9.5 \cdot 10^{-6} \) | \(a_{813}= +1.99007925 \pm 3.9 \cdot 10^{-6} \) |
\(a_{814}= +0.03357473 \pm 7.3 \cdot 10^{-6} \) | \(a_{815}= +0.31296221 \pm 4.6 \cdot 10^{-6} \) | \(a_{816}= +0.07970160 \pm 5.6 \cdot 10^{-6} \) |
\(a_{817}= -1.76679060 \pm 2.6 \cdot 10^{-6} \) | \(a_{818}= -0.94352542 \pm 5.3 \cdot 10^{-6} \) | \(a_{819}= -1.05886080 \pm 2.1 \cdot 10^{-6} \) |
\(a_{820}= -0.21852015 \pm 2.6 \cdot 10^{-6} \) | \(a_{821}= +0.79768524 \pm 4.4 \cdot 10^{-6} \) | \(a_{822}= -1.35359559 \pm 7.7 \cdot 10^{-6} \) |
\(a_{823}= +1.14706748 \pm 4.2 \cdot 10^{-6} \) | \(a_{824}= -0.03528336 \pm 5.5 \cdot 10^{-6} \) | \(a_{825}= +0.09211263 \pm 6.6 \cdot 10^{-6} \) |
\(a_{826}= +0.04193745 \pm 7.0 \cdot 10^{-6} \) | \(a_{827}= +0.48686612 \pm 3.0 \cdot 10^{-6} \) | \(a_{828}= -0.58249835 \pm 8.8 \cdot 10^{-6} \) |
\(a_{829}= +1.27781617 \pm 3.4 \cdot 10^{-6} \) | \(a_{830}= -0.28078640 \pm 5.1 \cdot 10^{-6} \) | \(a_{831}= +1.69131266 \pm 2.7 \cdot 10^{-6} \) |
\(a_{832}= +0.17198440 \pm 3.7 \cdot 10^{-6} \) | \(a_{833}= +0.15239290 \pm 1.6 \cdot 10^{-6} \) | \(a_{834}= -2.56544994 \pm 7.4 \cdot 10^{-6} \) |
\(a_{835}= -0.41738763 \pm 3.0 \cdot 10^{-6} \) | \(a_{836}= +0.21047013 \pm 6.2 \cdot 10^{-6} \) | \(a_{837}= +3.65568011 \pm 3.7 \cdot 10^{-6} \) |
\(a_{838}= +0.84207301 \pm 3.5 \cdot 10^{-6} \) | \(a_{839}= +0.93870877 \pm 2.5 \cdot 10^{-6} \) | \(a_{840}= +0.08691942 \pm 7.6 \cdot 10^{-6} \) |
\(a_{841}= -0.96684921 \pm 3.6 \cdot 10^{-6} \) | \(a_{842}= +0.90916379 \pm 4.1 \cdot 10^{-6} \) | \(a_{843}= -0.00197933 \pm 1.9 \cdot 10^{-6} \) |
\(a_{844}= +0.39027430 \pm 4.8 \cdot 10^{-6} \) | \(a_{845}= +0.39937627 \pm 2.3 \cdot 10^{-6} \) | \(a_{846}= +1.78075178 \pm 6.3 \cdot 10^{-6} \) |
\(a_{847}= +0.26976498 \pm 2.4 \cdot 10^{-6} \) | \(a_{848}= -0.21577886 \pm 3.8 \cdot 10^{-6} \) | \(a_{849}= -2.27030516 \pm 2.1 \cdot 10^{-6} \) |
\(a_{850}= -0.02347476 \pm 2.2 \cdot 10^{-6} \) | \(a_{851}= +0.08579265 \pm 5.9 \cdot 10^{-6} \) | \(a_{852}= -0.07257280 \pm 6.6 \cdot 10^{-6} \) |
\(a_{853}= +0.06979649 \pm 5.8 \cdot 10^{-6} \) | \(a_{854}= +0.12769640 \pm 8.0 \cdot 10^{-6} \) | \(a_{855}= -2.11077042 \pm 6.5 \cdot 10^{-6} \) |
\(a_{856}= -0.41400099 \pm 2.2 \cdot 10^{-6} \) | \(a_{857}= -0.69316547 \pm 3.6 \cdot 10^{-6} \) | \(a_{858}= +0.44807758 \pm 1.0 \cdot 10^{-5} \) |
\(a_{859}= +0.04084641 \pm 4.5 \cdot 10^{-6} \) | \(a_{860}= +0.22505981 \pm 3.6 \cdot 10^{-6} \) | \(a_{861}= -0.53722143 \pm 3.6 \cdot 10^{-6} \) |
\(a_{862}= -0.42298065 \pm 2.5 \cdot 10^{-6} \) | \(a_{863}= -0.26310338 \pm 4.7 \cdot 10^{-6} \) | \(a_{864}= -0.57337230 \pm 4.1 \cdot 10^{-6} \) |
\(a_{865}= -0.03657695 \pm 3.8 \cdot 10^{-6} \) | \(a_{866}= +0.09950547 \pm 3.0 \cdot 10^{-6} \) | \(a_{867}= +1.86769823 \pm 2.4 \cdot 10^{-6} \) |
\(a_{868}= +0.16129929 \pm 7.3 \cdot 10^{-6} \) | \(a_{869}= +0.30487713 \pm 2.5 \cdot 10^{-6} \) | \(a_{870}= +0.11058285 \pm 8.7 \cdot 10^{-6} \) |
\(a_{871}= +0.83375827 \pm 2.8 \cdot 10^{-6} \) | \(a_{872}= -0.17007780 \pm 4.0 \cdot 10^{-6} \) | \(a_{873}= -1.52835551 \pm 4.5 \cdot 10^{-6} \) |
\(a_{874}= +0.53780889 \pm 8.1 \cdot 10^{-6} \) | \(a_{875}= -0.02560065 \pm 4.2 \cdot 10^{-6} \) | \(a_{876}= +0.21761388 \pm 8.2 \cdot 10^{-6} \) |
\(a_{877}= -0.77547746 \pm 5.4 \cdot 10^{-6} \) | \(a_{878}= -0.17644722 \pm 4.4 \cdot 10^{-6} \) | \(a_{879}= -1.33058655 \pm 1.3 \cdot 10^{-6} \) |
\(a_{880}= -0.02681040 \pm 3.2 \cdot 10^{-6} \) | \(a_{881}= +1.63443067 \pm 2.6 \cdot 10^{-6} \) | \(a_{882}= -1.74549025 \pm 7.9 \cdot 10^{-6} \) |
\(a_{883}= -0.02590565 \pm 4.4 \cdot 10^{-6} \) | \(a_{884}= -0.11419187 \pm 5.9 \cdot 10^{-6} \) | \(a_{885}= +0.17797823 \pm 6.2 \cdot 10^{-6} \) |
\(a_{886}= +0.34400517 \pm 5.8 \cdot 10^{-6} \) | \(a_{887}= -1.44290401 \pm 4.5 \cdot 10^{-6} \) | \(a_{888}= +0.13445442 \pm 7.4 \cdot 10^{-6} \) |
\(a_{889}= +0.15916157 \pm 6.4 \cdot 10^{-6} \) | \(a_{890}= -0.38024607 \pm 4.9 \cdot 10^{-6} \) | \(a_{891}= -0.84906290 \pm 1.7 \cdot 10^{-6} \) |
\(a_{892}= -0.11881866 \pm 4.4 \cdot 10^{-6} \) | \(a_{893}= -1.64413194 \pm 1.2 \cdot 10^{-6} \) | \(a_{894}= +1.50602793 \pm 8.5 \cdot 10^{-6} \) |
\(a_{895}= -0.13689677 \pm 3.7 \cdot 10^{-6} \) | \(a_{896}= -0.02529886 \pm 4.2 \cdot 10^{-6} \) | \(a_{897}= +1.14496110 \pm 3.2 \cdot 10^{-6} \) |
\(a_{898}= +1.21642682 \pm 3.5 \cdot 10^{-6} \) | \(a_{899}= +0.20521230 \pm 3.9 \cdot 10^{-6} \) | \(a_{900}= +0.26887713 \pm 3.6 \cdot 10^{-6} \) |
\(a_{901}= +0.14326993 \pm 2.0 \cdot 10^{-6} \) | \(a_{902}= +0.16570660 \pm 5.9 \cdot 10^{-6} \) | \(a_{903}= +0.55329886 \pm 4.2 \cdot 10^{-6} \) |
\(a_{904}= -0.39378137 \pm 3.2 \cdot 10^{-6} \) | \(a_{905}= +0.26126937 \pm 3.2 \cdot 10^{-6} \) | \(a_{906}= -2.38856772 \pm 9.2 \cdot 10^{-6} \) |
\(a_{907}= -1.86326043 \pm 4.8 \cdot 10^{-6} \) | \(a_{908}= +0.05811269 \pm 3.8 \cdot 10^{-6} \) | \(a_{909}= +3.31545514 \pm 4.0 \cdot 10^{-6} \) |
\(a_{910}= -0.12453316 \pm 7.9 \cdot 10^{-6} \) | \(a_{911}= -1.02998686 \pm 4.2 \cdot 10^{-6} \) | \(a_{912}= +0.84285528 \pm 6.3 \cdot 10^{-6} \) |
\(a_{913}= +0.21292389 \pm 3.7 \cdot 10^{-6} \) | \(a_{914}= +0.22556257 \pm 4.0 \cdot 10^{-6} \) | \(a_{915}= +0.54193042 \pm 7.2 \cdot 10^{-6} \) |
\(a_{916}= -0.62408718 \pm 2.6 \cdot 10^{-6} \) | \(a_{917}= +0.42519174 \pm 2.8 \cdot 10^{-6} \) | \(a_{918}= +0.38069998 \pm 6.3 \cdot 10^{-6} \) |
\(a_{919}= -1.95380991 \pm 3.9 \cdot 10^{-6} \) | \(a_{920}= -0.06850793 \pm 5.1 \cdot 10^{-6} \) | \(a_{921}= -0.68362537 \pm 2.8 \cdot 10^{-6} \) |
\(a_{922}= +1.26688925 \pm 3.5 \cdot 10^{-6} \) | \(a_{923}= +0.10397815 \pm 2.3 \cdot 10^{-6} \) | \(a_{924}= -0.06591210 \pm 1.0 \cdot 10^{-5} \) |
\(a_{925}= -0.03960128 \pm 4.0 \cdot 10^{-6} \) | \(a_{926}= -1.10869720 \pm 3.8 \cdot 10^{-6} \) | \(a_{927}= -0.26832969 \pm 4.5 \cdot 10^{-6} \) |
\(a_{928}= -0.03218636 \pm 5.3 \cdot 10^{-6} \) | \(a_{929}= -1.06341456 \pm 3.6 \cdot 10^{-6} \) | \(a_{930}= +0.68453767 \pm 6.5 \cdot 10^{-6} \) |
\(a_{931}= +1.61157568 \pm 2.6 \cdot 10^{-6} \) | \(a_{932}= +0.57285782 \pm 4.7 \cdot 10^{-6} \) | \(a_{933}= +1.40952111 \pm 2.5 \cdot 10^{-6} \) |
\(a_{934}= +0.80608418 \pm 1.7 \cdot 10^{-6} \) | \(a_{935}= +0.01780121 \pm 5.5 \cdot 10^{-6} \) | \(a_{936}= +1.30794024 \pm 7.3 \cdot 10^{-6} \) |
\(a_{937}= -1.42777759 \pm 3.4 \cdot 10^{-6} \) | \(a_{938}= -0.12264564 \pm 7.3 \cdot 10^{-6} \) | \(a_{939}= +2.94534821 \pm 2.7 \cdot 10^{-6} \) |
\(a_{940}= +0.20943513 \pm 2.7 \cdot 10^{-6} \) | \(a_{941}= +0.04102985 \pm 2.9 \cdot 10^{-6} \) | \(a_{942}= -0.15180318 \pm 5.4 \cdot 10^{-6} \) |
\(a_{943}= +0.42342581 \pm 2.2 \cdot 10^{-6} \) | \(a_{944}= -0.05180254 \pm 2.8 \cdot 10^{-6} \) | \(a_{945}= +0.41517641 \pm 8.3 \cdot 10^{-6} \) |
\(a_{946}= -0.17066570 \pm 6.9 \cdot 10^{-6} \) | \(a_{947}= -0.79198604 \pm 3.6 \cdot 10^{-6} \) | \(a_{948}= +1.22092054 \pm 7.6 \cdot 10^{-6} \) |
\(a_{949}= -0.31178467 \pm 3.1 \cdot 10^{-6} \) | \(a_{950}= -0.24824879 \pm 2.9 \cdot 10^{-6} \) | \(a_{951}= +0.79232462 \pm 3.3 \cdot 10^{-6} \) |
\(a_{952}= +0.01679760 \pm 6.4 \cdot 10^{-6} \) | \(a_{953}= -0.72065939 \pm 4.2 \cdot 10^{-6} \) | \(a_{954}= -1.64099685 \pm 7.4 \cdot 10^{-6} \) |
\(a_{955}= +0.45157075 \pm 3.0 \cdot 10^{-6} \) | \(a_{956}= -0.33922236 \pm 4.3 \cdot 10^{-6} \) | \(a_{957}= -0.08385638 \pm 2.9 \cdot 10^{-6} \) |
\(a_{958}= -1.17237907 \pm 4.4 \cdot 10^{-6} \) | \(a_{959}= -0.28527850 \pm 6.4 \cdot 10^{-6} \) | \(a_{960}= -0.10736578 \pm 3.4 \cdot 10^{-6} \) |
\(a_{961}= +0.27031952 \pm 3.1 \cdot 10^{-6} \) | \(a_{962}= -0.19263858 \pm 7.8 \cdot 10^{-6} \) | \(a_{963}= -3.14847490 \pm 1.3 \cdot 10^{-6} \) |
\(a_{964}= -0.09718149 \pm 3.2 \cdot 10^{-6} \) | \(a_{965}= +0.00233998 \pm 4.5 \cdot 10^{-6} \) | \(a_{966}= -0.16842350 \pm 1.2 \cdot 10^{-5} \) |
\(a_{967}= +1.81234967 \pm 3.8 \cdot 10^{-6} \) | \(a_{968}= -0.33322272 \pm 3.5 \cdot 10^{-6} \) | \(a_{969}= -0.55962765 \pm 2.2 \cdot 10^{-6} \) |
\(a_{970}= -0.17975067 \pm 5.5 \cdot 10^{-6} \) | \(a_{971}= +0.08734468 \pm 4.9 \cdot 10^{-6} \) | \(a_{972}= -1.77844222 \pm 4.1 \cdot 10^{-6} \) |
\(a_{973}= -0.54068417 \pm 3.2 \cdot 10^{-6} \) | \(a_{974}= +1.04615802 \pm 2.8 \cdot 10^{-6} \) | \(a_{975}= -0.52850596 \pm 7.1 \cdot 10^{-6} \) |
\(a_{976}= -0.15773486 \pm 3.8 \cdot 10^{-6} \) | \(a_{977}= +1.66706832 \pm 4.3 \cdot 10^{-6} \) | \(a_{978}= -0.95039198 \pm 8.0 \cdot 10^{-6} \) |
\(a_{979}= +0.28834542 \pm 4.6 \cdot 10^{-6} \) | \(a_{980}= -0.20528800 \pm 4.2 \cdot 10^{-6} \) | \(a_{981}= -1.29344058 \pm 2.8 \cdot 10^{-6} \) |
\(a_{982}= +0.02501022 \pm 5.0 \cdot 10^{-6} \) | \(a_{983}= -0.55423517 \pm 3.3 \cdot 10^{-6} \) | \(a_{984}= +0.66359386 \pm 6.0 \cdot 10^{-6} \) |
\(a_{985}= +0.67544942 \pm 4.8 \cdot 10^{-6} \) | \(a_{986}= +0.02137067 \pm 7.5 \cdot 10^{-6} \) | \(a_{987}= +0.51488633 \pm 1.7 \cdot 10^{-6} \) |
\(a_{988}= -1.20759464 \pm 6.6 \cdot 10^{-6} \) | \(a_{989}= -0.43609768 \pm 3.4 \cdot 10^{-6} \) | \(a_{990}= -0.20389293 \pm 6.9 \cdot 10^{-6} \) |
\(a_{991}= -0.09347140 \pm 5.9 \cdot 10^{-6} \) | \(a_{992}= -0.19924228 \pm 3.1 \cdot 10^{-6} \) | \(a_{993}= +0.77554840 \pm 3.7 \cdot 10^{-6} \) |
\(a_{994}= -0.01529516 \pm 7.4 \cdot 10^{-6} \) | \(a_{995}= -0.35165835 \pm 4.4 \cdot 10^{-6} \) | \(a_{996}= +0.85268170 \pm 8.5 \cdot 10^{-6} \) |
\(a_{997}= +0.84357606 \pm 4.3 \cdot 10^{-6} \) | \(a_{998}= +1.00332611 \pm 4.3 \cdot 10^{-6} \) | \(a_{999}= +0.64223050 \pm 3.8 \cdot 10^{-6} \) |
\(a_{1000}= +0.03162278 \pm 1.7 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000