Maass form invariants
Level: | \( 10 = 2 \cdot 5 \) |
Weight: | \( 0 \) |
Character: | 10.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(12.0150070406973263972274387053 \pm 7 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= -1.50507564 \pm 1.2 \cdot 10^{-6} \) |
\(a_{4}= +0.5 \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +1.06424919 \pm 1.3 \cdot 10^{-6} \) |
\(a_{7}= -1.56407173 \pm 1.6 \cdot 10^{-6} \) | \(a_{8}= -0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +1.26525268 \pm 1.3 \cdot 10^{-6} \) |
\(a_{10}= +0.31622777 \pm 1.0 \cdot 10^{-8} \) | \(a_{11}= +1.24295679 \pm 1.2 \cdot 10^{-6} \) | \(a_{12}= -0.75253782 \pm 1.3 \cdot 10^{-6} \) |
\(a_{13}= +0.02181166 \pm 1.4 \cdot 10^{-6} \) | \(a_{14}= +1.10596573 \pm 1.6 \cdot 10^{-6} \) | \(a_{15}= +0.67309029 \pm 1.3 \cdot 10^{-6} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +0.77510394 \pm 8.5 \cdot 10^{-7} \) | \(a_{18}= -0.89466875 \pm 1.4 \cdot 10^{-6} \) |
\(a_{19}= +1.54966375 \pm 1.1 \cdot 10^{-6} \) | \(a_{20}= -0.22360680 \pm 8.4 \cdot 10^{-8} \) | \(a_{21}= +2.35404626 \pm 1.3 \cdot 10^{-6} \) |
\(a_{22}= -0.87890318 \pm 1.2 \cdot 10^{-6} \) | \(a_{23}= -0.82473372 \pm 1.9 \cdot 10^{-6} \) | \(a_{24}= +0.53212460 \pm 1.3 \cdot 10^{-6} \) |
\(a_{25}= +0.2 \) | \(a_{26}= -0.01542317 \pm 1.4 \cdot 10^{-6} \) | \(a_{27}= -0.39922534 \pm 1.5 \cdot 10^{-6} \) |
\(a_{28}= -0.78203587 \pm 1.6 \cdot 10^{-6} \) | \(a_{29}= -1.40588731 \pm 2.0 \cdot 10^{-6} \) | \(a_{30}= -0.47594671 \pm 1.3 \cdot 10^{-6} \) |
\(a_{31}= +0.53244342 \pm 1.1 \cdot 10^{-6} \) | \(a_{32}= -0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -1.87074399 \pm 1.0 \cdot 10^{-6} \) |
\(a_{34}= -0.54808125 \pm 8.6 \cdot 10^{-7} \) | \(a_{35}= +0.69947414 \pm 1.6 \cdot 10^{-6} \) | \(a_{36}= +0.63262634 \pm 1.4 \cdot 10^{-6} \) |
\(a_{37}= +0.02700126 \pm 1.5 \cdot 10^{-6} \) | \(a_{38}= -1.09577775 \pm 1.1 \cdot 10^{-6} \) | \(a_{39}= -0.03282820 \pm 1.1 \cdot 10^{-6} \) |
\(a_{40}= +0.15811388 \pm 1.2 \cdot 10^{-7} \) | \(a_{41}= -1.39122423 \pm 1.0 \cdot 10^{-6} \) | \(a_{42}= -1.66456208 \pm 2.9 \cdot 10^{-6} \) |
\(a_{43}= +0.85144628 \pm 1.3 \cdot 10^{-6} \) | \(a_{44}= +0.62147840 \pm 1.2 \cdot 10^{-6} \) | \(a_{45}= -0.56583820 \pm 1.4 \cdot 10^{-6} \) |
\(a_{46}= +0.58317481 \pm 1.9 \cdot 10^{-6} \) | \(a_{47}= -0.66849687 \pm 1.0 \cdot 10^{-6} \) | \(a_{48}= -0.37626891 \pm 1.3 \cdot 10^{-6} \) |
\(a_{49}= +1.44632039 \pm 1.6 \cdot 10^{-6} \) | \(a_{50}= -0.14142136 \pm 1.5 \cdot 10^{-7} \) | \(a_{51}= -1.16659005 \pm 1.0 \cdot 10^{-6} \) |
\(a_{52}= +0.01090583 \pm 1.4 \cdot 10^{-6} \) | \(a_{53}= +1.20679158 \pm 1.4 \cdot 10^{-6} \) | \(a_{54}= +0.28229495 \pm 1.5 \cdot 10^{-6} \) |
\(a_{55}= -0.55586718 \pm 1.2 \cdot 10^{-6} \) | \(a_{56}= +0.55298286 \pm 1.6 \cdot 10^{-6} \) | \(a_{57}= -2.33236116 \pm 9.9 \cdot 10^{-7} \) |
\(a_{58}= +0.99411245 \pm 2.0 \cdot 10^{-6} \) | \(a_{59}= +0.90224468 \pm 1.0 \cdot 10^{-6} \) | \(a_{60}= +0.33654514 \pm 1.3 \cdot 10^{-6} \) |
\(a_{61}= -1.00116063 \pm 1.4 \cdot 10^{-6} \) | \(a_{62}= -0.37649435 \pm 1.2 \cdot 10^{-6} \) | \(a_{63}= -1.97894595 \pm 1.3 \cdot 10^{-6} \) |
\(a_{64}= +0.125 \) | \(a_{65}= -0.00975447 \pm 1.4 \cdot 10^{-6} \) | \(a_{66}= +1.32281576 \pm 2.5 \cdot 10^{-6} \) |
\(a_{67}= +0.11155891 \pm 1.1 \cdot 10^{-6} \) | \(a_{68}= +0.38755197 \pm 8.6 \cdot 10^{-7} \) | \(a_{69}= +1.24128664 \pm 1.2 \cdot 10^{-6} \) |
\(a_{70}= -0.49460291 \pm 1.6 \cdot 10^{-6} \) | \(a_{71}= +1.90200461 \pm 1.2 \cdot 10^{-6} \) | \(a_{72}= -0.44733437 \pm 1.4 \cdot 10^{-6} \) |
\(a_{73}= -0.52170338 \pm 1.8 \cdot 10^{-6} \) | \(a_{74}= -0.01909278 \pm 1.5 \cdot 10^{-6} \) | \(a_{75}= -0.30101513 \pm 1.3 \cdot 10^{-6} \) |
\(a_{76}= +0.77483188 \pm 1.1 \cdot 10^{-6} \) | \(a_{77}= -1.94407359 \pm 1.4 \cdot 10^{-6} \) | \(a_{78}= +0.02321304 \pm 2.7 \cdot 10^{-6} \) |
\(a_{79}= -1.67907569 \pm 1.6 \cdot 10^{-6} \) | \(a_{80}= -0.11180340 \pm 2.3 \cdot 10^{-7} \) | \(a_{81}= -0.66438834 \pm 8.5 \cdot 10^{-7} \) |
\(a_{82}= +0.98374409 \pm 1.0 \cdot 10^{-6} \) | \(a_{83}= +0.17195465 \pm 1.9 \cdot 10^{-6} \) | \(a_{84}= +1.17702313 \pm 2.9 \cdot 10^{-6} \) |
\(a_{85}= -0.34663702 \pm 8.6 \cdot 10^{-7} \) | \(a_{86}= -0.60206344 \pm 1.4 \cdot 10^{-6} \) | \(a_{87}= +2.11596674 \pm 1.2 \cdot 10^{-6} \) |
\(a_{88}= -0.43945159 \pm 1.2 \cdot 10^{-6} \) | \(a_{89}= +0.14459747 \pm 1.8 \cdot 10^{-6} \) | \(a_{90}= +0.40010803 \pm 1.4 \cdot 10^{-6} \) |
\(a_{91}= -0.03411500 \pm 9.3 \cdot 10^{-7} \) | \(a_{92}= -0.41236686 \pm 1.9 \cdot 10^{-6} \) | \(a_{93}= -0.80136762 \pm 1.0 \cdot 10^{-6} \) |
\(a_{94}= +0.47269867 \pm 1.0 \cdot 10^{-6} \) | \(a_{95}= -0.69303070 \pm 1.1 \cdot 10^{-6} \) | \(a_{96}= +0.26606230 \pm 1.3 \cdot 10^{-6} \) |
\(a_{97}= -0.12610211 \pm 2.1 \cdot 10^{-6} \) | \(a_{98}= -1.02270295 \pm 1.6 \cdot 10^{-6} \) | \(a_{99}= +1.57265441 \pm 8.0 \cdot 10^{-7} \) |
\(a_{100}= +0.1 \) | \(a_{101}= +0.15449125 \pm 1.4 \cdot 10^{-6} \) | \(a_{102}= +0.82490374 \pm 2.1 \cdot 10^{-6} \) |
\(a_{103}= +0.26134203 \pm 2.1 \cdot 10^{-6} \) | \(a_{104}= -0.00771159 \pm 1.4 \cdot 10^{-6} \) | \(a_{105}= -1.05276149 \pm 2.9 \cdot 10^{-6} \) |
\(a_{106}= -0.85333051 \pm 1.4 \cdot 10^{-6} \) | \(a_{107}= +0.23919078 \pm 8.6 \cdot 10^{-7} \) | \(a_{108}= -0.19961267 \pm 1.5 \cdot 10^{-6} \) |
\(a_{109}= -1.69205209 \pm 1.5 \cdot 10^{-6} \) | \(a_{110}= +0.39305745 \pm 1.2 \cdot 10^{-6} \) | \(a_{111}= -0.04063894 \pm 1.2 \cdot 10^{-6} \) |
\(a_{112}= -0.39101793 \pm 1.6 \cdot 10^{-6} \) | \(a_{113}= +0.72506194 \pm 1.2 \cdot 10^{-6} \) | \(a_{114}= +1.64922840 \pm 2.4 \cdot 10^{-6} \) |
\(a_{115}= +0.36883213 \pm 1.9 \cdot 10^{-6} \) | \(a_{116}= -0.70294365 \pm 2.0 \cdot 10^{-6} \) | \(a_{117}= +0.02759726 \pm 1.1 \cdot 10^{-6} \) |
\(a_{118}= -0.63798333 \pm 1.0 \cdot 10^{-6} \) | \(a_{119}= -1.21231816 \pm 9.7 \cdot 10^{-7} \) | \(a_{120}= -0.23797335 \pm 1.3 \cdot 10^{-6} \) |
\(a_{121}= +0.54494159 \pm 1.3 \cdot 10^{-6} \) | \(a_{122}= +0.70792747 \pm 1.4 \cdot 10^{-6} \) | \(a_{123}= +2.09389770 \pm 1.3 \cdot 10^{-6} \) |
\(a_{124}= +0.26622171 \pm 1.2 \cdot 10^{-6} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +1.39932610 \pm 3.0 \cdot 10^{-6} \) |
\(a_{127}= -0.55077325 \pm 1.8 \cdot 10^{-6} \) | \(a_{128}= -0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -1.28149105 \pm 1.4 \cdot 10^{-6} \) |
\(a_{130}= +0.00689745 \pm 1.4 \cdot 10^{-6} \) | \(a_{131}= +0.98079683 \pm 1.4 \cdot 10^{-6} \) | \(a_{132}= -0.93537199 \pm 2.5 \cdot 10^{-6} \) |
\(a_{133}= -2.42378527 \pm 1.3 \cdot 10^{-6} \) | \(a_{134}= -0.07888406 \pm 1.1 \cdot 10^{-6} \) | \(a_{135}= +0.17853900 \pm 1.5 \cdot 10^{-6} \) |
\(a_{136}= -0.27404063 \pm 8.6 \cdot 10^{-7} \) | \(a_{137}= +1.16991160 \pm 1.6 \cdot 10^{-6} \) | \(a_{138}= -0.87772220 \pm 3.2 \cdot 10^{-6} \) |
\(a_{139}= +0.26832635 \pm 1.5 \cdot 10^{-6} \) | \(a_{140}= +0.34973707 \pm 1.6 \cdot 10^{-6} \) | \(a_{141}= +1.00613836 \pm 7.8 \cdot 10^{-7} \) |
\(a_{142}= -1.34492035 \pm 1.2 \cdot 10^{-6} \) | \(a_{143}= +0.02711095 \pm 1.1 \cdot 10^{-6} \) | \(a_{144}= +0.31631317 \pm 1.4 \cdot 10^{-6} \) |
\(a_{145}= +0.62873192 \pm 2.0 \cdot 10^{-6} \) | \(a_{146}= +0.36890000 \pm 1.8 \cdot 10^{-6} \) | \(a_{147}= -2.17682158 \pm 9.7 \cdot 10^{-7} \) |
\(a_{148}= +0.01350063 \pm 1.5 \cdot 10^{-6} \) | \(a_{149}= +0.46788743 \pm 1.9 \cdot 10^{-6} \) | \(a_{150}= +0.21284984 \pm 1.3 \cdot 10^{-6} \) |
\(a_{151}= +0.44265766 \pm 2.2 \cdot 10^{-6} \) | \(a_{152}= -0.54788887 \pm 1.1 \cdot 10^{-6} \) | \(a_{153}= +0.98070233 \pm 9.3 \cdot 10^{-7} \) |
\(a_{154}= +1.37466762 \pm 2.8 \cdot 10^{-6} \) | \(a_{155}= -0.23811594 \pm 1.2 \cdot 10^{-6} \) | \(a_{156}= -0.01641410 \pm 2.7 \cdot 10^{-6} \) |
\(a_{157}= +0.19759926 \pm 7.6 \cdot 10^{-7} \) | \(a_{158}= +1.18728580 \pm 1.6 \cdot 10^{-6} \) | \(a_{159}= -1.81631261 \pm 1.2 \cdot 10^{-6} \) |
\(a_{160}= +0.07905694 \pm 3.8 \cdot 10^{-7} \) | \(a_{161}= +1.28994271 \pm 1.0 \cdot 10^{-6} \) | \(a_{162}= +0.46979350 \pm 8.6 \cdot 10^{-7} \) |
\(a_{163}= -0.42886837 \pm 1.7 \cdot 10^{-6} \) | \(a_{164}= -0.69561212 \pm 1.0 \cdot 10^{-6} \) | \(a_{165}= +0.83662215 \pm 2.5 \cdot 10^{-6} \) |
\(a_{166}= -0.12159030 \pm 1.9 \cdot 10^{-6} \) | \(a_{167}= -1.51496290 \pm 1.1 \cdot 10^{-6} \) | \(a_{168}= -0.83228104 \pm 2.9 \cdot 10^{-6} \) |
\(a_{169}= -0.99952425 \pm 9.0 \cdot 10^{-7} \) | \(a_{170}= +0.24510939 \pm 8.6 \cdot 10^{-7} \) | \(a_{171}= +1.96071621 \pm 8.6 \cdot 10^{-7} \) |
\(a_{172}= +0.42572314 \pm 1.4 \cdot 10^{-6} \) | \(a_{173}= -1.23342900 \pm 1.4 \cdot 10^{-6} \) | \(a_{174}= -1.49621443 \pm 3.3 \cdot 10^{-6} \) |
\(a_{175}= -0.31281435 \pm 1.6 \cdot 10^{-6} \) | \(a_{176}= +0.31073920 \pm 1.2 \cdot 10^{-6} \) | \(a_{177}= -1.35794648 \pm 8.8 \cdot 10^{-7} \) |
\(a_{178}= -0.10224585 \pm 1.9 \cdot 10^{-6} \) | \(a_{179}= +0.22872832 \pm 1.4 \cdot 10^{-6} \) | \(a_{180}= -0.28291910 \pm 1.4 \cdot 10^{-6} \) |
\(a_{181}= +1.11112970 \pm 1.2 \cdot 10^{-6} \) | \(a_{182}= +0.02412295 \pm 3.0 \cdot 10^{-6} \) | \(a_{183}= +1.50682247 \pm 9.5 \cdot 10^{-7} \) |
\(a_{184}= +0.29158740 \pm 1.9 \cdot 10^{-6} \) | \(a_{185}= -0.01207533 \pm 1.5 \cdot 10^{-6} \) | \(a_{186}= +0.56665248 \pm 2.5 \cdot 10^{-6} \) |
\(a_{187}= +0.96342070 \pm 8.1 \cdot 10^{-7} \) | \(a_{188}= -0.33424844 \pm 1.0 \cdot 10^{-6} \) | \(a_{189}= +0.62441707 \pm 1.5 \cdot 10^{-6} \) |
\(a_{190}= +0.49004671 \pm 1.1 \cdot 10^{-6} \) | \(a_{191}= -0.53558153 \pm 1.1 \cdot 10^{-6} \) | \(a_{192}= -0.18813445 \pm 1.3 \cdot 10^{-6} \) |
\(a_{193}= +0.29327272 \pm 1.7 \cdot 10^{-6} \) | \(a_{194}= +0.08916766 \pm 2.1 \cdot 10^{-6} \) | \(a_{195}= +0.01468122 \pm 2.7 \cdot 10^{-6} \) |
\(a_{196}= +0.72316019 \pm 1.6 \cdot 10^{-6} \) | \(a_{197}= -1.80037122 \pm 1.8 \cdot 10^{-6} \) | \(a_{198}= -1.11203460 \pm 2.6 \cdot 10^{-6} \) |
\(a_{199}= -1.04227485 \pm 1.7 \cdot 10^{-6} \) | \(a_{200}= -0.07071068 \pm 4.7 \cdot 10^{-7} \) | \(a_{201}= -0.16790460 \pm 1.3 \cdot 10^{-6} \) |
\(a_{202}= -0.10924181 \pm 1.5 \cdot 10^{-6} \) | \(a_{203}= +2.19890860 \pm 2.1 \cdot 10^{-6} \) | \(a_{204}= -0.58329503 \pm 2.1 \cdot 10^{-6} \) |
\(a_{205}= +0.62217439 \pm 1.0 \cdot 10^{-6} \) | \(a_{206}= -0.18479672 \pm 2.1 \cdot 10^{-6} \) | \(a_{207}= -1.04349655 \pm 1.3 \cdot 10^{-6} \) |
\(a_{208}= +0.00545291 \pm 1.4 \cdot 10^{-6} \) | \(a_{209}= +1.92616509 \pm 1.2 \cdot 10^{-6} \) | \(a_{210}= +0.74441479 \pm 2.9 \cdot 10^{-6} \) |
\(a_{211}= -0.09844428 \pm 1.8 \cdot 10^{-6} \) | \(a_{212}= +0.60339579 \pm 1.4 \cdot 10^{-6} \) | \(a_{213}= -2.86266080 \pm 1.2 \cdot 10^{-6} \) |
\(a_{214}= -0.16913342 \pm 8.7 \cdot 10^{-7} \) | \(a_{215}= -0.38077835 \pm 1.4 \cdot 10^{-6} \) | \(a_{216}= +0.14114747 \pm 1.5 \cdot 10^{-6} \) |
\(a_{217}= -0.83277970 \pm 1.3 \cdot 10^{-6} \) | \(a_{218}= +1.19646151 \pm 1.5 \cdot 10^{-6} \) | \(a_{219}= +0.78520305 \pm 1.4 \cdot 10^{-6} \) |
\(a_{220}= -0.27793359 \pm 1.2 \cdot 10^{-6} \) | \(a_{221}= +0.01690630 \pm 7.8 \cdot 10^{-7} \) | \(a_{222}= +0.02873607 \pm 2.8 \cdot 10^{-6} \) |
\(a_{223}= -1.22935553 \pm 1.7 \cdot 10^{-6} \) | \(a_{224}= +0.27649143 \pm 1.6 \cdot 10^{-6} \) | \(a_{225}= +0.25305054 \pm 1.4 \cdot 10^{-6} \) |
\(a_{226}= -0.51269622 \pm 1.2 \cdot 10^{-6} \) | \(a_{227}= -0.57800154 \pm 1.4 \cdot 10^{-6} \) | \(a_{228}= -1.16618058 \pm 2.4 \cdot 10^{-6} \) |
\(a_{229}= -1.46197114 \pm 9.9 \cdot 10^{-7} \) | \(a_{230}= -0.26080370 \pm 1.9 \cdot 10^{-6} \) | \(a_{231}= +2.92597779 \pm 1.1 \cdot 10^{-6} \) |
\(a_{232}= +0.49705622 \pm 2.0 \cdot 10^{-6} \) | \(a_{233}= +0.65180354 \pm 1.8 \cdot 10^{-6} \) | \(a_{234}= -0.01951421 \pm 2.8 \cdot 10^{-6} \) |
\(a_{235}= +0.29896089 \pm 1.0 \cdot 10^{-6} \) | \(a_{236}= +0.45112234 \pm 1.0 \cdot 10^{-6} \) | \(a_{237}= +2.52713591 \pm 1.2 \cdot 10^{-6} \) |
\(a_{238}= +0.85723839 \pm 2.4 \cdot 10^{-6} \) | \(a_{239}= -0.90880472 \pm 1.6 \cdot 10^{-6} \) | \(a_{240}= +0.16827257 \pm 1.3 \cdot 10^{-6} \) |
\(a_{241}= -0.27164285 \pm 1.2 \cdot 10^{-6} \) | \(a_{242}= -0.38533189 \pm 1.3 \cdot 10^{-6} \) | \(a_{243}= +1.39918005 \pm 1.5 \cdot 10^{-6} \) |
\(a_{244}= -0.50058032 \pm 1.4 \cdot 10^{-6} \) | \(a_{245}= -0.64681414 \pm 1.6 \cdot 10^{-6} \) | \(a_{246}= -1.48060926 \pm 2.3 \cdot 10^{-6} \) |
\(a_{247}= +0.03380074 \pm 9.6 \cdot 10^{-7} \) | \(a_{248}= -0.18824718 \pm 1.2 \cdot 10^{-6} \) | \(a_{249}= -0.25880476 \pm 1.3 \cdot 10^{-6} \) |
\(a_{250}= +0.06324555 \pm 5.5 \cdot 10^{-7} \) | \(a_{251}= +0.30054214 \pm 1.5 \cdot 10^{-6} \) | \(a_{252}= -0.98947297 \pm 3.0 \cdot 10^{-6} \) |
\(a_{253}= -1.02510839 \pm 1.1 \cdot 10^{-6} \) | \(a_{254}= +0.38945550 \pm 1.8 \cdot 10^{-6} \) | \(a_{255}= +0.52171493 \pm 2.1 \cdot 10^{-6} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= -1.58287403 \pm 1.3 \cdot 10^{-6} \) | \(a_{258}= +0.90615101 \pm 2.7 \cdot 10^{-6} \) |
\(a_{259}= -0.04223191 \pm 1.0 \cdot 10^{-6} \) | \(a_{260}= -0.00487723 \pm 1.4 \cdot 10^{-6} \) | \(a_{261}= -1.77880268 \pm 1.4 \cdot 10^{-6} \) |
\(a_{262}= -0.69352809 \pm 1.4 \cdot 10^{-6} \) | \(a_{263}= +1.11857861 \pm 1.9 \cdot 10^{-6} \) | \(a_{264}= +0.66140788 \pm 2.5 \cdot 10^{-6} \) |
\(a_{265}= -0.53969360 \pm 1.4 \cdot 10^{-6} \) | \(a_{266}= +1.71387500 \pm 2.7 \cdot 10^{-6} \) | \(a_{267}= -0.21763013 \pm 1.2 \cdot 10^{-6} \) |
\(a_{268}= +0.05577946 \pm 1.1 \cdot 10^{-6} \) | \(a_{269}= -0.76389630 \pm 2.1 \cdot 10^{-6} \) | \(a_{270}= -0.12624614 \pm 1.5 \cdot 10^{-6} \) |
\(a_{271}= +0.62938231 \pm 2.2 \cdot 10^{-6} \) | \(a_{272}= +0.19377598 \pm 8.6 \cdot 10^{-7} \) | \(a_{273}= +0.05134565 \pm 1.0 \cdot 10^{-6} \) |
\(a_{274}= -0.82725242 \pm 1.6 \cdot 10^{-6} \) | \(a_{275}= +0.24859136 \pm 1.2 \cdot 10^{-6} \) | \(a_{276}= +0.62064332 \pm 3.2 \cdot 10^{-6} \) |
\(a_{277}= +1.17451032 \pm 1.3 \cdot 10^{-6} \) | \(a_{278}= -0.18973538 \pm 1.5 \cdot 10^{-6} \) | \(a_{279}= +0.67367546 \pm 1.3 \cdot 10^{-6} \) |
\(a_{280}= -0.24730145 \pm 1.6 \cdot 10^{-6} \) | \(a_{281}= -0.29839288 \pm 1.0 \cdot 10^{-6} \) | \(a_{282}= -0.71144726 \pm 2.3 \cdot 10^{-6} \) |
\(a_{283}= -1.40016777 \pm 1.2 \cdot 10^{-6} \) | \(a_{284}= +0.95100230 \pm 1.2 \cdot 10^{-6} \) | \(a_{285}= +1.04306362 \pm 2.4 \cdot 10^{-6} \) |
\(a_{286}= -0.01917034 \pm 2.7 \cdot 10^{-6} \) | \(a_{287}= +2.17597449 \pm 9.5 \cdot 10^{-7} \) | \(a_{288}= -0.22366719 \pm 1.4 \cdot 10^{-6} \) |
\(a_{289}= -0.39921389 \pm 1.3 \cdot 10^{-6} \) | \(a_{290}= -0.44458060 \pm 2.0 \cdot 10^{-6} \) | \(a_{291}= +0.18979322 \pm 1.3 \cdot 10^{-6} \) |
\(a_{292}= -0.26085169 \pm 1.8 \cdot 10^{-6} \) | \(a_{293}= -0.59491741 \pm 6.0 \cdot 10^{-7} \) | \(a_{294}= +1.53924530 \pm 2.9 \cdot 10^{-6} \) |
\(a_{295}= -0.40349609 \pm 1.0 \cdot 10^{-6} \) | \(a_{296}= -0.00954639 \pm 1.5 \cdot 10^{-6} \) | \(a_{297}= -0.49621985 \pm 1.2 \cdot 10^{-6} \) |
\(a_{298}= -0.33084637 \pm 1.9 \cdot 10^{-6} \) | \(a_{299}= -0.01798881 \pm 2.0 \cdot 10^{-6} \) | \(a_{300}= -0.15050756 \pm 1.3 \cdot 10^{-6} \) |
\(a_{301}= -1.33172306 \pm 1.5 \cdot 10^{-6} \) | \(a_{302}= -0.31300623 \pm 2.2 \cdot 10^{-6} \) | \(a_{303}= -0.23252102 \pm 1.6 \cdot 10^{-6} \) |
\(a_{304}= +0.38741594 \pm 1.1 \cdot 10^{-6} \) | \(a_{305}= +0.44773265 \pm 1.4 \cdot 10^{-6} \) | \(a_{306}= -0.69346127 \pm 2.2 \cdot 10^{-6} \) |
\(a_{307}= -0.58430595 \pm 1.6 \cdot 10^{-6} \) | \(a_{308}= -0.97203679 \pm 2.8 \cdot 10^{-6} \) | \(a_{309}= -0.39333952 \pm 1.3 \cdot 10^{-6} \) |
\(a_{310}= +0.16837339 \pm 1.2 \cdot 10^{-6} \) | \(a_{311}= +1.59846009 \pm 8.1 \cdot 10^{-7} \) | \(a_{312}= +0.01160652 \pm 2.7 \cdot 10^{-6} \) |
\(a_{313}= -0.10599591 \pm 1.6 \cdot 10^{-6} \) | \(a_{314}= -0.13972377 \pm 7.7 \cdot 10^{-7} \) | \(a_{315}= +0.88501153 \pm 3.0 \cdot 10^{-6} \) |
\(a_{316}= -0.83953784 \pm 1.6 \cdot 10^{-6} \) | \(a_{317}= -0.30158680 \pm 1.6 \cdot 10^{-6} \) | \(a_{318}= +1.28432696 \pm 2.7 \cdot 10^{-6} \) |
\(a_{319}= -1.74745718 \pm 1.5 \cdot 10^{-6} \) | \(a_{320}= -0.05590170 \pm 6.9 \cdot 10^{-7} \) | \(a_{321}= -0.36000021 \pm 7.2 \cdot 10^{-7} \) |
\(a_{322}= -0.91212723 \pm 3.6 \cdot 10^{-6} \) | \(a_{323}= +1.20115048 \pm 7.4 \cdot 10^{-7} \) | \(a_{324}= -0.33219417 \pm 8.6 \cdot 10^{-7} \) |
\(a_{325}= +0.00436233 \pm 1.4 \cdot 10^{-6} \) | \(a_{326}= +0.30325573 \pm 1.8 \cdot 10^{-6} \) | \(a_{327}= +2.54666638 \pm 1.1 \cdot 10^{-6} \) |
\(a_{328}= +0.49187204 \pm 1.0 \cdot 10^{-6} \) | \(a_{329}= +1.04557706 \pm 8.0 \cdot 10^{-7} \) | \(a_{330}= -0.59158119 \pm 2.5 \cdot 10^{-6} \) |
\(a_{331}= -0.66832188 \pm 1.2 \cdot 10^{-6} \) | \(a_{332}= +0.08597733 \pm 1.9 \cdot 10^{-6} \) | \(a_{333}= +0.03416342 \pm 1.4 \cdot 10^{-6} \) |
\(a_{334}= +1.07124054 \pm 1.1 \cdot 10^{-6} \) | \(a_{335}= -0.04989066 \pm 1.1 \cdot 10^{-6} \) | \(a_{336}= +0.58851157 \pm 2.9 \cdot 10^{-6} \) |
\(a_{337}= -0.63706703 \pm 1.8 \cdot 10^{-6} \) | \(a_{338}= +0.70677038 \pm 9.1 \cdot 10^{-7} \) | \(a_{339}= -1.09127307 \pm 1.1 \cdot 10^{-6} \) |
\(a_{340}= -0.17331851 \pm 8.6 \cdot 10^{-7} \) | \(a_{341}= +0.66180416 \pm 8.2 \cdot 10^{-7} \) | \(a_{342}= -1.38643573 \pm 2.5 \cdot 10^{-6} \) |
\(a_{343}= -0.69807710 \pm 1.0 \cdot 10^{-6} \) | \(a_{344}= -0.30103172 \pm 1.4 \cdot 10^{-6} \) | \(a_{345}= -0.55512026 \pm 3.2 \cdot 10^{-6} \) |
\(a_{346}= +0.87216601 \pm 1.4 \cdot 10^{-6} \) | \(a_{347}= -0.31887491 \pm 2.0 \cdot 10^{-6} \) | \(a_{348}= +1.05798337 \pm 3.3 \cdot 10^{-6} \) |
\(a_{349}= -1.09080937 \pm 1.3 \cdot 10^{-6} \) | \(a_{350}= +0.22119315 \pm 1.6 \cdot 10^{-6} \) | \(a_{351}= -0.00870777 \pm 1.4 \cdot 10^{-6} \) |
\(a_{352}= -0.21972579 \pm 1.2 \cdot 10^{-6} \) | \(a_{353}= -1.23961247 \pm 1.7 \cdot 10^{-6} \) | \(a_{354}= +0.96021317 \pm 2.3 \cdot 10^{-6} \) |
\(a_{355}= -0.85060232 \pm 1.2 \cdot 10^{-6} \) | \(a_{356}= +0.07229873 \pm 1.9 \cdot 10^{-6} \) | \(a_{357}= +1.82463053 \pm 1.1 \cdot 10^{-6} \) |
\(a_{358}= -0.16173535 \pm 1.4 \cdot 10^{-6} \) | \(a_{359}= +1.35480932 \pm 1.9 \cdot 10^{-6} \) | \(a_{360}= +0.20005401 \pm 1.4 \cdot 10^{-6} \) |
\(a_{361}= +1.40145775 \pm 1.0 \cdot 10^{-6} \) | \(a_{362}= -0.78568735 \pm 1.2 \cdot 10^{-6} \) | \(a_{363}= -0.82017831 \pm 1.0 \cdot 10^{-6} \) |
\(a_{364}= -0.01705750 \pm 3.0 \cdot 10^{-6} \) | \(a_{365}= +0.23331284 \pm 1.8 \cdot 10^{-6} \) | \(a_{366}= -1.06548439 \pm 2.7 \cdot 10^{-6} \) |
\(a_{367}= +0.67452644 \pm 1.6 \cdot 10^{-6} \) | \(a_{368}= -0.20618343 \pm 1.9 \cdot 10^{-6} \) | \(a_{369}= -1.76025018 \pm 1.3 \cdot 10^{-6} \) |
\(a_{370}= +0.00853855 \pm 1.5 \cdot 10^{-6} \) | \(a_{371}= -1.88750860 \pm 1.1 \cdot 10^{-6} \) | \(a_{372}= -0.40068381 \pm 2.5 \cdot 10^{-6} \) |
\(a_{373}= +0.65098507 \pm 2.4 \cdot 10^{-6} \) | \(a_{374}= -0.68124131 \pm 2.1 \cdot 10^{-6} \) | \(a_{375}= +0.13461806 \pm 1.3 \cdot 10^{-6} \) |
\(a_{376}= +0.23634934 \pm 1.0 \cdot 10^{-6} \) | \(a_{377}= -0.03066473 \pm 1.6 \cdot 10^{-6} \) | \(a_{378}= -0.44152955 \pm 3.2 \cdot 10^{-6} \) |
\(a_{379}= -0.70192902 \pm 1.8 \cdot 10^{-6} \) | \(a_{380}= -0.34651535 \pm 1.1 \cdot 10^{-6} \) | \(a_{381}= +0.82895540 \pm 1.3 \cdot 10^{-6} \) |
\(a_{382}= +0.37871333 \pm 1.1 \cdot 10^{-6} \) | \(a_{383}= +1.97661108 \pm 1.8 \cdot 10^{-6} \) | \(a_{384}= +0.13303115 \pm 1.3 \cdot 10^{-6} \) |
\(a_{385}= +0.86941614 \pm 2.8 \cdot 10^{-6} \) | \(a_{386}= -0.20737513 \pm 1.7 \cdot 10^{-6} \) | \(a_{387}= +1.07729468 \pm 1.4 \cdot 10^{-6} \) |
\(a_{388}= -0.06305106 \pm 2.1 \cdot 10^{-6} \) | \(a_{389}= -0.73807647 \pm 1.4 \cdot 10^{-6} \) | \(a_{390}= -0.01038119 \pm 2.7 \cdot 10^{-6} \) |
\(a_{391}= -0.63925436 \pm 7.1 \cdot 10^{-7} \) | \(a_{392}= -0.51135148 \pm 1.6 \cdot 10^{-6} \) | \(a_{393}= -1.47617342 \pm 1.0 \cdot 10^{-6} \) |
\(a_{394}= +1.27305470 \pm 1.8 \cdot 10^{-6} \) | \(a_{395}= +0.75090547 \pm 1.6 \cdot 10^{-6} \) | \(a_{396}= +0.78632721 \pm 2.6 \cdot 10^{-6} \) |
\(a_{397}= -1.36246499 \pm 1.8 \cdot 10^{-6} \) | \(a_{398}= +0.73699961 \pm 1.7 \cdot 10^{-6} \) | \(a_{399}= +3.64798017 \pm 1.1 \cdot 10^{-6} \) |
\(a_{400}= +0.05 \) | \(a_{401}= +1.22746076 \pm 1.6 \cdot 10^{-6} \) | \(a_{402}= +0.11872648 \pm 2.4 \cdot 10^{-6} \) |
\(a_{403}= +0.01161347 \pm 9.1 \cdot 10^{-7} \) | \(a_{404}= +0.07724563 \pm 1.5 \cdot 10^{-6} \) | \(a_{405}= +0.29712350 \pm 8.6 \cdot 10^{-7} \) |
\(a_{406}= -1.55486318 \pm 3.6 \cdot 10^{-6} \) | \(a_{407}= +0.03356140 \pm 7.4 \cdot 10^{-7} \) | \(a_{408}= +0.41245187 \pm 2.1 \cdot 10^{-6} \) |
\(a_{409}= -1.04538897 \pm 2.0 \cdot 10^{-6} \) | \(a_{410}= -0.43994373 \pm 1.0 \cdot 10^{-6} \) | \(a_{411}= -1.76080544 \pm 9.2 \cdot 10^{-7} \) |
\(a_{412}= +0.13067102 \pm 2.1 \cdot 10^{-6} \) | \(a_{413}= -1.41117539 \pm 1.4 \cdot 10^{-6} \) | \(a_{414}= +0.73786349 \pm 3.3 \cdot 10^{-6} \) |
\(a_{415}= -0.07690046 \pm 1.9 \cdot 10^{-6} \) | \(a_{416}= -0.00385579 \pm 1.4 \cdot 10^{-6} \) | \(a_{417}= -0.40385145 \pm 1.5 \cdot 10^{-6} \) |
\(a_{418}= -1.36200440 \pm 2.3 \cdot 10^{-6} \) | \(a_{419}= -0.92688724 \pm 1.3 \cdot 10^{-6} \) | \(a_{420}= -0.52638075 \pm 2.9 \cdot 10^{-6} \) |
\(a_{421}= -0.94718873 \pm 1.5 \cdot 10^{-6} \) | \(a_{422}= +0.06961062 \pm 1.8 \cdot 10^{-6} \) | \(a_{423}= -0.84581746 \pm 1.0 \cdot 10^{-6} \) |
\(a_{424}= -0.42666525 \pm 1.4 \cdot 10^{-6} \) | \(a_{425}= +0.15502079 \pm 8.6 \cdot 10^{-7} \) | \(a_{426}= +2.02420686 \pm 2.5 \cdot 10^{-6} \) |
\(a_{427}= +1.56588704 \pm 2.0 \cdot 10^{-6} \) | \(a_{428}= +0.11959539 \pm 8.7 \cdot 10^{-7} \) | \(a_{429}= -0.04080403 \pm 9.8 \cdot 10^{-7} \) |
\(a_{430}= +0.26925095 \pm 1.4 \cdot 10^{-6} \) | \(a_{431}= +0.81953033 \pm 9.9 \cdot 10^{-7} \) | \(a_{432}= -0.09980634 \pm 1.5 \cdot 10^{-6} \) |
\(a_{433}= +1.35638538 \pm 1.1 \cdot 10^{-6} \) | \(a_{434}= +0.58886417 \pm 2.8 \cdot 10^{-6} \) | \(a_{435}= -0.94628909 \pm 3.3 \cdot 10^{-6} \) |
\(a_{436}= -0.84602605 \pm 1.5 \cdot 10^{-6} \) | \(a_{437}= -1.27805996 \pm 1.0 \cdot 10^{-6} \) | \(a_{438}= -0.55522240 \pm 3.1 \cdot 10^{-6} \) |
\(a_{439}= -0.65587320 \pm 1.6 \cdot 10^{-6} \) | \(a_{440}= +0.19652873 \pm 1.2 \cdot 10^{-6} \) | \(a_{441}= +1.82996074 \pm 1.1 \cdot 10^{-6} \) |
\(a_{442}= -0.01195456 \pm 2.3 \cdot 10^{-6} \) | \(a_{443}= +1.16851802 \pm 2.2 \cdot 10^{-6} \) | \(a_{444}= -0.02031947 \pm 2.8 \cdot 10^{-6} \) |
\(a_{445}= -0.06466595 \pm 1.9 \cdot 10^{-6} \) | \(a_{446}= +0.86928563 \pm 1.7 \cdot 10^{-6} \) | \(a_{447}= -0.70420597 \pm 1.8 \cdot 10^{-6} \) |
\(a_{448}= -0.19550897 \pm 1.6 \cdot 10^{-6} \) | \(a_{449}= +0.52255605 \pm 1.3 \cdot 10^{-6} \) | \(a_{450}= -0.17893375 \pm 1.4 \cdot 10^{-6} \) |
\(a_{451}= -1.72923161 \pm 6.8 \cdot 10^{-7} \) | \(a_{452}= +0.36253097 \pm 1.2 \cdot 10^{-6} \) | \(a_{453}= -0.66623326 \pm 1.7 \cdot 10^{-6} \) |
\(a_{454}= +0.40870881 \pm 1.4 \cdot 10^{-6} \) | \(a_{455}= +0.01525669 \pm 3.0 \cdot 10^{-6} \) | \(a_{456}= +0.82461420 \pm 2.4 \cdot 10^{-6} \) |
\(a_{457}= +0.91470305 \pm 1.5 \cdot 10^{-6} \) | \(a_{458}= +1.03376971 \pm 1.0 \cdot 10^{-6} \) | \(a_{459}= -0.30944114 \pm 8.1 \cdot 10^{-7} \) |
\(a_{460}= +0.18441607 \pm 1.9 \cdot 10^{-6} \) | \(a_{461}= +0.01792302 \pm 1.3 \cdot 10^{-6} \) | \(a_{462}= -2.06897874 \pm 4.1 \cdot 10^{-6} \) |
\(a_{463}= +1.53648278 \pm 1.4 \cdot 10^{-6} \) | \(a_{464}= -0.35147183 \pm 2.0 \cdot 10^{-6} \) | \(a_{465}= +0.35838249 \pm 2.5 \cdot 10^{-6} \) |
\(a_{466}= -0.46089471 \pm 1.8 \cdot 10^{-6} \) | \(a_{467}= +1.44721620 \pm 6.5 \cdot 10^{-7} \) | \(a_{468}= +0.01379863 \pm 2.8 \cdot 10^{-6} \) |
\(a_{469}= -0.17448614 \pm 9.5 \cdot 10^{-7} \) | \(a_{470}= -0.21139727 \pm 1.0 \cdot 10^{-6} \) | \(a_{471}= -0.29740183 \pm 5.5 \cdot 10^{-7} \) |
\(a_{472}= -0.31899166 \pm 1.0 \cdot 10^{-6} \) | \(a_{473}= +1.05831094 \pm 9.3 \cdot 10^{-7} \) | \(a_{474}= -1.78695494 \pm 2.9 \cdot 10^{-6} \) |
\(a_{475}= +0.30993275 \pm 1.1 \cdot 10^{-6} \) | \(a_{476}= -0.60615908 \pm 2.4 \cdot 10^{-6} \) | \(a_{477}= +1.52689628 \pm 1.3 \cdot 10^{-6} \) |
\(a_{478}= +0.64262198 \pm 1.6 \cdot 10^{-6} \) | \(a_{479}= -1.74513843 \pm 1.7 \cdot 10^{-6} \) | \(a_{480}= -0.11898668 \pm 1.3 \cdot 10^{-6} \) |
\(a_{481}= +0.00058894 \pm 1.5 \cdot 10^{-6} \) | \(a_{482}= +0.19208050 \pm 1.2 \cdot 10^{-6} \) | \(a_{483}= -1.94146134 \pm 1.0 \cdot 10^{-6} \) |
\(a_{484}= +0.27247080 \pm 1.3 \cdot 10^{-6} \) | \(a_{485}= +0.05639458 \pm 2.1 \cdot 10^{-6} \) | \(a_{486}= -0.98936970 \pm 1.6 \cdot 10^{-6} \) |
\(a_{487}= +0.17301345 \pm 1.1 \cdot 10^{-6} \) | \(a_{488}= +0.35396374 \pm 1.4 \cdot 10^{-6} \) | \(a_{489}= +0.64547933 \pm 1.5 \cdot 10^{-6} \) |
\(a_{490}= +0.45736666 \pm 1.6 \cdot 10^{-6} \) | \(a_{491}= -0.52340309 \pm 1.9 \cdot 10^{-6} \) | \(a_{492}= +1.04694885 \pm 2.3 \cdot 10^{-6} \) |
\(a_{493}= -1.08970879 \pm 8.1 \cdot 10^{-7} \) | \(a_{494}= -0.02390073 \pm 2.5 \cdot 10^{-6} \) | \(a_{495}= -0.70331243 \pm 2.6 \cdot 10^{-6} \) |
\(a_{496}= +0.13311085 \pm 1.2 \cdot 10^{-6} \) | \(a_{497}= -2.97487164 \pm 1.6 \cdot 10^{-6} \) | \(a_{498}= +0.18300260 \pm 3.2 \cdot 10^{-6} \) |
\(a_{499}= -0.30986198 \pm 1.6 \cdot 10^{-6} \) | \(a_{500}= -0.04472136 \pm 9.8 \cdot 10^{-7} \) | \(a_{501}= +2.28013375 \pm 9.4 \cdot 10^{-7} \) |
\(a_{502}= -0.21251539 \pm 1.5 \cdot 10^{-6} \) | \(a_{503}= +0.57263507 \pm 1.8 \cdot 10^{-6} \) | \(a_{504}= +0.69966305 \pm 3.0 \cdot 10^{-6} \) |
\(a_{505}= -0.06909059 \pm 1.5 \cdot 10^{-6} \) | \(a_{506}= +0.72486109 \pm 3.2 \cdot 10^{-6} \) | \(a_{507}= +1.50435960 \pm 5.5 \cdot 10^{-7} \) |
\(a_{508}= -0.27538663 \pm 1.8 \cdot 10^{-6} \) | \(a_{509}= -0.36236371 \pm 1.2 \cdot 10^{-6} \) | \(a_{510}= -0.36890817 \pm 2.1 \cdot 10^{-6} \) |
\(a_{511}= +0.81598151 \pm 2.4 \cdot 10^{-6} \) | \(a_{512}= -0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.61866504 \pm 1.0 \cdot 10^{-6} \) |
\(a_{514}= +1.11926096 \pm 1.3 \cdot 10^{-6} \) | \(a_{515}= -0.11687571 \pm 2.1 \cdot 10^{-6} \) | \(a_{516}= -0.64074553 \pm 2.7 \cdot 10^{-6} \) |
\(a_{517}= -0.83091273 \pm 5.3 \cdot 10^{-7} \) | \(a_{518}= +0.02986247 \pm 3.1 \cdot 10^{-6} \) | \(a_{519}= +1.85640395 \pm 1.4 \cdot 10^{-6} \) |
\(a_{520}= +0.00344873 \pm 1.4 \cdot 10^{-6} \) | \(a_{521}= -1.65909407 \pm 1.4 \cdot 10^{-6} \) | \(a_{522}= +1.25780344 \pm 3.4 \cdot 10^{-6} \) |
\(a_{523}= -1.21087470 \pm 1.7 \cdot 10^{-6} \) | \(a_{524}= +0.49039842 \pm 1.4 \cdot 10^{-6} \) | \(a_{525}= +0.47080925 \pm 2.9 \cdot 10^{-6} \) |
\(a_{526}= -0.79095452 \pm 1.9 \cdot 10^{-6} \) | \(a_{527}= +0.41269899 \pm 5.6 \cdot 10^{-7} \) | \(a_{528}= -0.46768600 \pm 2.5 \cdot 10^{-6} \) |
\(a_{529}= -0.31981428 \pm 2.1 \cdot 10^{-6} \) | \(a_{530}= +0.38162101 \pm 1.4 \cdot 10^{-6} \) | \(a_{531}= +1.14156749 \pm 6.1 \cdot 10^{-7} \) |
\(a_{532}= -1.21189264 \pm 2.7 \cdot 10^{-6} \) | \(a_{533}= -0.03034491 \pm 9.2 \cdot 10^{-7} \) | \(a_{534}= +0.15388774 \pm 3.2 \cdot 10^{-6} \) |
\(a_{535}= -0.10696937 \pm 8.7 \cdot 10^{-7} \) | \(a_{536}= -0.03944203 \pm 1.1 \cdot 10^{-6} \) | \(a_{537}= -0.34425342 \pm 1.4 \cdot 10^{-6} \) |
\(a_{538}= +0.54015625 \pm 2.2 \cdot 10^{-6} \) | \(a_{539}= +1.79771375 \pm 1.1 \cdot 10^{-6} \) | \(a_{540}= +0.08926950 \pm 1.5 \cdot 10^{-6} \) |
\(a_{541}= +1.52927361 \pm 1.6 \cdot 10^{-6} \) | \(a_{542}= -0.44504050 \pm 2.2 \cdot 10^{-6} \) | \(a_{543}= -1.67233424 \pm 8.3 \cdot 10^{-7} \) |
\(a_{544}= -0.13702031 \pm 8.6 \cdot 10^{-7} \) | \(a_{545}= +0.75670870 \pm 1.5 \cdot 10^{-6} \) | \(a_{546}= -0.03630686 \pm 4.3 \cdot 10^{-6} \) |
\(a_{547}= +0.12697958 \pm 1.6 \cdot 10^{-6} \) | \(a_{548}= +0.58495580 \pm 1.6 \cdot 10^{-6} \) | \(a_{549}= -1.26672117 \pm 1.2 \cdot 10^{-6} \) |
\(a_{550}= -0.17578064 \pm 1.2 \cdot 10^{-6} \) | \(a_{551}= -2.17865260 \pm 1.3 \cdot 10^{-6} \) | \(a_{552}= -0.43886110 \pm 3.2 \cdot 10^{-6} \) |
\(a_{553}= +2.62619482 \pm 9.2 \cdot 10^{-7} \) | \(a_{554}= -0.83050421 \pm 1.3 \cdot 10^{-6} \) | \(a_{555}= +0.01817429 \pm 2.8 \cdot 10^{-6} \) |
\(a_{556}= +0.13416317 \pm 1.5 \cdot 10^{-6} \) | \(a_{557}= -0.80181707 \pm 2.0 \cdot 10^{-6} \) | \(a_{558}= -0.47636049 \pm 2.5 \cdot 10^{-6} \) |
\(a_{559}= +0.01857146 \pm 1.0 \cdot 10^{-6} \) | \(a_{560}= +0.17486854 \pm 1.6 \cdot 10^{-6} \) | \(a_{561}= -1.45002103 \pm 8.1 \cdot 10^{-7} \) |
\(a_{562}= +0.21099563 \pm 1.0 \cdot 10^{-6} \) | \(a_{563}= -0.30204597 \pm 1.1 \cdot 10^{-6} \) | \(a_{564}= +0.50306918 \pm 2.3 \cdot 10^{-6} \) |
\(a_{565}= -0.32425756 \pm 1.2 \cdot 10^{-6} \) | \(a_{566}= +0.99006813 \pm 1.2 \cdot 10^{-6} \) | \(a_{567}= +1.03915102 \pm 9.7 \cdot 10^{-7} \) |
\(a_{568}= -0.67246018 \pm 1.2 \cdot 10^{-6} \) | \(a_{569}= +0.33874939 \pm 1.6 \cdot 10^{-6} \) | \(a_{570}= -0.73755736 \pm 2.4 \cdot 10^{-6} \) |
\(a_{571}= -1.66337517 \pm 1.6 \cdot 10^{-6} \) | \(a_{572}= +0.01355547 \pm 2.7 \cdot 10^{-6} \) | \(a_{573}= +0.80609072 \pm 1.2 \cdot 10^{-6} \) |
\(a_{574}= -1.53864632 \pm 2.6 \cdot 10^{-6} \) | \(a_{575}= -0.16494674 \pm 1.9 \cdot 10^{-6} \) | \(a_{576}= +0.15815658 \pm 1.4 \cdot 10^{-6} \) |
\(a_{577}= -0.34756653 \pm 1.8 \cdot 10^{-6} \) | \(a_{578}= +0.28228685 \pm 1.3 \cdot 10^{-6} \) | \(a_{579}= -0.44139762 \pm 1.5 \cdot 10^{-6} \) |
\(a_{580}= +0.31436596 \pm 2.0 \cdot 10^{-6} \) | \(a_{581}= -0.26894941 \pm 1.4 \cdot 10^{-6} \) | \(a_{582}= -0.13420407 \pm 3.4 \cdot 10^{-6} \) |
\(a_{583}= +1.49998979 \pm 7.3 \cdot 10^{-7} \) | \(a_{584}= +0.18445000 \pm 1.8 \cdot 10^{-6} \) | \(a_{585}= -0.01234187 \pm 2.8 \cdot 10^{-6} \) |
\(a_{586}= +0.42067013 \pm 6.1 \cdot 10^{-7} \) | \(a_{587}= +0.64888134 \pm 1.8 \cdot 10^{-6} \) | \(a_{588}= -1.08841079 \pm 2.9 \cdot 10^{-6} \) |
\(a_{589}= +0.82510827 \pm 7.4 \cdot 10^{-7} \) | \(a_{590}= +0.28531482 \pm 1.0 \cdot 10^{-6} \) | \(a_{591}= +2.70969486 \pm 1.0 \cdot 10^{-6} \) |
\(a_{592}= +0.00675032 \pm 1.5 \cdot 10^{-6} \) | \(a_{593}= -1.12158059 \pm 1.0 \cdot 10^{-6} \) | \(a_{594}= +0.35088042 \pm 2.8 \cdot 10^{-6} \) |
\(a_{595}= +0.54216516 \pm 2.4 \cdot 10^{-6} \) | \(a_{596}= +0.23394371 \pm 1.9 \cdot 10^{-6} \) | \(a_{597}= +1.56870248 \pm 1.1 \cdot 10^{-6} \) |
\(a_{598}= +0.01272001 \pm 3.4 \cdot 10^{-6} \) | \(a_{599}= -0.06542811 \pm 1.2 \cdot 10^{-6} \) | \(a_{600}= +0.10642492 \pm 1.3 \cdot 10^{-6} \) |
\(a_{601}= +0.39217880 \pm 1.5 \cdot 10^{-6} \) | \(a_{602}= +0.94167040 \pm 3.0 \cdot 10^{-6} \) | \(a_{603}= +0.14115021 \pm 1.5 \cdot 10^{-6} \) |
\(a_{604}= +0.22132883 \pm 2.2 \cdot 10^{-6} \) | \(a_{605}= -0.24370529 \pm 1.3 \cdot 10^{-6} \) | \(a_{606}= +0.16441719 \pm 2.8 \cdot 10^{-6} \) |
\(a_{607}= -0.49346327 \pm 1.7 \cdot 10^{-6} \) | \(a_{608}= -0.27394444 \pm 1.1 \cdot 10^{-6} \) | \(a_{609}= -3.30952376 \pm 1.4 \cdot 10^{-6} \) |
\(a_{610}= -0.31659479 \pm 1.4 \cdot 10^{-6} \) | \(a_{611}= -0.01458103 \pm 9.6 \cdot 10^{-7} \) | \(a_{612}= +0.49035117 \pm 2.2 \cdot 10^{-6} \) |
\(a_{613}= +0.18427562 \pm 1.0 \cdot 10^{-6} \) | \(a_{614}= +0.41316670 \pm 1.6 \cdot 10^{-6} \) | \(a_{615}= -0.93641952 \pm 2.3 \cdot 10^{-6} \) |
\(a_{616}= +0.68733381 \pm 2.8 \cdot 10^{-6} \) | \(a_{617}= +0.58220462 \pm 9.4 \cdot 10^{-7} \) | \(a_{618}= +0.27813304 \pm 3.4 \cdot 10^{-6} \) |
\(a_{619}= -1.38702415 \pm 2.0 \cdot 10^{-6} \) | \(a_{620}= -0.11905797 \pm 1.2 \cdot 10^{-6} \) | \(a_{621}= +0.32925460 \pm 1.8 \cdot 10^{-6} \) |
\(a_{622}= -1.13028197 \pm 8.2 \cdot 10^{-7} \) | \(a_{623}= -0.22616082 \pm 2.2 \cdot 10^{-6} \) | \(a_{624}= -0.00820705 \pm 2.7 \cdot 10^{-6} \) |
\(a_{625}= +0.04 \) | \(a_{626}= +0.07495042 \pm 1.6 \cdot 10^{-6} \) | \(a_{627}= -2.89902415 \pm 1.0 \cdot 10^{-6} \) |
\(a_{628}= +0.09879963 \pm 7.7 \cdot 10^{-7} \) | \(a_{629}= +0.02092878 \pm 7.4 \cdot 10^{-7} \) | \(a_{630}= -0.62579766 \pm 3.0 \cdot 10^{-6} \) |
\(a_{631}= -1.31462909 \pm 1.2 \cdot 10^{-6} \) | \(a_{632}= +0.59364290 \pm 1.6 \cdot 10^{-6} \) | \(a_{633}= +0.14816609 \pm 1.5 \cdot 10^{-6} \) |
\(a_{634}= +0.21325407 \pm 1.6 \cdot 10^{-6} \) | \(a_{635}= +0.24631329 \pm 1.8 \cdot 10^{-6} \) | \(a_{636}= -0.90815630 \pm 2.7 \cdot 10^{-6} \) |
\(a_{637}= +0.03154665 \pm 1.1 \cdot 10^{-6} \) | \(a_{638}= +1.23563882 \pm 3.3 \cdot 10^{-6} \) | \(a_{639}= +2.40651642 \pm 1.2 \cdot 10^{-6} \) |
\(a_{640}= +0.03952847 \pm 1.2 \cdot 10^{-6} \) | \(a_{641}= -0.17851678 \pm 1.2 \cdot 10^{-6} \) | \(a_{642}= +0.25455859 \pm 2.1 \cdot 10^{-6} \) |
\(a_{643}= +1.17857102 \pm 1.7 \cdot 10^{-6} \) | \(a_{644}= +0.64497135 \pm 3.6 \cdot 10^{-6} \) | \(a_{645}= +0.57310022 \pm 2.7 \cdot 10^{-6} \) |
\(a_{646}= -0.84934165 \pm 1.9 \cdot 10^{-6} \) | \(a_{647}= -0.39278081 \pm 1.8 \cdot 10^{-6} \) | \(a_{648}= +0.23489675 \pm 8.6 \cdot 10^{-7} \) |
\(a_{649}= +1.12145115 \pm 1.1 \cdot 10^{-6} \) | \(a_{650}= -0.00308463 \pm 1.4 \cdot 10^{-6} \) | \(a_{651}= +1.25339644 \pm 1.1 \cdot 10^{-6} \) |
\(a_{652}= -0.21443418 \pm 1.8 \cdot 10^{-6} \) | \(a_{653}= -0.45571326 \pm 1.1 \cdot 10^{-6} \) | \(a_{654}= -1.80076507 \pm 2.8 \cdot 10^{-6} \) |
\(a_{655}= -0.43862568 \pm 1.4 \cdot 10^{-6} \) | \(a_{656}= -0.34780606 \pm 1.0 \cdot 10^{-6} \) | \(a_{657}= -0.66008660 \pm 1.5 \cdot 10^{-6} \) |
\(a_{658}= -0.73933463 \pm 2.6 \cdot 10^{-6} \) | \(a_{659}= -1.05954210 \pm 1.7 \cdot 10^{-6} \) | \(a_{660}= +0.41831107 \pm 2.5 \cdot 10^{-6} \) |
\(a_{661}= -0.22036783 \pm 2.2 \cdot 10^{-6} \) | \(a_{662}= +0.47257494 \pm 1.2 \cdot 10^{-6} \) | \(a_{663}= -0.02544526 \pm 9.3 \cdot 10^{-7} \) |
\(a_{664}= -0.06079515 \pm 1.9 \cdot 10^{-6} \) | \(a_{665}= +1.08394973 \pm 2.7 \cdot 10^{-6} \) | \(a_{666}= -0.02415719 \pm 2.9 \cdot 10^{-6} \) |
\(a_{667}= +1.15948268 \pm 2.4 \cdot 10^{-6} \) | \(a_{668}= -0.75748145 \pm 1.1 \cdot 10^{-6} \) | \(a_{669}= +1.85027306 \pm 1.2 \cdot 10^{-6} \) |
\(a_{670}= +0.03527803 \pm 1.1 \cdot 10^{-6} \) | \(a_{671}= -1.24439941 \pm 1.1 \cdot 10^{-6} \) | \(a_{672}= -0.41614052 \pm 2.9 \cdot 10^{-6} \) |
\(a_{673}= +0.45593125 \pm 1.7 \cdot 10^{-6} \) | \(a_{674}= +0.45047441 \pm 1.8 \cdot 10^{-6} \) | \(a_{675}= -0.07984507 \pm 1.5 \cdot 10^{-6} \) |
\(a_{676}= -0.49976213 \pm 9.1 \cdot 10^{-7} \) | \(a_{677}= +0.13300132 \pm 1.2 \cdot 10^{-6} \) | \(a_{678}= +0.77164658 \pm 2.5 \cdot 10^{-6} \) |
\(a_{679}= +0.19723275 \pm 7.7 \cdot 10^{-7} \) | \(a_{680}= +0.12255469 \pm 8.6 \cdot 10^{-7} \) | \(a_{681}= +0.86993603 \pm 1.0 \cdot 10^{-6} \) |
\(a_{682}= -0.46796621 \pm 2.4 \cdot 10^{-6} \) | \(a_{683}= -1.42835723 \pm 2.1 \cdot 10^{-6} \) | \(a_{684}= +0.98035811 \pm 2.5 \cdot 10^{-6} \) |
\(a_{685}= -0.52320037 \pm 1.6 \cdot 10^{-6} \) | \(a_{686}= +0.49361505 \pm 1.0 \cdot 10^{-6} \) | \(a_{687}= +2.20037714 \pm 8.9 \cdot 10^{-7} \) |
\(a_{688}= +0.21286157 \pm 1.4 \cdot 10^{-6} \) | \(a_{689}= +0.02632213 \pm 1.3 \cdot 10^{-6} \) | \(a_{690}= +0.39252930 \pm 3.2 \cdot 10^{-6} \) |
\(a_{691}= +0.74837352 \pm 2.0 \cdot 10^{-6} \) | \(a_{692}= -0.61671450 \pm 1.4 \cdot 10^{-6} \) | \(a_{693}= -2.45974431 \pm 9.6 \cdot 10^{-7} \) |
\(a_{694}= +0.22547861 \pm 2.0 \cdot 10^{-6} \) | \(a_{695}= -0.11999919 \pm 1.5 \cdot 10^{-6} \) | \(a_{696}= -0.74810721 \pm 3.3 \cdot 10^{-6} \) |
\(a_{697}= -1.07834338 \pm 9.9 \cdot 10^{-7} \) | \(a_{698}= +0.77131871 \pm 1.3 \cdot 10^{-6} \) | \(a_{699}= -0.98101363 \pm 1.4 \cdot 10^{-6} \) |
\(a_{700}= -0.15640717 \pm 1.6 \cdot 10^{-6} \) | \(a_{701}= +1.40686381 \pm 1.8 \cdot 10^{-6} \) | \(a_{702}= +0.00615732 \pm 3.0 \cdot 10^{-6} \) |
\(a_{703}= +0.04184288 \pm 8.0 \cdot 10^{-7} \) | \(a_{704}= +0.15536960 \pm 1.2 \cdot 10^{-6} \) | \(a_{705}= -0.44995875 \pm 2.3 \cdot 10^{-6} \) |
\(a_{706}= +0.87653839 \pm 1.8 \cdot 10^{-6} \) | \(a_{707}= -0.24163540 \pm 1.2 \cdot 10^{-6} \) | \(a_{708}= -0.67897324 \pm 2.3 \cdot 10^{-6} \) |
\(a_{709}= +0.89881558 \pm 1.5 \cdot 10^{-6} \) | \(a_{710}= +0.60146667 \pm 1.2 \cdot 10^{-6} \) | \(a_{711}= -2.12445501 \pm 1.3 \cdot 10^{-6} \) |
\(a_{712}= -0.05112293 \pm 1.9 \cdot 10^{-6} \) | \(a_{713}= -0.43912404 \pm 1.1 \cdot 10^{-6} \) | \(a_{714}= -1.29020862 \pm 3.7 \cdot 10^{-6} \) |
\(a_{715}= -0.01212438 \pm 2.7 \cdot 10^{-6} \) | \(a_{716}= +0.11436416 \pm 1.4 \cdot 10^{-6} \) | \(a_{717}= +1.36781984 \pm 1.6 \cdot 10^{-6} \) |
\(a_{718}= -0.95799486 \pm 1.9 \cdot 10^{-6} \) | \(a_{719}= -0.49072655 \pm 1.4 \cdot 10^{-6} \) | \(a_{720}= -0.14145955 \pm 1.4 \cdot 10^{-6} \) |
\(a_{721}= -0.40875768 \pm 2.1 \cdot 10^{-6} \) | \(a_{722}= -0.99098028 \pm 1.1 \cdot 10^{-6} \) | \(a_{723}= +0.40884304 \pm 1.7 \cdot 10^{-6} \) |
\(a_{724}= +0.55556485 \pm 1.2 \cdot 10^{-6} \) | \(a_{725}= -0.28117746 \pm 2.0 \cdot 10^{-6} \) | \(a_{726}= +0.57995365 \pm 2.6 \cdot 10^{-6} \) |
\(a_{727}= -0.33451668 \pm 1.3 \cdot 10^{-6} \) | \(a_{728}= +0.01206147 \pm 3.0 \cdot 10^{-6} \) | \(a_{729}= -1.44148346 \pm 1.0 \cdot 10^{-6} \) |
\(a_{730}= -0.16497709 \pm 1.8 \cdot 10^{-6} \) | \(a_{731}= +0.65995936 \pm 1.0 \cdot 10^{-6} \) | \(a_{732}= +0.75341124 \pm 2.7 \cdot 10^{-6} \) |
\(a_{733}= -0.22715120 \pm 1.1 \cdot 10^{-6} \) | \(a_{734}= -0.47696222 \pm 1.6 \cdot 10^{-6} \) | \(a_{735}= +0.97350420 \pm 2.9 \cdot 10^{-6} \) |
\(a_{736}= +0.14579370 \pm 1.9 \cdot 10^{-6} \) | \(a_{737}= +0.13866291 \pm 5.3 \cdot 10^{-7} \) | \(a_{738}= +1.24468484 \pm 2.4 \cdot 10^{-6} \) |
\(a_{739}= +1.15872520 \pm 2.1 \cdot 10^{-6} \) | \(a_{740}= -0.00603767 \pm 1.5 \cdot 10^{-6} \) | \(a_{741}= -0.05087266 \pm 8.9 \cdot 10^{-7} \) |
\(a_{742}= +1.33467013 \pm 3.0 \cdot 10^{-6} \) | \(a_{743}= +0.38546999 \pm 1.6 \cdot 10^{-6} \) | \(a_{744}= +0.28332624 \pm 2.5 \cdot 10^{-6} \) |
\(a_{745}= -0.20924562 \pm 1.9 \cdot 10^{-6} \) | \(a_{746}= -0.46031595 \pm 2.4 \cdot 10^{-6} \) | \(a_{747}= +0.21756609 \pm 1.5 \cdot 10^{-6} \) |
\(a_{748}= +0.48171035 \pm 2.1 \cdot 10^{-6} \) | \(a_{749}= -0.37411154 \pm 1.0 \cdot 10^{-6} \) | \(a_{750}= -0.09518934 \pm 1.3 \cdot 10^{-6} \) |
\(a_{751}= -1.10468852 \pm 1.1 \cdot 10^{-6} \) | \(a_{752}= -0.16712422 \pm 1.0 \cdot 10^{-6} \) | \(a_{753}= -0.45233866 \pm 9.0 \cdot 10^{-7} \) |
\(a_{754}= +0.02168324 \pm 3.4 \cdot 10^{-6} \) | \(a_{755}= -0.19796252 \pm 2.2 \cdot 10^{-6} \) | \(a_{756}= +0.31220854 \pm 3.2 \cdot 10^{-6} \) |
\(a_{757}= -1.64277512 \pm 2.0 \cdot 10^{-6} \) | \(a_{758}= +0.49633877 \pm 1.8 \cdot 10^{-6} \) | \(a_{759}= +1.54286566 \pm 9.5 \cdot 10^{-7} \) |
\(a_{760}= +0.24502335 \pm 1.1 \cdot 10^{-6} \) | \(a_{761}= -1.23260828 \pm 1.1 \cdot 10^{-6} \) | \(a_{762}= -0.58615999 \pm 3.1 \cdot 10^{-6} \) |
\(a_{763}= +2.64649084 \pm 1.6 \cdot 10^{-6} \) | \(a_{764}= -0.26779077 \pm 1.1 \cdot 10^{-6} \) | \(a_{765}= -0.43858342 \pm 2.2 \cdot 10^{-6} \) |
\(a_{766}= -1.39767510 \pm 1.8 \cdot 10^{-6} \) | \(a_{767}= +0.01967945 \pm 8.9 \cdot 10^{-7} \) | \(a_{768}= -0.09406723 \pm 1.3 \cdot 10^{-6} \) |
\(a_{769}= +0.02042864 \pm 1.2 \cdot 10^{-6} \) | \(a_{770}= -0.61477005 \pm 2.8 \cdot 10^{-6} \) | \(a_{771}= +2.38234514 \pm 8.8 \cdot 10^{-7} \) |
\(a_{772}= +0.14663636 \pm 1.7 \cdot 10^{-6} \) | \(a_{773}= +1.74819423 \pm 2.1 \cdot 10^{-6} \) | \(a_{774}= -0.76176238 \pm 2.7 \cdot 10^{-6} \) |
\(a_{775}= +0.10648868 \pm 1.2 \cdot 10^{-6} \) | \(a_{776}= +0.04458383 \pm 2.1 \cdot 10^{-6} \) | \(a_{777}= +0.06356222 \pm 1.2 \cdot 10^{-6} \) |
\(a_{778}= +0.52189888 \pm 1.4 \cdot 10^{-6} \) | \(a_{779}= -2.15592976 \pm 7.8 \cdot 10^{-7} \) | \(a_{780}= +0.00734061 \pm 2.7 \cdot 10^{-6} \) |
\(a_{781}= +2.36410955 \pm 9.6 \cdot 10^{-7} \) | \(a_{782}= +0.45202109 \pm 2.8 \cdot 10^{-6} \) | \(a_{783}= +0.56126584 \pm 1.8 \cdot 10^{-6} \) |
\(a_{784}= +0.36158010 \pm 1.6 \cdot 10^{-6} \) | \(a_{785}= -0.08836907 \pm 7.7 \cdot 10^{-7} \) | \(a_{786}= +1.04381223 \pm 2.7 \cdot 10^{-6} \) |
\(a_{787}= -1.83975574 \pm 1.0 \cdot 10^{-6} \) | \(a_{788}= -0.90018561 \pm 1.8 \cdot 10^{-6} \) | \(a_{789}= -1.68354542 \pm 1.7 \cdot 10^{-6} \) |
\(a_{790}= -0.53097035 \pm 1.6 \cdot 10^{-6} \) | \(a_{791}= -1.13404889 \pm 1.3 \cdot 10^{-6} \) | \(a_{792}= -0.55601730 \pm 2.6 \cdot 10^{-6} \) |
\(a_{793}= -0.02183697 \pm 6.8 \cdot 10^{-7} \) | \(a_{794}= +0.96340823 \pm 1.8 \cdot 10^{-6} \) | \(a_{795}= +0.81227969 \pm 2.7 \cdot 10^{-6} \) |
\(a_{796}= -0.52113742 \pm 1.7 \cdot 10^{-6} \) | \(a_{797}= +0.13581745 \pm 1.7 \cdot 10^{-6} \) | \(a_{798}= -2.57951151 \pm 4.0 \cdot 10^{-6} \) |
\(a_{799}= -0.51815456 \pm 3.3 \cdot 10^{-7} \) | \(a_{800}= -0.03535534 \pm 1.4 \cdot 10^{-6} \) | \(a_{801}= +0.18295234 \pm 1.4 \cdot 10^{-6} \) |
\(a_{802}= -0.86794583 \pm 1.6 \cdot 10^{-6} \) | \(a_{803}= -0.64845476 \pm 1.7 \cdot 10^{-6} \) | \(a_{804}= -0.08395230 \pm 2.4 \cdot 10^{-6} \) |
\(a_{805}= -0.57687992 \pm 3.6 \cdot 10^{-6} \) | \(a_{806}= -0.00821197 \pm 2.6 \cdot 10^{-6} \) | \(a_{807}= +1.14972171 \pm 1.5 \cdot 10^{-6} \) |
\(a_{808}= -0.05462091 \pm 1.5 \cdot 10^{-6} \) | \(a_{809}= +1.19349287 \pm 1.8 \cdot 10^{-6} \) | \(a_{810}= -0.21009804 \pm 8.6 \cdot 10^{-7} \) |
\(a_{811}= -1.13608861 \pm 1.1 \cdot 10^{-6} \) | \(a_{812}= +1.09945430 \pm 3.6 \cdot 10^{-6} \) | \(a_{813}= -0.94726798 \pm 1.5 \cdot 10^{-6} \) |
\(a_{814}= -0.02373150 \pm 2.8 \cdot 10^{-6} \) | \(a_{815}= +0.19179576 \pm 1.8 \cdot 10^{-6} \) | \(a_{816}= -0.29164751 \pm 2.1 \cdot 10^{-6} \) |
\(a_{817}= +1.31945544 \pm 1.0 \cdot 10^{-6} \) | \(a_{818}= +0.73920163 \pm 2.0 \cdot 10^{-6} \) | \(a_{819}= -0.04316409 \pm 8.2 \cdot 10^{-7} \) |
\(a_{820}= +0.31108720 \pm 1.0 \cdot 10^{-6} \) | \(a_{821}= +0.74868324 \pm 1.6 \cdot 10^{-6} \) | \(a_{822}= +1.24507747 \pm 2.9 \cdot 10^{-6} \) |
\(a_{823}= -1.89200651 \pm 1.6 \cdot 10^{-6} \) | \(a_{824}= -0.09239836 \pm 2.1 \cdot 10^{-6} \) | \(a_{825}= -0.37414880 \pm 2.5 \cdot 10^{-6} \) |
\(a_{826}= +0.99785169 \pm 2.7 \cdot 10^{-6} \) | \(a_{827}= +0.01007508 \pm 1.1 \cdot 10^{-6} \) | \(a_{828}= -0.52174828 \pm 3.3 \cdot 10^{-6} \) |
\(a_{829}= +0.49218667 \pm 1.3 \cdot 10^{-6} \) | \(a_{830}= +0.05437684 \pm 1.9 \cdot 10^{-6} \) | \(a_{831}= -1.76772687 \pm 1.0 \cdot 10^{-6} \) |
\(a_{832}= +0.00272646 \pm 1.4 \cdot 10^{-6} \) | \(a_{833}= +1.12104863 \pm 6.3 \cdot 10^{-7} \) | \(a_{834}= +0.28556610 \pm 2.8 \cdot 10^{-6} \) |
\(a_{835}= +0.67751201 \pm 1.1 \cdot 10^{-6} \) | \(a_{836}= +0.96308255 \pm 2.3 \cdot 10^{-6} \) | \(a_{837}= -0.21256491 \pm 1.4 \cdot 10^{-6} \) |
\(a_{838}= +0.65540826 \pm 1.3 \cdot 10^{-6} \) | \(a_{839}= +0.32560217 \pm 9.6 \cdot 10^{-7} \) | \(a_{840}= +0.37220740 \pm 2.9 \cdot 10^{-6} \) |
\(a_{841}= +0.97651912 \pm 1.3 \cdot 10^{-6} \) | \(a_{842}= +0.66976358 \pm 1.5 \cdot 10^{-6} \) | \(a_{843}= +0.44910385 \pm 7.5 \cdot 10^{-7} \) |
\(a_{844}= -0.04922214 \pm 1.8 \cdot 10^{-6} \) | \(a_{845}= +0.44700083 \pm 9.1 \cdot 10^{-7} \) | \(a_{846}= +0.59808326 \pm 2.4 \cdot 10^{-6} \) |
\(a_{847}= -0.85232774 \pm 9.4 \cdot 10^{-7} \) | \(a_{848}= +0.30169789 \pm 1.4 \cdot 10^{-6} \) | \(a_{849}= +2.10735840 \pm 8.3 \cdot 10^{-7} \) |
\(a_{850}= -0.10961625 \pm 8.6 \cdot 10^{-7} \) | \(a_{851}= -0.02226885 \pm 2.2 \cdot 10^{-6} \) | \(a_{852}= -1.43133040 \pm 2.5 \cdot 10^{-6} \) |
\(a_{853}= -0.73876285 \pm 2.2 \cdot 10^{-6} \) | \(a_{854}= -1.10724935 \pm 3.0 \cdot 10^{-6} \) | \(a_{855}= -0.87685895 \pm 2.5 \cdot 10^{-6} \) |
\(a_{856}= -0.08456671 \pm 8.7 \cdot 10^{-7} \) | \(a_{857}= -0.32778537 \pm 1.3 \cdot 10^{-6} \) | \(a_{858}= +0.02885280 \pm 4.0 \cdot 10^{-6} \) |
\(a_{859}= +0.33183549 \pm 1.7 \cdot 10^{-6} \) | \(a_{860}= -0.19038918 \pm 1.4 \cdot 10^{-6} \) | \(a_{861}= -3.27500620 \pm 1.3 \cdot 10^{-6} \) |
\(a_{862}= -0.57949546 \pm 1.0 \cdot 10^{-6} \) | \(a_{863}= +1.27521152 \pm 1.8 \cdot 10^{-6} \) | \(a_{864}= +0.07057374 \pm 1.5 \cdot 10^{-6} \) |
\(a_{865}= +0.55160622 \pm 1.4 \cdot 10^{-6} \) | \(a_{866}= -0.95910930 \pm 1.1 \cdot 10^{-6} \) | \(a_{867}= +0.60084710 \pm 9.4 \cdot 10^{-7} \) |
\(a_{868}= -0.41638985 \pm 2.8 \cdot 10^{-6} \) | \(a_{869}= -2.08701853 \pm 9.7 \cdot 10^{-7} \) | \(a_{870}= +0.66912743 \pm 3.3 \cdot 10^{-6} \) |
\(a_{871}= +0.00243328 \pm 1.0 \cdot 10^{-6} \) | \(a_{872}= +0.59823075 \pm 1.5 \cdot 10^{-6} \) | \(a_{873}= -0.15955103 \pm 1.7 \cdot 10^{-6} \) |
\(a_{874}= +0.90372486 \pm 3.1 \cdot 10^{-6} \) | \(a_{875}= +0.13989483 \pm 1.6 \cdot 10^{-6} \) | \(a_{876}= +0.39260152 \pm 3.1 \cdot 10^{-6} \) |
\(a_{877}= +0.26719610 \pm 2.1 \cdot 10^{-6} \) | \(a_{878}= +0.46377238 \pm 1.6 \cdot 10^{-6} \) | \(a_{879}= +0.89539570 \pm 5.3 \cdot 10^{-7} \) |
\(a_{880}= -0.13896679 \pm 1.2 \cdot 10^{-6} \) | \(a_{881}= +0.91688336 \pm 1.0 \cdot 10^{-6} \) | \(a_{882}= -1.29397765 \pm 3.0 \cdot 10^{-6} \) |
\(a_{883}= -1.85522226 \pm 1.6 \cdot 10^{-6} \) | \(a_{884}= +0.00845315 \pm 2.3 \cdot 10^{-6} \) | \(a_{885}= +0.60729213 \pm 2.3 \cdot 10^{-6} \) |
\(a_{886}= -0.82626702 \pm 2.2 \cdot 10^{-6} \) | \(a_{887}= +0.90508655 \pm 1.7 \cdot 10^{-6} \) | \(a_{888}= +0.01436804 \pm 2.8 \cdot 10^{-6} \) |
\(a_{889}= +0.86144887 \pm 2.4 \cdot 10^{-6} \) | \(a_{890}= +0.04572573 \pm 1.9 \cdot 10^{-6} \) | \(a_{891}= -0.82580600 \pm 6.8 \cdot 10^{-7} \) |
\(a_{892}= -0.61467776 \pm 1.7 \cdot 10^{-6} \) | \(a_{893}= -1.03594538 \pm 4.6 \cdot 10^{-7} \) | \(a_{894}= +0.49794882 \pm 3.2 \cdot 10^{-6} \) |
\(a_{895}= -0.10229041 \pm 1.4 \cdot 10^{-6} \) | \(a_{896}= +0.13824572 \pm 1.6 \cdot 10^{-6} \) | \(a_{897}= +0.02707452 \pm 1.2 \cdot 10^{-6} \) |
\(a_{898}= -0.36950293 \pm 1.3 \cdot 10^{-6} \) | \(a_{899}= -0.74855544 \pm 1.5 \cdot 10^{-6} \) | \(a_{900}= +0.12652527 \pm 1.4 \cdot 10^{-6} \) |
\(a_{901}= +0.93538890 \pm 7.7 \cdot 10^{-7} \) | \(a_{902}= +1.22275140 \pm 2.2 \cdot 10^{-6} \) | \(a_{903}= +2.00434393 \pm 1.6 \cdot 10^{-6} \) |
\(a_{904}= -0.25634811 \pm 1.2 \cdot 10^{-6} \) | \(a_{905}= -0.49691231 \pm 1.2 \cdot 10^{-6} \) | \(a_{906}= +0.47109805 \pm 3.5 \cdot 10^{-6} \) |
\(a_{907}= -1.33119244 \pm 1.8 \cdot 10^{-6} \) | \(a_{908}= -0.28900077 \pm 1.4 \cdot 10^{-6} \) | \(a_{909}= +0.19547047 \pm 1.5 \cdot 10^{-6} \) |
\(a_{910}= -0.01078811 \pm 3.0 \cdot 10^{-6} \) | \(a_{911}= +0.67909454 \pm 1.6 \cdot 10^{-6} \) | \(a_{912}= -0.58309029 \pm 2.4 \cdot 10^{-6} \) |
\(a_{913}= +0.21373221 \pm 1.4 \cdot 10^{-6} \) | \(a_{914}= -0.64679273 \pm 1.5 \cdot 10^{-6} \) | \(a_{915}= -0.67387150 \pm 2.7 \cdot 10^{-6} \) |
\(a_{916}= -0.73098557 \pm 1.0 \cdot 10^{-6} \) | \(a_{917}= -1.53403660 \pm 1.1 \cdot 10^{-6} \) | \(a_{918}= +0.21880793 \pm 2.4 \cdot 10^{-6} \) |
\(a_{919}= +0.47180310 \pm 1.5 \cdot 10^{-6} \) | \(a_{920}= -0.13040185 \pm 1.9 \cdot 10^{-6} \) | \(a_{921}= +0.87942465 \pm 1.0 \cdot 10^{-6} \) |
\(a_{922}= -0.01267349 \pm 1.3 \cdot 10^{-6} \) | \(a_{923}= +0.04148587 \pm 9.0 \cdot 10^{-7} \) | \(a_{924}= +1.46298890 \pm 4.1 \cdot 10^{-6} \) |
\(a_{925}= +0.00540025 \pm 1.5 \cdot 10^{-6} \) | \(a_{926}= -1.08645739 \pm 1.4 \cdot 10^{-6} \) | \(a_{927}= +0.33066370 \pm 1.7 \cdot 10^{-6} \) |
\(a_{928}= +0.24852811 \pm 2.0 \cdot 10^{-6} \) | \(a_{929}= +0.12495832 \pm 1.3 \cdot 10^{-6} \) | \(a_{930}= -0.25341469 \pm 2.5 \cdot 10^{-6} \) |
\(a_{931}= +2.24131028 \pm 9.9 \cdot 10^{-7} \) | \(a_{932}= +0.32590177 \pm 1.8 \cdot 10^{-6} \) | \(a_{933}= -2.40580334 \pm 9.7 \cdot 10^{-7} \) |
\(a_{934}= -1.02333639 \pm 6.6 \cdot 10^{-7} \) | \(a_{935}= -0.43085484 \pm 2.1 \cdot 10^{-6} \) | \(a_{936}= -0.00975710 \pm 2.8 \cdot 10^{-6} \) |
\(a_{937}= +1.27160698 \pm 1.3 \cdot 10^{-6} \) | \(a_{938}= +0.12338033 \pm 2.8 \cdot 10^{-6} \) | \(a_{939}= +0.15953186 \pm 1.0 \cdot 10^{-6} \) |
\(a_{940}= +0.14948045 \pm 1.0 \cdot 10^{-6} \) | \(a_{941}= +1.23992190 \pm 1.1 \cdot 10^{-6} \) | \(a_{942}= +0.21029485 \pm 2.0 \cdot 10^{-6} \) |
\(a_{943}= +1.14738954 \pm 8.5 \cdot 10^{-7} \) | \(a_{944}= +0.22556117 \pm 1.0 \cdot 10^{-6} \) | \(a_{945}= -0.27924780 \pm 3.2 \cdot 10^{-6} \) |
\(a_{946}= -0.74833884 \pm 2.6 \cdot 10^{-6} \) | \(a_{947}= +0.06233678 \pm 1.4 \cdot 10^{-6} \) | \(a_{948}= +1.26356795 \pm 2.9 \cdot 10^{-6} \) |
\(a_{949}= -0.01137922 \pm 1.1 \cdot 10^{-6} \) | \(a_{950}= -0.21915555 \pm 1.1 \cdot 10^{-6} \) | \(a_{951}= +0.45391095 \pm 1.2 \cdot 10^{-6} \) |
\(a_{952}= +0.42861920 \pm 2.4 \cdot 10^{-6} \) | \(a_{953}= +0.21532447 \pm 1.6 \cdot 10^{-6} \) | \(a_{954}= -1.07967871 \pm 2.8 \cdot 10^{-6} \) |
\(a_{955}= +0.23951934 \pm 1.1 \cdot 10^{-6} \) | \(a_{956}= -0.45440236 \pm 1.6 \cdot 10^{-6} \) | \(a_{957}= +2.63005523 \pm 1.1 \cdot 10^{-6} \) |
\(a_{958}= +1.23399922 \pm 1.7 \cdot 10^{-6} \) | \(a_{959}= -1.82982566 \pm 2.4 \cdot 10^{-6} \) | \(a_{960}= +0.08413629 \pm 1.3 \cdot 10^{-6} \) |
\(a_{961}= -0.71650401 \pm 1.2 \cdot 10^{-6} \) | \(a_{962}= -0.00041645 \pm 3.0 \cdot 10^{-6} \) | \(a_{963}= +0.30263677 \pm 5.0 \cdot 10^{-7} \) |
\(a_{964}= -0.13582142 \pm 1.2 \cdot 10^{-6} \) | \(a_{965}= -0.13115555 \pm 1.7 \cdot 10^{-6} \) | \(a_{966}= +1.37282048 \pm 4.9 \cdot 10^{-6} \) |
\(a_{967}= -1.17930903 \pm 1.4 \cdot 10^{-6} \) | \(a_{968}= -0.19266595 \pm 1.3 \cdot 10^{-6} \) | \(a_{969}= -1.80782232 \pm 8.7 \cdot 10^{-7} \) |
\(a_{970}= -0.03987699 \pm 2.1 \cdot 10^{-6} \) | \(a_{971}= -1.30519908 \pm 1.8 \cdot 10^{-6} \) | \(a_{972}= +0.69959002 \pm 1.6 \cdot 10^{-6} \) |
\(a_{973}= -0.41968165 \pm 1.2 \cdot 10^{-6} \) | \(a_{974}= -0.12233898 \pm 1.1 \cdot 10^{-6} \) | \(a_{975}= -0.00656564 \pm 2.7 \cdot 10^{-6} \) |
\(a_{976}= -0.25029016 \pm 1.4 \cdot 10^{-6} \) | \(a_{977}= -1.11264204 \pm 1.6 \cdot 10^{-6} \) | \(a_{978}= -0.45642281 \pm 3.1 \cdot 10^{-6} \) |
\(a_{979}= +0.17972841 \pm 1.7 \cdot 10^{-6} \) | \(a_{980}= -0.32340707 \pm 1.6 \cdot 10^{-6} \) | \(a_{981}= -2.14087344 \pm 1.0 \cdot 10^{-6} \) |
\(a_{982}= +0.37010187 \pm 1.9 \cdot 10^{-6} \) | \(a_{983}= -0.81750615 \pm 1.3 \cdot 10^{-6} \) | \(a_{984}= -0.74030463 \pm 2.3 \cdot 10^{-6} \) |
\(a_{985}= +0.80515049 \pm 1.8 \cdot 10^{-6} \) | \(a_{986}= +0.77054047 \pm 2.9 \cdot 10^{-6} \) | \(a_{987}= -1.57367257 \pm 6.7 \cdot 10^{-7} \) |
\(a_{988}= +0.01690037 \pm 2.5 \cdot 10^{-6} \) | \(a_{989}= -0.70221646 \pm 1.3 \cdot 10^{-6} \) | \(a_{990}= +0.49731699 \pm 2.6 \cdot 10^{-6} \) |
\(a_{991}= +0.62472431 \pm 2.2 \cdot 10^{-6} \) | \(a_{992}= -0.09412359 \pm 1.2 \cdot 10^{-6} \) | \(a_{993}= +1.00587499 \pm 1.4 \cdot 10^{-6} \) |
\(a_{994}= +2.10355191 \pm 2.8 \cdot 10^{-6} \) | \(a_{995}= +0.46611948 \pm 1.7 \cdot 10^{-6} \) | \(a_{996}= -0.12940238 \pm 3.2 \cdot 10^{-6} \) |
\(a_{997}= -0.29713754 \pm 1.6 \cdot 10^{-6} \) | \(a_{998}= +0.21910550 \pm 1.6 \cdot 10^{-6} \) | \(a_{999}= -0.01077959 \pm 1.4 \cdot 10^{-6} \) |
\(a_{1000}= +0.03162278 \pm 1.7 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000