Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(12.0381132141352239525395110625 \pm 9 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.59997244 \pm 5.6 \cdot 10^{-8} \) | \(a_{3}= +1.10777899 \pm 5.9 \cdot 10^{-8} \) |
\(a_{4}= +1.55991181 \pm 4.1 \cdot 10^{-8} \) | \(a_{5}= -1.60982448 \pm 4.4 \cdot 10^{-8} \) | \(a_{6}= -1.77241585 \pm 6.3 \cdot 10^{-8} \) |
\(a_{7}= -1.40334508 \pm 3.4 \cdot 10^{-8} \) | \(a_{8}= -0.89584347 \pm 5.6 \cdot 10^{-8} \) | \(a_{9}= +0.22717428 \pm 5.9 \cdot 10^{-8} \) |
\(a_{10}= +2.57567481 \pm 5.0 \cdot 10^{-8} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +1.72803752 \pm 3.9 \cdot 10^{-8} \) |
\(a_{13}= -1.25099817 \pm 4.9 \cdot 10^{-8} \) | \(a_{14}= +2.24531346 \pm 3.9 \cdot 10^{-8} \) | \(a_{15}= -1.78332973 \pm 4.8 \cdot 10^{-8} \) |
\(a_{16}= -0.12658695 \pm 5.8 \cdot 10^{-8} \) | \(a_{17}= +0.30046479 \pm 4.3 \cdot 10^{-8} \) | \(a_{18}= -0.36347259 \pm 6.1 \cdot 10^{-8} \) |
\(a_{19}= -0.15933351 \pm 4.6 \cdot 10^{-8} \) | \(a_{20}= -2.51118423 \pm 5.4 \cdot 10^{-8} \) | \(a_{21}= -1.55459619 \pm 4.7 \cdot 10^{-8} \) |
\(a_{22}= +0.48240984 \pm 6.6 \cdot 10^{-8} \) | \(a_{23}= -0.95239662 \pm 4.4 \cdot 10^{-8} \) | \(a_{24}= -0.99239657 \pm 5.9 \cdot 10^{-8} \) |
\(a_{25}= +1.59153487 \pm 3.9 \cdot 10^{-8} \) | \(a_{26}= +2.00156260 \pm 5.4 \cdot 10^{-8} \) | \(a_{27}= -0.85612009 \pm 3.8 \cdot 10^{-8} \) |
\(a_{28}= -2.18909457 \pm 2.7 \cdot 10^{-8} \) | \(a_{29}= -1.66981115 \pm 5.3 \cdot 10^{-8} \) | \(a_{30}= +2.85327843 \pm 5.1 \cdot 10^{-8} \) |
\(a_{31}= +0.69839334 \pm 4.1 \cdot 10^{-8} \) | \(a_{32}= +1.09837910 \pm 3.7 \cdot 10^{-8} \) | \(a_{33}= -0.33400793 \pm 6.9 \cdot 10^{-8} \) |
\(a_{34}= -0.48073538 \pm 4.1 \cdot 10^{-8} \) | \(a_{35}= +2.25913927 \pm 2.9 \cdot 10^{-8} \) | \(a_{36}= +0.35437184 \pm 2.8 \cdot 10^{-8} \) |
\(a_{37}= -0.41081440 \pm 4.3 \cdot 10^{-8} \) | \(a_{38}= +0.25492923 \pm 4.5 \cdot 10^{-8} \) | \(a_{39}= -1.38582949 \pm 4.3 \cdot 10^{-8} \) |
\(a_{40}= +1.44215075 \pm 5.8 \cdot 10^{-8} \) | \(a_{41}= +0.44541762 \pm 5.1 \cdot 10^{-8} \) | \(a_{42}= +2.48731106 \pm 5.3 \cdot 10^{-8} \) |
\(a_{43}= -0.83075544 \pm 4.2 \cdot 10^{-8} \) | \(a_{44}= -0.47033111 \pm 5.2 \cdot 10^{-8} \) | \(a_{45}= -0.36571072 \pm 4.4 \cdot 10^{-8} \) |
\(a_{46}= +1.52380834 \pm 5.0 \cdot 10^{-8} \) | \(a_{47}= -0.02187978 \pm 5.3 \cdot 10^{-8} \) | \(a_{48}= -0.14023036 \pm 6.6 \cdot 10^{-8} \) |
\(a_{49}= +0.96937742 \pm 3.6 \cdot 10^{-8} \) | \(a_{50}= -2.54641193 \pm 4.3 \cdot 10^{-8} \) | \(a_{51}= +0.33284858 \pm 4.9 \cdot 10^{-8} \) |
\(a_{52}= -1.95144683 \pm 2.4 \cdot 10^{-8} \) | \(a_{53}= +0.89471091 \pm 5.4 \cdot 10^{-8} \) | \(a_{54}= +1.36976855 \pm 4.5 \cdot 10^{-8} \) |
\(a_{55}= +0.48538034 \pm 5.4 \cdot 10^{-8} \) | \(a_{56}= +1.25717753 \pm 3.6 \cdot 10^{-8} \) | \(a_{57}= -0.17650631 \pm 6.0 \cdot 10^{-8} \) |
\(a_{58}= +2.67165182 \pm 5.5 \cdot 10^{-8} \) | \(a_{59}= +1.22808960 \pm 6.6 \cdot 10^{-8} \) | \(a_{60}= -2.78183712 \pm 5.0 \cdot 10^{-8} \) |
\(a_{61}= -1.05158395 \pm 3.9 \cdot 10^{-8} \) | \(a_{62}= -1.11741009 \pm 4.2 \cdot 10^{-8} \) | \(a_{63}= -0.31880391 \pm 4.5 \cdot 10^{-8} \) |
\(a_{64}= -1.63078934 \pm 3.8 \cdot 10^{-8} \) | \(a_{65}= +2.01388749 \pm 3.4 \cdot 10^{-8} \) | \(a_{66}= +0.53440349 \pm 1.2 \cdot 10^{-7} \) |
\(a_{67}= +0.76324136 \pm 5.0 \cdot 10^{-8} \) | \(a_{68}= +0.46869857 \pm 4.4 \cdot 10^{-8} \) | \(a_{69}= -1.05504496 \pm 2.3 \cdot 10^{-8} \) |
\(a_{70}= -3.61456058 \pm 3.4 \cdot 10^{-8} \) | \(a_{71}= +1.94465614 \pm 5.2 \cdot 10^{-8} \) | \(a_{72}= -0.20351260 \pm 5.2 \cdot 10^{-8} \) |
\(a_{73}= +0.11624718 \pm 4.5 \cdot 10^{-8} \) | \(a_{74}= +0.65729171 \pm 3.7 \cdot 10^{-8} \) | \(a_{75}= +1.76306888 \pm 4.7 \cdot 10^{-8} \) |
\(a_{76}= -0.24854623 \pm 2.2 \cdot 10^{-8} \) | \(a_{77}= +0.42312446 \pm 4.5 \cdot 10^{-8} \) | \(a_{78}= +2.21728899 \pm 4.5 \cdot 10^{-8} \) |
\(a_{79}= -0.42117391 \pm 5.4 \cdot 10^{-8} \) | \(a_{80}= +0.20378277 \pm 5.4 \cdot 10^{-8} \) | \(a_{81}= -1.17556613 \pm 3.4 \cdot 10^{-8} \) |
\(a_{82}= -0.71265592 \pm 5.7 \cdot 10^{-8} \) | \(a_{83}= +0.25075220 \pm 4.2 \cdot 10^{-8} \) | \(a_{84}= -2.42503296 \pm 3.0 \cdot 10^{-8} \) |
\(a_{85}= -0.48369557 \pm 4.2 \cdot 10^{-8} \) | \(a_{86}= +1.32918581 \pm 4.6 \cdot 10^{-8} \) | \(a_{87}= -1.84978170 \pm 3.2 \cdot 10^{-8} \) |
\(a_{88}= +0.27010697 \pm 6.6 \cdot 10^{-8} \) | \(a_{89}= +0.19792131 \pm 4.2 \cdot 10^{-8} \) | \(a_{90}= +0.58512707 \pm 4.2 \cdot 10^{-8} \) |
\(a_{91}= +1.75558213 \pm 2.9 \cdot 10^{-8} \) | \(a_{92}= -1.48565473 \pm 2.6 \cdot 10^{-8} \) | \(a_{93}= +0.77366546 \pm 3.8 \cdot 10^{-8} \) |
\(a_{94}= +0.03500704 \pm 5.9 \cdot 10^{-8} \) | \(a_{95}= +0.25649899 \pm 3.2 \cdot 10^{-8} \) | \(a_{96}= +1.21676129 \pm 3.5 \cdot 10^{-8} \) |
\(a_{97}= -1.61737258 \pm 6.4 \cdot 10^{-8} \) | \(a_{98}= -1.55097716 \pm 4.1 \cdot 10^{-8} \) | \(a_{99}= -0.06849562 \pm 7.0 \cdot 10^{-8} \) |
\(a_{100}= +2.48265404 \pm 4.3 \cdot 10^{-8} \) | \(a_{101}= +0.49111172 \pm 7.6 \cdot 10^{-8} \) | \(a_{102}= -0.53254855 \pm 4.3 \cdot 10^{-8} \) |
\(a_{103}= -1.45721102 \pm 4.5 \cdot 10^{-8} \) | \(a_{104}= +1.12069854 \pm 4.5 \cdot 10^{-8} \) | \(a_{105}= +2.50262701 \pm 3.7 \cdot 10^{-8} \) |
\(a_{106}= -1.43151280 \pm 5.1 \cdot 10^{-8} \) | \(a_{107}= +0.02754747 \pm 3.0 \cdot 10^{-8} \) | \(a_{108}= -1.33547184 \pm 4.2 \cdot 10^{-8} \) |
\(a_{109}= +0.52975939 \pm 3.2 \cdot 10^{-8} \) | \(a_{110}= -0.77659517 \pm 1.1 \cdot 10^{-7} \) | \(a_{111}= -0.45509156 \pm 4.4 \cdot 10^{-8} \) |
\(a_{112}= +0.17764518 \pm 3.9 \cdot 10^{-8} \) | \(a_{113}= +0.81005517 \pm 4.4 \cdot 10^{-8} \) | \(a_{114}= +0.28240524 \pm 6.0 \cdot 10^{-8} \) |
\(a_{115}= +1.53319139 \pm 3.2 \cdot 10^{-8} \) | \(a_{116}= -2.60475813 \pm 4.8 \cdot 10^{-8} \) | \(a_{117}= -0.28419461 \pm 5.4 \cdot 10^{-8} \) |
\(a_{118}= -1.96490952 \pm 7.1 \cdot 10^{-8} \) | \(a_{119}= -0.42165578 \pm 2.3 \cdot 10^{-8} \) | \(a_{120}= +1.59758429 \pm 5.4 \cdot 10^{-8} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +1.68250534 \pm 5.0 \cdot 10^{-8} \) | \(a_{123}= +0.49342428 \pm 7.4 \cdot 10^{-8} \) |
\(a_{124}= +1.08943201 \pm 3.8 \cdot 10^{-8} \) | \(a_{125}= -0.95226732 \pm 4.8 \cdot 10^{-8} \) | \(a_{126}= +0.51007747 \pm 4.9 \cdot 10^{-8} \) |
\(a_{127}= -0.88500199 \pm 5.3 \cdot 10^{-8} \) | \(a_{128}= +1.51083890 \pm 5.4 \cdot 10^{-8} \) | \(a_{129}= -0.92029342 \pm 5.3 \cdot 10^{-8} \) |
\(a_{130}= -3.22216448 \pm 3.7 \cdot 10^{-8} \) | \(a_{131}= +0.80136969 \pm 3.7 \cdot 10^{-8} \) | \(a_{132}= -0.52102292 \pm 1.1 \cdot 10^{-7} \) |
\(a_{133}= +0.22359990 \pm 3.3 \cdot 10^{-8} \) | \(a_{134}= -1.22116513 \pm 5.7 \cdot 10^{-8} \) | \(a_{135}= +1.37820308 \pm 3.2 \cdot 10^{-8} \) |
\(a_{136}= -0.26916942 \pm 5.3 \cdot 10^{-8} \) | \(a_{137}= +0.60548749 \pm 3.3 \cdot 10^{-8} \) | \(a_{138}= +1.68804286 \pm 2.4 \cdot 10^{-8} \) |
\(a_{139}= -0.69389780 \pm 5.5 \cdot 10^{-8} \) | \(a_{140}= +3.52405804 \pm 3.0 \cdot 10^{-8} \) | \(a_{141}= -0.02423796 \pm 3.1 \cdot 10^{-8} \) |
\(a_{142}= -3.11139623 \pm 5.3 \cdot 10^{-8} \) | \(a_{143}= +0.37719014 \pm 5.9 \cdot 10^{-8} \) | \(a_{144}= -0.02875730 \pm 6.3 \cdot 10^{-8} \) |
\(a_{145}= +2.68810287 \pm 4.6 \cdot 10^{-8} \) | \(a_{146}= -0.18599228 \pm 4.9 \cdot 10^{-8} \) | \(a_{147}= +1.07385593 \pm 2.8 \cdot 10^{-8} \) |
\(a_{148}= -0.64083423 \pm 3.3 \cdot 10^{-8} \) | \(a_{149}= -0.58502584 \pm 5.6 \cdot 10^{-8} \) | \(a_{150}= -2.82086162 \pm 4.4 \cdot 10^{-8} \) |
\(a_{151}= -1.23429825 \pm 3.1 \cdot 10^{-8} \) | \(a_{152}= +0.14273788 \pm 4.6 \cdot 10^{-8} \) | \(a_{153}= +0.06825787 \pm 4.5 \cdot 10^{-8} \) |
\(a_{154}= -0.67698748 \pm 1.0 \cdot 10^{-7} \) | \(a_{155}= -1.12429069 \pm 3.6 \cdot 10^{-8} \) | \(a_{156}= -2.16177178 \pm 2.2 \cdot 10^{-8} \) |
\(a_{157}= +0.58206256 \pm 3.5 \cdot 10^{-8} \) | \(a_{158}= +0.67386665 \pm 6.2 \cdot 10^{-8} \) | \(a_{159}= +0.99114194 \pm 6.4 \cdot 10^{-8} \) |
\(a_{160}= -1.76819757 \pm 3.9 \cdot 10^{-8} \) | \(a_{161}= +1.33654111 \pm 1.9 \cdot 10^{-8} \) | \(a_{162}= +1.88087341 \pm 3.6 \cdot 10^{-8} \) |
\(a_{163}= +1.05413830 \pm 4.4 \cdot 10^{-8} \) | \(a_{164}= +0.69481221 \pm 3.2 \cdot 10^{-8} \) | \(a_{165}= +0.53769415 \pm 1.1 \cdot 10^{-7} \) |
\(a_{166}= -0.40119661 \pm 5.0 \cdot 10^{-8} \) | \(a_{167}= -1.06338669 \pm 4.2 \cdot 10^{-8} \) | \(a_{168}= +1.39267484 \pm 4.5 \cdot 10^{-8} \) |
\(a_{169}= +0.56499643 \pm 4.4 \cdot 10^{-8} \) | \(a_{170}= +0.77389958 \pm 4.5 \cdot 10^{-8} \) | \(a_{171}= -0.03619648 \pm 5.7 \cdot 10^{-8} \) |
\(a_{172}= -1.29590523 \pm 3.7 \cdot 10^{-8} \) | \(a_{173}= -0.32599789 \pm 4.8 \cdot 10^{-8} \) | \(a_{174}= +2.95959974 \pm 3.8 \cdot 10^{-8} \) |
\(a_{175}= -2.23347263 \pm 2.7 \cdot 10^{-8} \) | \(a_{176}= +0.03816740 \pm 6.9 \cdot 10^{-8} \) | \(a_{177}= +1.36045185 \pm 9.7 \cdot 10^{-8} \) |
\(a_{178}= -0.31666864 \pm 4.3 \cdot 10^{-8} \) | \(a_{179}= -0.86618016 \pm 5.3 \cdot 10^{-8} \) | \(a_{180}= -0.57047647 \pm 2.9 \cdot 10^{-8} \) |
\(a_{181}= +1.21150105 \pm 6.5 \cdot 10^{-8} \) | \(a_{182}= -2.80888303 \pm 3.3 \cdot 10^{-8} \) | \(a_{183}= -1.16492260 \pm 4.4 \cdot 10^{-8} \) |
\(a_{184}= +0.85319829 \pm 4.1 \cdot 10^{-8} \) | \(a_{185}= +0.66133907 \pm 4.0 \cdot 10^{-8} \) | \(a_{186}= -1.23784342 \pm 4.0 \cdot 10^{-8} \) |
\(a_{187}= -0.09059354 \pm 5.4 \cdot 10^{-8} \) | \(a_{188}= -0.03413052 \pm 4.5 \cdot 10^{-8} \) | \(a_{189}= +1.20143192 \pm 2.8 \cdot 10^{-8} \) |
\(a_{190}= -0.41039131 \pm 3.2 \cdot 10^{-8} \) | \(a_{191}= -1.22540686 \pm 4.0 \cdot 10^{-8} \) | \(a_{192}= -1.80655416 \pm 4.7 \cdot 10^{-8} \) |
\(a_{193}= -0.91684776 \pm 4.1 \cdot 10^{-8} \) | \(a_{194}= +2.58775155 \pm 6.9 \cdot 10^{-8} \) | \(a_{195}= +2.23094224 \pm 3.1 \cdot 10^{-8} \) |
\(a_{196}= +1.51214329 \pm 3.8 \cdot 10^{-8} \) | \(a_{197}= -1.22660221 \pm 3.2 \cdot 10^{-8} \) | \(a_{198}= +0.10959111 \pm 1.2 \cdot 10^{-7} \) |
\(a_{199}= -1.21733455 \pm 5.5 \cdot 10^{-8} \) | \(a_{200}= -1.42576612 \pm 4.8 \cdot 10^{-8} \) | \(a_{201}= +0.84550273 \pm 6.5 \cdot 10^{-8} \) |
\(a_{202}= -0.78576522 \pm 8.0 \cdot 10^{-8} \) | \(a_{203}= +2.34332126 \pm 2.1 \cdot 10^{-8} \) | \(a_{204}= +0.51921443 \pm 4.1 \cdot 10^{-8} \) |
\(a_{205}= -0.71704419 \pm 4.1 \cdot 10^{-8} \) | \(a_{206}= +2.33149748 \pm 4.7 \cdot 10^{-8} \) | \(a_{207}= -0.21636002 \pm 4.3 \cdot 10^{-8} \) |
\(a_{208}= +0.15836005 \pm 5.7 \cdot 10^{-8} \) | \(a_{209}= +0.04804086 \pm 5.7 \cdot 10^{-8} \) | \(a_{210}= -4.00413425 \pm 3.9 \cdot 10^{-8} \) |
\(a_{211}= -1.68404124 \pm 4.3 \cdot 10^{-8} \) | \(a_{212}= +1.39567012 \pm 3.1 \cdot 10^{-8} \) | \(a_{213}= +2.15424920 \pm 6.8 \cdot 10^{-8} \) |
\(a_{214}= -0.04407519 \pm 3.1 \cdot 10^{-8} \) | \(a_{215}= +1.33737045 \pm 3.8 \cdot 10^{-8} \) | \(a_{216}= +0.76694959 \pm 4.8 \cdot 10^{-8} \) |
\(a_{217}= -0.98008685 \pm 2.2 \cdot 10^{-8} \) | \(a_{218}= -0.84760043 \pm 4.2 \cdot 10^{-8} \) | \(a_{219}= +0.12877618 \pm 4.7 \cdot 10^{-8} \) |
\(a_{220}= +0.75715053 \pm 9.6 \cdot 10^{-8} \) | \(a_{221}= -0.37588090 \pm 3.1 \cdot 10^{-8} \) | \(a_{222}= +0.72813395 \pm 4.5 \cdot 10^{-8} \) |
\(a_{223}= +0.27409787 \pm 4.3 \cdot 10^{-8} \) | \(a_{224}= -1.54140491 \pm 2.4 \cdot 10^{-8} \) | \(a_{225}= +0.36155579 \pm 4.1 \cdot 10^{-8} \) |
\(a_{226}= -1.29606594 \pm 5.3 \cdot 10^{-8} \) | \(a_{227}= -0.96474430 \pm 4.5 \cdot 10^{-8} \) | \(a_{228}= -0.27533429 \pm 2.0 \cdot 10^{-8} \) |
\(a_{229}= +1.86853262 \pm 4.0 \cdot 10^{-8} \) | \(a_{230}= -2.45306397 \pm 3.6 \cdot 10^{-8} \) | \(a_{231}= +0.46872839 \pm 1.0 \cdot 10^{-7} \) |
\(a_{232}= +1.49588941 \pm 6.1 \cdot 10^{-8} \) | \(a_{233}= -1.11268173 \pm 4.2 \cdot 10^{-8} \) | \(a_{234}= +0.45470354 \pm 5.6 \cdot 10^{-8} \) |
\(a_{235}= +0.03522260 \pm 4.5 \cdot 10^{-8} \) | \(a_{236}= +1.91571148 \pm 2.1 \cdot 10^{-8} \) | \(a_{237}= -0.46656761 \pm 4.6 \cdot 10^{-8} \) |
\(a_{238}= +0.67463763 \pm 2.1 \cdot 10^{-8} \) | \(a_{239}= +0.28372526 \pm 6.3 \cdot 10^{-8} \) | \(a_{240}= +0.22574627 \pm 5.6 \cdot 10^{-8} \) |
\(a_{241}= +0.30876112 \pm 2.9 \cdot 10^{-8} \) | \(a_{242}= -0.14545204 \pm 6.6 \cdot 10^{-8} \) | \(a_{243}= -0.44614736 \pm 5.2 \cdot 10^{-8} \) |
\(a_{244}= -1.64037823 \pm 5.0 \cdot 10^{-8} \) | \(a_{245}= -1.56052750 \pm 3.3 \cdot 10^{-8} \) | \(a_{246}= -0.78946525 \pm 8.1 \cdot 10^{-8} \) |
\(a_{247}= +0.19932593 \pm 4.2 \cdot 10^{-8} \) | \(a_{248}= -0.62565111 \pm 4.8 \cdot 10^{-8} \) | \(a_{249}= +0.27777802 \pm 4.3 \cdot 10^{-8} \) |
\(a_{250}= +1.52360146 \pm 4.7 \cdot 10^{-8} \) | \(a_{251}= -0.98046721 \pm 4.0 \cdot 10^{-8} \) | \(a_{252}= -0.49730598 \pm 2.2 \cdot 10^{-8} \) |
\(a_{253}= +0.28715838 \pm 5.4 \cdot 10^{-8} \) | \(a_{254}= +1.41597880 \pm 5.1 \cdot 10^{-8} \) | \(a_{255}= -0.53582779 \pm 4.6 \cdot 10^{-8} \) |
\(a_{256}= -0.78651126 \pm 4.0 \cdot 10^{-8} \) | \(a_{257}= +0.07680316 \pm 5.5 \cdot 10^{-8} \) | \(a_{258}= +1.47244411 \pm 5.9 \cdot 10^{-8} \) |
\(a_{259}= +0.57651436 \pm 2.5 \cdot 10^{-8} \) | \(a_{260}= +3.14148688 \pm 2.4 \cdot 10^{-8} \) | \(a_{261}= -0.37933815 \pm 4.7 \cdot 10^{-8} \) |
\(a_{262}= -1.28216942 \pm 3.8 \cdot 10^{-8} \) | \(a_{263}= +1.44792645 \pm 4.9 \cdot 10^{-8} \) | \(a_{264}= +0.29921882 \pm 1.2 \cdot 10^{-7} \) |
\(a_{265}= -1.44032753 \pm 4.5 \cdot 10^{-8} \) | \(a_{266}= -0.35775368 \pm 3.6 \cdot 10^{-8} \) | \(a_{267}= +0.21925307 \pm 6.2 \cdot 10^{-8} \) |
\(a_{268}= +1.19058920 \pm 3.5 \cdot 10^{-8} \) | \(a_{269}= +1.03865544 \pm 4.6 \cdot 10^{-8} \) | \(a_{270}= -2.20508695 \pm 4.7 \cdot 10^{-8} \) |
\(a_{271}= -1.20173858 \pm 4.4 \cdot 10^{-8} \) | \(a_{272}= -0.03803492 \pm 4.3 \cdot 10^{-8} \) | \(a_{273}= +1.94479699 \pm 3.4 \cdot 10^{-8} \) |
\(a_{274}= -0.96876330 \pm 3.7 \cdot 10^{-8} \) | \(a_{275}= -0.47986582 \pm 4.9 \cdot 10^{-8} \) | \(a_{276}= -1.64577709 \pm 2.4 \cdot 10^{-8} \) |
\(a_{277}= -0.56339507 \pm 2.7 \cdot 10^{-8} \) | \(a_{278}= +1.11021736 \pm 6.9 \cdot 10^{-8} \) | \(a_{279}= +0.15865700 \pm 4.2 \cdot 10^{-8} \) |
\(a_{280}= -2.02383516 \pm 3.1 \cdot 10^{-8} \) | \(a_{281}= +1.59960288 \pm 4.3 \cdot 10^{-8} \) | \(a_{282}= +0.03878006 \pm 3.5 \cdot 10^{-8} \) |
\(a_{283}= +1.65762332 \pm 5.9 \cdot 10^{-8} \) | \(a_{284}= +3.03349208 \pm 3.1 \cdot 10^{-8} \) | \(a_{285}= +0.28414419 \pm 3.4 \cdot 10^{-8} \) |
\(a_{286}= -0.60349383 \pm 1.1 \cdot 10^{-7} \) | \(a_{287}= -0.62507463 \pm 4.3 \cdot 10^{-8} \) | \(a_{288}= +0.24952348 \pm 3.4 \cdot 10^{-8} \) |
\(a_{289}= -0.90972091 \pm 4.7 \cdot 10^{-8} \) | \(a_{290}= -4.30089051 \pm 5.4 \cdot 10^{-8} \) | \(a_{291}= -1.79169135 \pm 7.6 \cdot 10^{-8} \) |
\(a_{292}= +0.18133535 \pm 2.5 \cdot 10^{-8} \) | \(a_{293}= -1.35634062 \pm 4.1 \cdot 10^{-8} \) | \(a_{294}= -1.71813990 \pm 3.4 \cdot 10^{-8} \) |
\(a_{295}= -1.97700871 \pm 4.7 \cdot 10^{-8} \) | \(a_{296}= +0.36802539 \pm 4.3 \cdot 10^{-8} \) | \(a_{297}= +0.25812992 \pm 4.8 \cdot 10^{-8} \) |
\(a_{298}= +0.93602522 \pm 6.1 \cdot 10^{-8} \) | \(a_{299}= +1.19144643 \pm 6.5 \cdot 10^{-8} \) | \(a_{300}= +2.75023198 \pm 4.4 \cdot 10^{-8} \) |
\(a_{301}= +1.16583657 \pm 3.4 \cdot 10^{-8} \) | \(a_{302}= +1.97484318 \pm 3.2 \cdot 10^{-8} \) | \(a_{303}= +0.54404325 \pm 8.5 \cdot 10^{-8} \) |
\(a_{304}= +0.02016954 \pm 4.4 \cdot 10^{-8} \) | \(a_{305}= +1.69286559 \pm 3.8 \cdot 10^{-8} \) | \(a_{306}= -0.10921071 \pm 3.4 \cdot 10^{-8} \) |
\(a_{307}= -0.87271675 \pm 6.2 \cdot 10^{-8} \) | \(a_{308}= +0.66003685 \pm 8.6 \cdot 10^{-8} \) | \(a_{309}= -1.61426775 \pm 6.2 \cdot 10^{-8} \) |
\(a_{310}= +1.79883412 \pm 4.4 \cdot 10^{-8} \) | \(a_{311}= +0.28899788 \pm 4.0 \cdot 10^{-8} \) | \(a_{312}= +1.24148629 \pm 4.1 \cdot 10^{-8} \) |
\(a_{313}= +0.50779779 \pm 5.7 \cdot 10^{-8} \) | \(a_{314}= -0.93128406 \pm 3.6 \cdot 10^{-8} \) | \(a_{315}= +0.51321834 \pm 3.3 \cdot 10^{-8} \) |
\(a_{316}= -0.65699416 \pm 5.2 \cdot 10^{-8} \) | \(a_{317}= +0.44413807 \pm 4.4 \cdot 10^{-8} \) | \(a_{318}= -1.58579979 \pm 6.8 \cdot 10^{-8} \) |
\(a_{319}= +0.50346700 \pm 6.3 \cdot 10^{-8} \) | \(a_{320}= +2.62528461 \pm 2.8 \cdot 10^{-8} \) | \(a_{321}= +0.03051651 \pm 3.3 \cdot 10^{-8} \) |
\(a_{322}= -2.13842894 \pm 2.3 \cdot 10^{-8} \) | \(a_{323}= -0.04787411 \pm 5.1 \cdot 10^{-8} \) | \(a_{324}= -1.83377949 \pm 3.0 \cdot 10^{-8} \) |
\(a_{325}= -1.99100721 \pm 3.5 \cdot 10^{-8} \) | \(a_{326}= -1.68659223 \pm 5.3 \cdot 10^{-8} \) | \(a_{327}= +0.58685632 \pm 4.0 \cdot 10^{-8} \) |
\(a_{328}= -0.39902447 \pm 5.0 \cdot 10^{-8} \) | \(a_{329}= +0.03070488 \pm 2.1 \cdot 10^{-8} \) | \(a_{330}= -0.86029582 \pm 1.6 \cdot 10^{-7} \) |
\(a_{331}= -0.16073928 \pm 6.6 \cdot 10^{-8} \) | \(a_{332}= +0.39115132 \pm 5.7 \cdot 10^{-8} \) | \(a_{333}= -0.09332647 \pm 4.7 \cdot 10^{-8} \) |
\(a_{334}= +1.70138939 \pm 5.2 \cdot 10^{-8} \) | \(a_{335}= -1.22868462 \pm 3.8 \cdot 10^{-8} \) | \(a_{336}= +0.19679159 \pm 5.3 \cdot 10^{-8} \) |
\(a_{337}= +1.19233020 \pm 6.4 \cdot 10^{-8} \) | \(a_{338}= -0.90397871 \pm 5.0 \cdot 10^{-8} \) | \(a_{339}= +0.89736209 \pm 5.5 \cdot 10^{-8} \) |
\(a_{340}= -0.75452244 \pm 6.0 \cdot 10^{-8} \) | \(a_{341}= -0.21057351 \pm 5.2 \cdot 10^{-8} \) | \(a_{342}= +0.05791336 \pm 5.7 \cdot 10^{-8} \) |
\(a_{343}= +0.04297405 \pm 4.4 \cdot 10^{-8} \) | \(a_{344}= +0.74422684 \pm 4.7 \cdot 10^{-8} \) | \(a_{345}= +1.69843721 \pm 2.5 \cdot 10^{-8} \) |
\(a_{346}= +0.52158764 \pm 4.8 \cdot 10^{-8} \) | \(a_{347}= +0.57257623 \pm 4.0 \cdot 10^{-8} \) | \(a_{348}= -2.88549632 \pm 3.8 \cdot 10^{-8} \) |
\(a_{349}= +0.44528830 \pm 6.0 \cdot 10^{-8} \) | \(a_{350}= +3.57349466 \pm 2.9 \cdot 10^{-8} \) | \(a_{351}= +1.07100467 \pm 3.0 \cdot 10^{-8} \) |
\(a_{352}= -0.33117376 \pm 4.7 \cdot 10^{-8} \) | \(a_{353}= -0.10611169 \pm 3.4 \cdot 10^{-8} \) | \(a_{354}= -2.17668547 \pm 1.0 \cdot 10^{-7} \) |
\(a_{355}= -3.13055506 \pm 3.7 \cdot 10^{-8} \) | \(a_{356}= +0.30873979 \pm 2.7 \cdot 10^{-8} \) | \(a_{357}= -0.46710141 \pm 3.2 \cdot 10^{-8} \) |
\(a_{358}= +1.38586438 \pm 5.4 \cdot 10^{-8} \) | \(a_{359}= -0.46512732 \pm 6.0 \cdot 10^{-8} \) | \(a_{360}= +0.32761956 \pm 3.9 \cdot 10^{-8} \) |
\(a_{361}= -0.97461283 \pm 4.7 \cdot 10^{-8} \) | \(a_{362}= -1.93836830 \pm 7.7 \cdot 10^{-8} \) | \(a_{363}= +0.10070718 \pm 6.9 \cdot 10^{-8} \) |
\(a_{364}= +2.73855331 \pm 2.1 \cdot 10^{-8} \) | \(a_{365}= -0.18713755 \pm 3.3 \cdot 10^{-8} \) | \(a_{366}= +1.86384406 \pm 5.3 \cdot 10^{-8} \) |
\(a_{367}= +0.45504214 \pm 5.5 \cdot 10^{-8} \) | \(a_{368}= +0.12056098 \pm 5.4 \cdot 10^{-8} \) | \(a_{369}= +0.10118743 \pm 6.9 \cdot 10^{-8} \) |
\(a_{370}= -1.05812429 \pm 3.4 \cdot 10^{-8} \) | \(a_{371}= -1.25558815 \pm 3.5 \cdot 10^{-8} \) | \(a_{372}= +1.20684989 \pm 3.3 \cdot 10^{-8} \) |
\(a_{373}= +0.29990693 \pm 5.8 \cdot 10^{-8} \) | \(a_{374}= +0.14494717 \pm 1.1 \cdot 10^{-7} \) | \(a_{375}= -1.05490172 \pm 5.7 \cdot 10^{-8} \) |
\(a_{376}= +0.01960086 \pm 5.8 \cdot 10^{-8} \) | \(a_{377}= +2.08893070 \pm 5.5 \cdot 10^{-8} \) | \(a_{378}= -1.92225796 \pm 3.7 \cdot 10^{-8} \) |
\(a_{379}= +1.26946604 \pm 5.4 \cdot 10^{-8} \) | \(a_{380}= +0.40011580 \pm 2.1 \cdot 10^{-8} \) | \(a_{381}= -0.98038661 \pm 5.7 \cdot 10^{-8} \) |
\(a_{382}= +1.96061720 \pm 4.3 \cdot 10^{-8} \) | \(a_{383}= -1.59533523 \pm 5.8 \cdot 10^{-8} \) | \(a_{384}= +1.67367558 \pm 6.3 \cdot 10^{-8} \) |
\(a_{385}= -0.68115612 \pm 8.9 \cdot 10^{-8} \) | \(a_{386}= +1.46693116 \pm 4.1 \cdot 10^{-8} \) | \(a_{387}= -0.18872627 \pm 5.0 \cdot 10^{-8} \) |
\(a_{388}= -2.52295859 \pm 3.8 \cdot 10^{-8} \) | \(a_{389}= +0.92612490 \pm 4.8 \cdot 10^{-8} \) | \(a_{390}= -3.56944610 \pm 3.1 \cdot 10^{-8} \) |
\(a_{391}= -0.28616165 \pm 2.3 \cdot 10^{-8} \) | \(a_{392}= -0.86841043 \pm 4.5 \cdot 10^{-8} \) | \(a_{393}= +0.88774051 \pm 2.8 \cdot 10^{-8} \) |
\(a_{394}= +1.96252974 \pm 4.6 \cdot 10^{-8} \) | \(a_{395}= +0.67801607 \pm 4.9 \cdot 10^{-8} \) | \(a_{396}= -0.10684713 \pm 1.1 \cdot 10^{-7} \) |
\(a_{397}= -0.24545026 \pm 6.4 \cdot 10^{-8} \) | \(a_{398}= +1.94770173 \pm 6.8 \cdot 10^{-8} \) | \(a_{399}= +0.24769927 \pm 4.6 \cdot 10^{-8} \) |
\(a_{400}= -0.20146755 \pm 4.7 \cdot 10^{-8} \) | \(a_{401}= -0.44660158 \pm 4.3 \cdot 10^{-8} \) | \(a_{402}= -1.35278107 \pm 7.2 \cdot 10^{-8} \) |
\(a_{403}= -0.87368879 \pm 3.4 \cdot 10^{-8} \) | \(a_{404}= +0.76609098 \pm 4.6 \cdot 10^{-8} \) | \(a_{405}= +1.89245513 \pm 2.9 \cdot 10^{-8} \) |
\(a_{406}= -3.74924944 \pm 2.4 \cdot 10^{-8} \) | \(a_{407}= +0.12386520 \pm 5.4 \cdot 10^{-8} \) | \(a_{408}= -0.29818022 \pm 5.4 \cdot 10^{-8} \) |
\(a_{409}= +0.73979714 \pm 4.5 \cdot 10^{-8} \) | \(a_{410}= +1.14725094 \pm 4.9 \cdot 10^{-8} \) | \(a_{411}= +0.67074632 \pm 4.1 \cdot 10^{-8} \) |
\(a_{412}= -2.27312069 \pm 1.9 \cdot 10^{-8} \) | \(a_{413}= -1.72343350 \pm 5.3 \cdot 10^{-8} \) | \(a_{414}= +0.34617006 \pm 4.7 \cdot 10^{-8} \) |
\(a_{415}= -0.40366704 \pm 5.2 \cdot 10^{-8} \) | \(a_{416}= -1.37407025 \pm 3.0 \cdot 10^{-8} \) | \(a_{417}= -0.76868540 \pm 7.3 \cdot 10^{-8} \) |
\(a_{418}= -0.07686405 \pm 1.1 \cdot 10^{-7} \) | \(a_{419}= +0.83519525 \pm 4.2 \cdot 10^{-8} \) | \(a_{420}= +3.90387744 \pm 3.2 \cdot 10^{-8} \) |
\(a_{421}= -0.21868700 \pm 4.7 \cdot 10^{-8} \) | \(a_{422}= +2.69441958 \pm 3.7 \cdot 10^{-8} \) | \(a_{423}= -0.00497052 \pm 4.8 \cdot 10^{-8} \) |
\(a_{424}= -0.80152092 \pm 4.9 \cdot 10^{-8} \) | \(a_{425}= +0.47820019 \pm 4.0 \cdot 10^{-8} \) | \(a_{426}= -3.44673936 \pm 7.2 \cdot 10^{-8} \) |
\(a_{427}= +1.47573517 \pm 2.5 \cdot 10^{-8} \) | \(a_{428}= +0.04297162 \pm 3.1 \cdot 10^{-8} \) | \(a_{429}= +0.41784331 \pm 1.1 \cdot 10^{-7} \) |
\(a_{430}= -2.13975587 \pm 4.5 \cdot 10^{-8} \) | \(a_{431}= +0.02955111 \pm 4.7 \cdot 10^{-8} \) | \(a_{432}= +0.10837363 \pm 4.7 \cdot 10^{-8} \) |
\(a_{433}= -0.43178839 \pm 4.0 \cdot 10^{-8} \) | \(a_{434}= +1.56811195 \pm 2.4 \cdot 10^{-8} \) | \(a_{435}= +2.97782387 \pm 3.1 \cdot 10^{-8} \) |
\(a_{436}= +0.82637793 \pm 4.5 \cdot 10^{-8} \) | \(a_{437}= +0.15174870 \pm 2.8 \cdot 10^{-8} \) | \(a_{438}= -0.20603834 \pm 5.1 \cdot 10^{-8} \) |
\(a_{439}= +0.36884488 \pm 3.0 \cdot 10^{-8} \) | \(a_{440}= -0.43482481 \pm 1.1 \cdot 10^{-7} \) | \(a_{441}= +0.22021762 \pm 3.4 \cdot 10^{-8} \) |
\(a_{442}= +0.60139908 \pm 2.8 \cdot 10^{-8} \) | \(a_{443}= +0.00412586 \pm 4.1 \cdot 10^{-8} \) | \(a_{444}= -0.70990269 \pm 2.9 \cdot 10^{-8} \) |
\(a_{445}= -0.31861857 \pm 3.8 \cdot 10^{-8} \) | \(a_{446}= -0.43854904 \pm 4.6 \cdot 10^{-8} \) | \(a_{447}= -0.64807933 \pm 4.5 \cdot 10^{-8} \) |
\(a_{448}= +2.28856020 \pm 3.1 \cdot 10^{-8} \) | \(a_{449}= -0.15014530 \pm 3.7 \cdot 10^{-8} \) | \(a_{450}= -0.57847930 \pm 3.8 \cdot 10^{-8} \) |
\(a_{451}= -0.13429847 \pm 6.1 \cdot 10^{-8} \) | \(a_{452}= +1.26361462 \pm 4.8 \cdot 10^{-8} \) | \(a_{453}= -1.36732966 \pm 3.7 \cdot 10^{-8} \) |
\(a_{454}= +1.54356429 \pm 4.4 \cdot 10^{-8} \) | \(a_{455}= -2.82617910 \pm 2.4 \cdot 10^{-8} \) | \(a_{456}= +0.15812203 \pm 5.9 \cdot 10^{-8} \) |
\(a_{457}= -1.40395647 \pm 4.6 \cdot 10^{-8} \) | \(a_{458}= -2.98960070 \pm 4.6 \cdot 10^{-8} \) | \(a_{459}= -0.25723394 \pm 3.3 \cdot 10^{-8} \) |
\(a_{460}= +2.39164336 \pm 3.2 \cdot 10^{-8} \) | \(a_{461}= +1.85911820 \pm 3.4 \cdot 10^{-8} \) | \(a_{462}= -0.74995250 \pm 1.6 \cdot 10^{-7} \) |
\(a_{463}= -0.90217508 \pm 5.5 \cdot 10^{-8} \) | \(a_{464}= +0.21137630 \pm 5.8 \cdot 10^{-8} \) | \(a_{465}= -1.24546560 \pm 3.2 \cdot 10^{-8} \) |
\(a_{466}= +1.78026011 \pm 5.1 \cdot 10^{-8} \) | \(a_{467}= -1.76306827 \pm 2.5 \cdot 10^{-8} \) | \(a_{468}= -0.44331853 \pm 1.9 \cdot 10^{-8} \) |
\(a_{469}= -1.07109100 \pm 3.7 \cdot 10^{-8} \) | \(a_{470}= -0.05635519 \pm 5.4 \cdot 10^{-8} \) | \(a_{471}= +0.64479668 \pm 2.9 \cdot 10^{-8} \) |
\(a_{472}= -1.10017605 \pm 5.8 \cdot 10^{-8} \) | \(a_{473}= +0.25048219 \pm 5.3 \cdot 10^{-8} \) | \(a_{474}= +0.74649531 \pm 5.2 \cdot 10^{-8} \) |
\(a_{475}= -0.25358484 \pm 3.2 \cdot 10^{-8} \) | \(a_{476}= -0.65774583 \pm 1.9 \cdot 10^{-8} \) | \(a_{477}= +0.20325531 \pm 6.5 \cdot 10^{-8} \) |
\(a_{478}= -0.45395259 \pm 7.0 \cdot 10^{-8} \) | \(a_{479}= +0.01168151 \pm 3.3 \cdot 10^{-8} \) | \(a_{480}= -1.95877211 \pm 3.6 \cdot 10^{-8} \) |
\(a_{481}= +0.51392806 \pm 2.7 \cdot 10^{-8} \) | \(a_{482}= -0.49400928 \pm 3.7 \cdot 10^{-8} \) | \(a_{483}= +1.48059215 \pm 1.8 \cdot 10^{-8} \) |
\(a_{484}= +0.14181016 \pm 5.2 \cdot 10^{-8} \) | \(a_{485}= +2.60368597 \pm 5.1 \cdot 10^{-8} \) | \(a_{486}= +0.71382348 \pm 5.1 \cdot 10^{-8} \) |
\(a_{487}= -0.77574113 \pm 6.5 \cdot 10^{-8} \) | \(a_{488}= +0.94205461 \pm 5.9 \cdot 10^{-8} \) | \(a_{489}= +1.16775226 \pm 6.0 \cdot 10^{-8} \) |
\(a_{490}= +2.49680100 \pm 4.4 \cdot 10^{-8} \) | \(a_{491}= +0.92108471 \pm 4.8 \cdot 10^{-8} \) | \(a_{492}= +0.76969836 \pm 3.5 \cdot 10^{-8} \) |
\(a_{493}= -0.50171945 \pm 4.9 \cdot 10^{-8} \) | \(a_{494}= -0.31891600 \pm 4.3 \cdot 10^{-8} \) | \(a_{495}= +0.11026593 \pm 1.1 \cdot 10^{-7} \) |
\(a_{496}= -0.08840748 \pm 4.3 \cdot 10^{-8} \) | \(a_{497}= -2.72902363 \pm 3.8 \cdot 10^{-8} \) | \(a_{498}= -0.44443718 \pm 4.3 \cdot 10^{-8} \) |
\(a_{499}= +1.26533584 \pm 6.4 \cdot 10^{-8} \) | \(a_{500}= -1.48545303 \pm 2.4 \cdot 10^{-8} \) | \(a_{501}= -1.17799743 \pm 5.4 \cdot 10^{-8} \) |
\(a_{502}= +1.56872052 \pm 4.2 \cdot 10^{-8} \) | \(a_{503}= +0.75290948 \pm 5.4 \cdot 10^{-8} \) | \(a_{504}= +0.28559840 \pm 3.7 \cdot 10^{-8} \) |
\(a_{505}= -0.79060368 \pm 6.0 \cdot 10^{-8} \) | \(a_{506}= -0.45944550 \pm 1.1 \cdot 10^{-7} \) | \(a_{507}= +0.62589117 \pm 3.1 \cdot 10^{-8} \) |
\(a_{508}= -1.38052506 \pm 3.8 \cdot 10^{-8} \) | \(a_{509}= +1.12915109 \pm 4.4 \cdot 10^{-8} \) | \(a_{510}= +0.85730970 \pm 4.0 \cdot 10^{-8} \) |
\(a_{511}= -0.16313491 \pm 2.9 \cdot 10^{-8} \) | \(a_{512}= -0.25244256 \pm 4.3 \cdot 10^{-8} \) | \(a_{513}= +0.13640862 \pm 2.9 \cdot 10^{-8} \) |
\(a_{514}= -0.12288294 \pm 6.8 \cdot 10^{-8} \) | \(a_{515}= +2.34585398 \pm 3.3 \cdot 10^{-8} \) | \(a_{516}= -1.43557658 \pm 3.4 \cdot 10^{-8} \) |
\(a_{517}= +0.00659700 \pm 6.3 \cdot 10^{-8} \) | \(a_{518}= -0.92240709 \pm 2.8 \cdot 10^{-8} \) | \(a_{519}= -0.36113361 \pm 6.6 \cdot 10^{-8} \) |
\(a_{520}= -1.80412795 \pm 3.3 \cdot 10^{-8} \) | \(a_{521}= -0.76554003 \pm 4.6 \cdot 10^{-8} \) | \(a_{522}= +0.60693058 \pm 4.5 \cdot 10^{-8} \) |
\(a_{523}= +0.94550591 \pm 5.0 \cdot 10^{-8} \) | \(a_{524}= +1.25006605 \pm 2.8 \cdot 10^{-8} \) | \(a_{525}= -2.47419405 \pm 3.5 \cdot 10^{-8} \) |
\(a_{526}= -2.31664242 \pm 5.6 \cdot 10^{-8} \) | \(a_{527}= +0.20984260 \pm 4.0 \cdot 10^{-8} \) | \(a_{528}= +0.04228105 \pm 1.2 \cdot 10^{-7} \) |
\(a_{529}= -0.09294068 \pm 6.0 \cdot 10^{-8} \) | \(a_{530}= +2.30448435 \pm 3.9 \cdot 10^{-8} \) | \(a_{531}= +0.27899037 \pm 9.2 \cdot 10^{-8} \) |
\(a_{532}= +0.34879612 \pm 2.0 \cdot 10^{-8} \) | \(a_{533}= -0.55721663 \pm 3.8 \cdot 10^{-8} \) | \(a_{534}= -0.35079886 \pm 6.2 \cdot 10^{-8} \) |
\(a_{535}= -0.04434659 \pm 3.2 \cdot 10^{-8} \) | \(a_{536}= -0.68374478 \pm 5.3 \cdot 10^{-8} \) | \(a_{537}= -0.95953617 \pm 6.1 \cdot 10^{-8} \) |
\(a_{538}= -1.66182008 \pm 4.8 \cdot 10^{-8} \) | \(a_{539}= -0.29227829 \pm 4.6 \cdot 10^{-8} \) | \(a_{540}= +2.14987527 \pm 5.4 \cdot 10^{-8} \) |
\(a_{541}= +0.93804619 \pm 4.8 \cdot 10^{-8} \) | \(a_{542}= +1.92274861 \pm 3.8 \cdot 10^{-8} \) | \(a_{543}= +1.34207541 \pm 8.8 \cdot 10^{-8} \) |
\(a_{544}= +0.33002424 \pm 3.6 \cdot 10^{-8} \) | \(a_{545}= -0.85281964 \pm 3.4 \cdot 10^{-8} \) | \(a_{546}= -3.11162159 \pm 3.7 \cdot 10^{-8} \) |
\(a_{547}= +0.99897303 \pm 6.3 \cdot 10^{-8} \) | \(a_{548}= +0.94450709 \pm 3.3 \cdot 10^{-8} \) | \(a_{549}= -0.23889283 \pm 4.1 \cdot 10^{-8} \) |
\(a_{550}= +0.76777208 \pm 1.0 \cdot 10^{-7} \) | \(a_{551}= +0.26605687 \pm 4.1 \cdot 10^{-8} \) | \(a_{552}= +0.94515513 \pm 2.5 \cdot 10^{-8} \) |
\(a_{553}= +0.59105234 \pm 3.1 \cdot 10^{-8} \) | \(a_{554}= +0.90141659 \pm 2.8 \cdot 10^{-8} \) | \(a_{555}= +0.73261753 \pm 3.6 \cdot 10^{-8} \) |
\(a_{556}= -1.08241938 \pm 5.8 \cdot 10^{-8} \) | \(a_{557}= -0.92210315 \pm 4.1 \cdot 10^{-8} \) | \(a_{558}= -0.25384683 \pm 3.7 \cdot 10^{-8} \) |
\(a_{559}= +1.03927354 \pm 3.1 \cdot 10^{-8} \) | \(a_{560}= -0.28597755 \pm 2.9 \cdot 10^{-8} \) | \(a_{561}= -0.10035762 \pm 1.1 \cdot 10^{-7} \) |
\(a_{562}= -2.55932052 \pm 4.9 \cdot 10^{-8} \) | \(a_{563}= +0.32211926 \pm 3.2 \cdot 10^{-8} \) | \(a_{564}= -0.03780908 \pm 3.7 \cdot 10^{-8} \) |
\(a_{565}= -1.30404664 \pm 3.3 \cdot 10^{-8} \) | \(a_{566}= -2.65215163 \pm 6.0 \cdot 10^{-8} \) | \(a_{567}= +1.64972494 \pm 2.2 \cdot 10^{-8} \) |
\(a_{568}= -1.74210750 \pm 5.3 \cdot 10^{-8} \) | \(a_{569}= -0.30043115 \pm 4.7 \cdot 10^{-8} \) | \(a_{570}= -0.45462287 \pm 3.7 \cdot 10^{-8} \) |
\(a_{571}= +0.58480551 \pm 5.7 \cdot 10^{-8} \) | \(a_{572}= +0.58838336 \pm 1.0 \cdot 10^{-7} \) | \(a_{573}= -1.35747996 \pm 3.7 \cdot 10^{-8} \) |
\(a_{574}= +1.00010218 \pm 5.1 \cdot 10^{-8} \) | \(a_{575}= -1.51577243 \pm 3.3 \cdot 10^{-8} \) | \(a_{576}= -0.37047340 \pm 4.5 \cdot 10^{-8} \) |
\(a_{577}= +0.69324197 \pm 5.9 \cdot 10^{-8} \) | \(a_{578}= +1.45552839 \pm 4.9 \cdot 10^{-8} \) | \(a_{579}= -1.01566469 \pm 3.7 \cdot 10^{-8} \) |
\(a_{580}= +4.19320342 \pm 6.3 \cdot 10^{-8} \) | \(a_{581}= -0.35189187 \pm 2.8 \cdot 10^{-8} \) | \(a_{582}= +2.86665679 \pm 8.3 \cdot 10^{-8} \) |
\(a_{583}= -0.26976549 \pm 6.5 \cdot 10^{-8} \) | \(a_{584}= -0.10413928 \pm 4.3 \cdot 10^{-8} \) | \(a_{585}= +0.45750344 \pm 3.6 \cdot 10^{-8} \) |
\(a_{586}= +2.17010761 \pm 4.5 \cdot 10^{-8} \) | \(a_{587}= -1.34794666 \pm 2.9 \cdot 10^{-8} \) | \(a_{588}= +1.67512056 \pm 3.4 \cdot 10^{-8} \) |
\(a_{589}= -0.11127746 \pm 2.9 \cdot 10^{-8} \) | \(a_{590}= +3.16315945 \pm 4.9 \cdot 10^{-8} \) | \(a_{591}= -1.35880415 \pm 3.9 \cdot 10^{-8} \) |
\(a_{592}= +0.05200374 \pm 3.2 \cdot 10^{-8} \) | \(a_{593}= +1.20545004 \pm 4.0 \cdot 10^{-8} \) | \(a_{594}= -0.41300076 \pm 1.0 \cdot 10^{-7} \) |
\(a_{595}= +0.67879180 \pm 2.2 \cdot 10^{-8} \) | \(a_{596}= -0.91258872 \pm 4.7 \cdot 10^{-8} \) | \(a_{597}= -1.34853763 \pm 6.6 \cdot 10^{-8} \) |
\(a_{598}= -1.90628145 \pm 7.3 \cdot 10^{-8} \) | \(a_{599}= -0.36417470 \pm 6.1 \cdot 10^{-8} \) | \(a_{600}= -1.57943374 \pm 4.8 \cdot 10^{-8} \) |
\(a_{601}= +1.27822939 \pm 3.6 \cdot 10^{-8} \) | \(a_{602}= -1.86530638 \pm 4.3 \cdot 10^{-8} \) | \(a_{603}= +0.17338881 \pm 6.3 \cdot 10^{-8} \) |
\(a_{604}= -1.92539642 \pm 2.0 \cdot 10^{-8} \) | \(a_{605}= -0.14634768 \pm 5.4 \cdot 10^{-8} \) | \(a_{606}= -0.87045420 \pm 9.2 \cdot 10^{-8} \) |
\(a_{607}= -0.88200176 \pm 5.6 \cdot 10^{-8} \) | \(a_{608}= -0.17500860 \pm 2.8 \cdot 10^{-8} \) | \(a_{609}= +2.59588205 \pm 2.1 \cdot 10^{-8} \) |
\(a_{610}= -2.70853829 \pm 5.6 \cdot 10^{-8} \) | \(a_{611}= +0.02737156 \pm 6.7 \cdot 10^{-8} \) | \(a_{612}= +0.10647626 \pm 2.8 \cdot 10^{-8} \) |
\(a_{613}= -0.54487597 \pm 7.4 \cdot 10^{-8} \) | \(a_{614}= +1.39632275 \pm 6.6 \cdot 10^{-8} \) | \(a_{615}= -0.79432649 \pm 5.6 \cdot 10^{-8} \) |
\(a_{616}= -0.37905329 \pm 1.0 \cdot 10^{-7} \) | \(a_{617}= -0.22904274 \pm 4.9 \cdot 10^{-8} \) | \(a_{618}= +2.58278391 \pm 6.8 \cdot 10^{-8} \) |
\(a_{619}= +0.62999388 \pm 4.2 \cdot 10^{-8} \) | \(a_{620}= -1.75379433 \pm 5.1 \cdot 10^{-8} \) | \(a_{621}= +0.81536588 \pm 2.3 \cdot 10^{-8} \) |
\(a_{622}= -0.46238864 \pm 5.4 \cdot 10^{-8} \) | \(a_{623}= -0.27775190 \pm 3.3 \cdot 10^{-8} \) | \(a_{624}= +0.17542793 \pm 4.8 \cdot 10^{-8} \) |
\(a_{625}= -0.05855163 \pm 2.6 \cdot 10^{-8} \) | \(a_{626}= -0.81246246 \pm 5.4 \cdot 10^{-8} \) | \(a_{627}= +0.05321866 \pm 1.1 \cdot 10^{-7} \) |
\(a_{628}= +0.90796627 \pm 4.1 \cdot 10^{-8} \) | \(a_{629}= -0.12343526 \pm 4.9 \cdot 10^{-8} \) | \(a_{630}= -0.82113520 \pm 3.3 \cdot 10^{-8} \) |
\(a_{631}= +1.68049149 \pm 3.5 \cdot 10^{-8} \) | \(a_{632}= +0.37730590 \pm 6.4 \cdot 10^{-8} \) | \(a_{633}= -1.86554550 \pm 3.9 \cdot 10^{-8} \) |
\(a_{634}= -0.71060868 \pm 5.8 \cdot 10^{-8} \) | \(a_{635}= +1.42469788 \pm 4.6 \cdot 10^{-8} \) | \(a_{636}= +1.54609402 \pm 2.9 \cdot 10^{-8} \) |
\(a_{637}= -1.21268938 \pm 3.7 \cdot 10^{-8} \) | \(a_{638}= -0.80553333 \pm 1.1 \cdot 10^{-7} \) | \(a_{639}= +0.44177586 \pm 6.7 \cdot 10^{-8} \) |
\(a_{640}= -2.43218545 \pm 4.4 \cdot 10^{-8} \) | \(a_{641}= -0.45820268 \pm 3.7 \cdot 10^{-8} \) | \(a_{642}= -0.04882557 \pm 2.7 \cdot 10^{-8} \) |
\(a_{643}= +0.44939603 \pm 5.0 \cdot 10^{-8} \) | \(a_{644}= +2.08488626 \pm 1.7 \cdot 10^{-8} \) | \(a_{645}= +1.48151088 \pm 4.4 \cdot 10^{-8} \) |
\(a_{646}= +0.07659726 \pm 4.4 \cdot 10^{-8} \) | \(a_{647}= -1.24459494 \pm 5.1 \cdot 10^{-8} \) | \(a_{648}= +1.05312324 \pm 3.5 \cdot 10^{-8} \) |
\(a_{649}= -0.37028295 \pm 7.7 \cdot 10^{-8} \) | \(a_{650}= +3.18555667 \pm 3.7 \cdot 10^{-8} \) | \(a_{651}= -1.08571962 \pm 2.7 \cdot 10^{-8} \) |
\(a_{652}= +1.64436279 \pm 4.6 \cdot 10^{-8} \) | \(a_{653}= -0.09239046 \pm 4.9 \cdot 10^{-8} \) | \(a_{654}= -0.93895394 \pm 4.6 \cdot 10^{-8} \) |
\(a_{655}= -1.29006455 \pm 3.5 \cdot 10^{-8} \) | \(a_{656}= -0.05638406 \pm 5.8 \cdot 10^{-8} \) | \(a_{657}= +0.02640837 \pm 5.4 \cdot 10^{-8} \) |
\(a_{658}= -0.04912696 \pm 2.3 \cdot 10^{-8} \) | \(a_{659}= +1.58198139 \pm 4.5 \cdot 10^{-8} \) | \(a_{660}= +0.83875545 \pm 1.5 \cdot 10^{-7} \) |
\(a_{661}= +0.91767368 \pm 4.7 \cdot 10^{-8} \) | \(a_{662}= +0.25717841 \pm 6.7 \cdot 10^{-8} \) | \(a_{663}= -0.41639296 \pm 3.9 \cdot 10^{-8} \) |
\(a_{664}= -0.22463472 \pm 5.9 \cdot 10^{-8} \) | \(a_{665}= -0.35995659 \pm 2.5 \cdot 10^{-8} \) | \(a_{666}= +0.14931977 \pm 4.5 \cdot 10^{-8} \) |
\(a_{667}= +1.59032249 \pm 5.7 \cdot 10^{-8} \) | \(a_{668}= -1.65878945 \pm 4.4 \cdot 10^{-8} \) | \(a_{669}= +0.30363986 \pm 5.7 \cdot 10^{-8} \) |
\(a_{670}= +1.96586153 \pm 4.8 \cdot 10^{-8} \) | \(a_{671}= +0.31706449 \pm 5.0 \cdot 10^{-8} \) | \(a_{672}= -1.70753597 \pm 3.0 \cdot 10^{-8} \) |
\(a_{673}= -0.04920411 \pm 4.5 \cdot 10^{-8} \) | \(a_{674}= -1.90769547 \pm 7.5 \cdot 10^{-8} \) | \(a_{675}= -1.36254498 \pm 2.9 \cdot 10^{-8} \) |
\(a_{676}= +0.88134460 \pm 3.4 \cdot 10^{-8} \) | \(a_{677}= -1.30599624 \pm 4.6 \cdot 10^{-8} \) | \(a_{678}= -1.43575461 \pm 6.0 \cdot 10^{-8} \) |
\(a_{679}= +2.26973185 \pm 4.4 \cdot 10^{-8} \) | \(a_{680}= +0.43331552 \pm 6.1 \cdot 10^{-8} \) | \(a_{681}= -1.06872346 \pm 5.7 \cdot 10^{-8} \) |
\(a_{682}= +0.33691182 \pm 1.0 \cdot 10^{-7} \) | \(a_{683}= +0.01170257 \pm 6.5 \cdot 10^{-8} \) | \(a_{684}= -0.05646331 \pm 1.8 \cdot 10^{-8} \) |
\(a_{685}= -0.97472859 \pm 3.2 \cdot 10^{-8} \) | \(a_{686}= -0.06875729 \pm 4.4 \cdot 10^{-8} \) | \(a_{687}= +2.06992117 \pm 3.8 \cdot 10^{-8} \) |
\(a_{688}= +0.10516280 \pm 4.6 \cdot 10^{-8} \) | \(a_{689}= -1.11928171 \pm 4.0 \cdot 10^{-8} \) | \(a_{690}= -2.71745272 \pm 2.2 \cdot 10^{-8} \) |
\(a_{691}= +0.34115354 \pm 3.7 \cdot 10^{-8} \) | \(a_{692}= -0.50852796 \pm 2.3 \cdot 10^{-8} \) | \(a_{693}= +0.09612300 \pm 1.0 \cdot 10^{-7} \) |
\(a_{694}= -0.91610618 \pm 4.4 \cdot 10^{-8} \) | \(a_{695}= +1.11705367 \pm 5.1 \cdot 10^{-8} \) | \(a_{696}= +1.65711485 \pm 4.4 \cdot 10^{-8} \) |
\(a_{697}= +0.13383231 \pm 2.8 \cdot 10^{-8} \) | \(a_{698}= -0.71244901 \pm 6.5 \cdot 10^{-8} \) | \(a_{699}= -1.23260544 \pm 2.5 \cdot 10^{-8} \) |
\(a_{700}= -3.48402034 \pm 2.6 \cdot 10^{-8} \) | \(a_{701}= +0.95239421 \pm 6.3 \cdot 10^{-8} \) | \(a_{702}= -1.71357796 \pm 3.2 \cdot 10^{-8} \) |
\(a_{703}= +0.06545650 \pm 4.5 \cdot 10^{-8} \) | \(a_{704}= +0.49170149 \pm 4.8 \cdot 10^{-8} \) | \(a_{705}= +0.03901886 \pm 3.6 \cdot 10^{-8} \) |
\(a_{706}= +0.16977578 \pm 3.9 \cdot 10^{-8} \) | \(a_{707}= -0.68919922 \pm 4.7 \cdot 10^{-8} \) | \(a_{708}= +2.12218492 \pm 2.7 \cdot 10^{-8} \) |
\(a_{709}= -0.94939935 \pm 7.0 \cdot 10^{-8} \) | \(a_{710}= +5.00880183 \pm 4.0 \cdot 10^{-8} \) | \(a_{711}= -0.09567988 \pm 5.1 \cdot 10^{-8} \) |
\(a_{712}= -0.17730651 \pm 4.0 \cdot 10^{-8} \) | \(a_{713}= -0.66514745 \pm 2.8 \cdot 10^{-8} \) | \(a_{714}= +0.74734939 \pm 2.7 \cdot 10^{-8} \) |
\(a_{715}= -0.60720992 \pm 1.0 \cdot 10^{-7} \) | \(a_{716}= -1.35116466 \pm 4.1 \cdot 10^{-8} \) | \(a_{717}= +0.31430488 \pm 9.2 \cdot 10^{-8} \) |
\(a_{718}= +0.74419089 \pm 6.5 \cdot 10^{-8} \) | \(a_{719}= +1.59388726 \pm 5.4 \cdot 10^{-8} \) | \(a_{720}= +0.04629421 \pm 4.5 \cdot 10^{-8} \) |
\(a_{721}= +2.04496992 \pm 3.4 \cdot 10^{-8} \) | \(a_{722}= +1.55935367 \pm 4.7 \cdot 10^{-8} \) | \(a_{723}= +0.34203908 \pm 3.7 \cdot 10^{-8} \) |
\(a_{724}= +1.88983480 \pm 5.9 \cdot 10^{-8} \) | \(a_{725}= -2.65756267 \pm 3.4 \cdot 10^{-8} \) | \(a_{726}= -0.16112871 \pm 1.2 \cdot 10^{-7} \) |
\(a_{727}= -0.03257967 \pm 4.9 \cdot 10^{-8} \) | \(a_{728}= -1.57272679 \pm 3.2 \cdot 10^{-8} \) | \(a_{729}= +0.68133346 \pm 6.1 \cdot 10^{-8} \) |
\(a_{730}= +0.29941493 \pm 3.7 \cdot 10^{-8} \) | \(a_{731}= -0.24961276 \pm 3.4 \cdot 10^{-8} \) | \(a_{732}= -1.81717653 \pm 4.4 \cdot 10^{-8} \) |
\(a_{733}= -0.85837882 \pm 6.9 \cdot 10^{-8} \) | \(a_{734}= -0.72805488 \pm 5.2 \cdot 10^{-8} \) | \(a_{735}= -1.72871958 \pm 2.7 \cdot 10^{-8} \) |
\(a_{736}= -1.04609254 \pm 2.9 \cdot 10^{-8} \) | \(a_{737}= -0.23012593 \pm 6.0 \cdot 10^{-8} \) | \(a_{738}= -0.16189710 \pm 7.3 \cdot 10^{-8} \) |
\(a_{739}= +1.23738872 \pm 6.3 \cdot 10^{-8} \) | \(a_{740}= +1.03163063 \pm 3.9 \cdot 10^{-8} \) | \(a_{741}= +0.22080908 \pm 4.9 \cdot 10^{-8} \) |
\(a_{742}= +2.00890644 \pm 3.9 \cdot 10^{-8} \) | \(a_{743}= +1.86939515 \pm 4.2 \cdot 10^{-8} \) | \(a_{744}= -0.69308315 \pm 4.0 \cdot 10^{-8} \) |
\(a_{745}= +0.94178892 \pm 5.3 \cdot 10^{-8} \) | \(a_{746}= -0.47984283 \pm 5.9 \cdot 10^{-8} \) | \(a_{747}= +0.05696445 \pm 3.8 \cdot 10^{-8} \) |
\(a_{748}= -0.14131794 \pm 9.5 \cdot 10^{-8} \) | \(a_{749}= -0.03865860 \pm 2.0 \cdot 10^{-8} \) | \(a_{750}= +1.68781368 \pm 5.8 \cdot 10^{-8} \) |
\(a_{751}= -1.28288808 \pm 6.5 \cdot 10^{-8} \) | \(a_{752}= +0.00276969 \pm 6.3 \cdot 10^{-8} \) | \(a_{753}= -1.08614098 \pm 4.2 \cdot 10^{-8} \) |
\(a_{754}= -3.34223154 \pm 6.2 \cdot 10^{-8} \) | \(a_{755}= +1.98700354 \pm 2.7 \cdot 10^{-8} \) | \(a_{756}= +1.87412784 \pm 3.1 \cdot 10^{-8} \) |
\(a_{757}= +0.26606138 \pm 6.0 \cdot 10^{-8} \) | \(a_{758}= -2.03111068 \pm 5.9 \cdot 10^{-8} \) | \(a_{759}= +0.31810802 \pm 1.1 \cdot 10^{-7} \) |
\(a_{760}= -0.22978294 \pm 3.2 \cdot 10^{-8} \) | \(a_{761}= -1.17835245 \pm 3.6 \cdot 10^{-8} \) | \(a_{762}= +1.56859156 \pm 6.1 \cdot 10^{-8} \) |
\(a_{763}= -0.74343524 \pm 2.2 \cdot 10^{-8} \) | \(a_{764}= -1.91152663 \pm 4.6 \cdot 10^{-8} \) | \(a_{765}= -0.10988319 \pm 3.7 \cdot 10^{-8} \) |
\(a_{766}= +2.55249240 \pm 6.1 \cdot 10^{-8} \) | \(a_{767}= -1.53633785 \pm 5.1 \cdot 10^{-8} \) | \(a_{768}= -0.87128065 \pm 4.0 \cdot 10^{-8} \) |
\(a_{769}= +0.59780029 \pm 5.7 \cdot 10^{-8} \) | \(a_{770}= +1.08983102 \pm 1.4 \cdot 10^{-7} \) | \(a_{771}= +0.08508093 \pm 4.4 \cdot 10^{-8} \) |
\(a_{772}= -1.43020166 \pm 3.0 \cdot 10^{-8} \) | \(a_{773}= -0.52428070 \pm 4.2 \cdot 10^{-8} \) | \(a_{774}= +0.30195683 \pm 5.1 \cdot 10^{-8} \) |
\(a_{775}= +1.11151735 \pm 3.0 \cdot 10^{-8} \) | \(a_{776}= +1.44891266 \pm 6.3 \cdot 10^{-8} \) | \(a_{777}= +0.63865050 \pm 3.6 \cdot 10^{-8} \) |
\(a_{778}= -1.48177431 \pm 5.3 \cdot 10^{-8} \) | \(a_{779}= -0.07096995 \pm 4.2 \cdot 10^{-8} \) | \(a_{780}= +3.48007315 \pm 2.3 \cdot 10^{-8} \) |
\(a_{781}= -0.58633589 \pm 6.2 \cdot 10^{-8} \) | \(a_{782}= +0.45785075 \pm 2.4 \cdot 10^{-8} \) | \(a_{783}= +1.42955887 \pm 3.8 \cdot 10^{-8} \) |
\(a_{784}= -0.12271053 \pm 4.2 \cdot 10^{-8} \) | \(a_{785}= -0.93701857 \pm 3.8 \cdot 10^{-8} \) | \(a_{786}= -1.42036034 \pm 2.5 \cdot 10^{-8} \) |
\(a_{787}= -0.09575059 \pm 3.7 \cdot 10^{-8} \) | \(a_{788}= -1.91339128 \pm 5.3 \cdot 10^{-8} \) | \(a_{789}= +1.60398249 \pm 6.0 \cdot 10^{-8} \) |
\(a_{790}= -1.08480703 \pm 6.4 \cdot 10^{-8} \) | \(a_{791}= -1.13678693 \pm 3.1 \cdot 10^{-8} \) | \(a_{792}= +0.06136136 \pm 1.2 \cdot 10^{-7} \) |
\(a_{793}= +1.31552960 \pm 3.4 \cdot 10^{-8} \) | \(a_{794}= +0.39271366 \pm 7.2 \cdot 10^{-8} \) | \(a_{795}= -1.59556457 \pm 5.1 \cdot 10^{-8} \) |
\(a_{796}= -1.89893454 \pm 5.6 \cdot 10^{-8} \) | \(a_{797}= -1.08491067 \pm 3.9 \cdot 10^{-8} \) | \(a_{798}= -0.39631200 \pm 4.9 \cdot 10^{-8} \) |
\(a_{799}= -0.00657410 \pm 3.9 \cdot 10^{-8} \) | \(a_{800}= +1.74810864 \pm 3.1 \cdot 10^{-8} \) | \(a_{801}= +0.04496263 \pm 5.6 \cdot 10^{-8} \) |
\(a_{802}= +0.71455022 \pm 4.7 \cdot 10^{-8} \) | \(a_{803}= -0.03504984 \pm 5.6 \cdot 10^{-8} \) | \(a_{804}= +1.31890970 \pm 3.6 \cdot 10^{-8} \) |
\(a_{805}= -2.15159660 \pm 1.7 \cdot 10^{-8} \) | \(a_{806}= +1.39787798 \pm 3.5 \cdot 10^{-8} \) | \(a_{807}= +1.15060067 \pm 3.1 \cdot 10^{-8} \) |
\(a_{808}= -0.43995923 \pm 7.4 \cdot 10^{-8} \) | \(a_{809}= -0.59045398 \pm 7.1 \cdot 10^{-8} \) | \(a_{810}= -3.02787606 \pm 3.2 \cdot 10^{-8} \) |
\(a_{811}= -0.61807390 \pm 4.4 \cdot 10^{-8} \) | \(a_{812}= +3.65537452 \pm 2.0 \cdot 10^{-8} \) | \(a_{813}= -1.33126075 \pm 4.2 \cdot 10^{-8} \) |
\(a_{814}= -0.19818091 \pm 1.1 \cdot 10^{-7} \) | \(a_{815}= -1.69697765 \pm 4.0 \cdot 10^{-8} \) | \(a_{816}= -0.04213429 \pm 4.6 \cdot 10^{-8} \) |
\(a_{817}= +0.13236718 \pm 3.7 \cdot 10^{-8} \) | \(a_{818}= -1.18365504 \pm 3.9 \cdot 10^{-8} \) | \(a_{819}= +0.39882311 \pm 3.4 \cdot 10^{-8} \) |
\(a_{820}= -1.11852570 \pm 4.3 \cdot 10^{-8} \) | \(a_{821}= +0.65841095 \pm 4.3 \cdot 10^{-8} \) | \(a_{822}= -1.07317563 \pm 4.5 \cdot 10^{-8} \) |
\(a_{823}= +0.85246850 \pm 3.2 \cdot 10^{-8} \) | \(a_{824}= +1.30543298 \pm 4.1 \cdot 10^{-8} \) | \(a_{825}= -0.53158527 \pm 1.0 \cdot 10^{-7} \) |
\(a_{826}= +2.75744611 \pm 5.9 \cdot 10^{-8} \) | \(a_{827}= +0.24031332 \pm 3.9 \cdot 10^{-8} \) | \(a_{828}= -0.33750255 \pm 1.9 \cdot 10^{-8} \) |
\(a_{829}= +1.74794077 \pm 3.8 \cdot 10^{-8} \) | \(a_{830}= +0.64585613 \pm 6.2 \cdot 10^{-8} \) | \(a_{831}= -0.62411722 \pm 2.9 \cdot 10^{-8} \) |
\(a_{832}= +2.04011449 \pm 3.5 \cdot 10^{-8} \) | \(a_{833}= +0.29126378 \pm 3.3 \cdot 10^{-8} \) | \(a_{834}= +1.22987546 \pm 8.5 \cdot 10^{-8} \) |
\(a_{835}= +1.71186593 \pm 3.6 \cdot 10^{-8} \) | \(a_{836}= +0.07493951 \pm 9.8 \cdot 10^{-8} \) | \(a_{837}= -0.59790857 \pm 3.6 \cdot 10^{-8} \) |
\(a_{838}= -1.33628937 \pm 4.6 \cdot 10^{-8} \) | \(a_{839}= +0.09645907 \pm 5.8 \cdot 10^{-8} \) | \(a_{840}= -2.24196206 \pm 3.4 \cdot 10^{-8} \) |
\(a_{841}= +1.78826927 \pm 5.7 \cdot 10^{-8} \) | \(a_{842}= +0.34989317 \pm 4.6 \cdot 10^{-8} \) | \(a_{843}= +1.77200645 \pm 4.3 \cdot 10^{-8} \) |
\(a_{844}= -2.62695583 \pm 4.0 \cdot 10^{-8} \) | \(a_{845}= -0.90954508 \pm 3.6 \cdot 10^{-8} \) | \(a_{846}= +0.00795270 \pm 5.0 \cdot 10^{-8} \) |
\(a_{847}= -0.12757683 \pm 4.5 \cdot 10^{-8} \) | \(a_{848}= -0.11325873 \pm 5.0 \cdot 10^{-8} \) | \(a_{849}= +1.83628028 \pm 7.6 \cdot 10^{-8} \) |
\(a_{850}= -0.76510712 \pm 4.0 \cdot 10^{-8} \) | \(a_{851}= +0.39125824 \pm 1.6 \cdot 10^{-8} \) | \(a_{852}= +3.36043878 \pm 3.2 \cdot 10^{-8} \) |
\(a_{853}= -0.57178218 \pm 4.6 \cdot 10^{-8} \) | \(a_{854}= -2.36113560 \pm 3.0 \cdot 10^{-8} \) | \(a_{855}= +0.05826997 \pm 3.6 \cdot 10^{-8} \) |
\(a_{856}= -0.02467822 \pm 3.6 \cdot 10^{-8} \) | \(a_{857}= +1.58848710 \pm 5.5 \cdot 10^{-8} \) | \(a_{858}= -0.66853778 \pm 1.7 \cdot 10^{-7} \) |
\(a_{859}= -1.75293682 \pm 4.2 \cdot 10^{-8} \) | \(a_{860}= +2.08617997 \pm 4.7 \cdot 10^{-8} \) | \(a_{861}= -0.69244454 \pm 6.2 \cdot 10^{-8} \) |
\(a_{862}= -0.04728096 \pm 4.6 \cdot 10^{-8} \) | \(a_{863}= +0.64181282 \pm 4.0 \cdot 10^{-8} \) | \(a_{864}= -0.94034442 \pm 3.2 \cdot 10^{-8} \) |
\(a_{865}= +0.52479938 \pm 3.9 \cdot 10^{-8} \) | \(a_{866}= +0.69084952 \pm 3.5 \cdot 10^{-8} \) | \(a_{867}= -1.00776971 \pm 6.2 \cdot 10^{-8} \) |
\(a_{868}= -1.52884906 \pm 1.6 \cdot 10^{-8} \) | \(a_{869}= +0.12698871 \pm 6.4 \cdot 10^{-8} \) | \(a_{870}= -4.76443613 \pm 4.2 \cdot 10^{-8} \) |
\(a_{871}= -0.95481354 \pm 4.8 \cdot 10^{-8} \) | \(a_{872}= -0.47458149 \pm 5.1 \cdot 10^{-8} \) | \(a_{873}= -0.36742545 \pm 7.8 \cdot 10^{-8} \) |
\(a_{874}= -0.24279373 \pm 3.1 \cdot 10^{-8} \) | \(a_{875}= +1.33635965 \pm 3.2 \cdot 10^{-8} \) | \(a_{876}= +0.20087949 \pm 2.7 \cdot 10^{-8} \) |
\(a_{877}= +0.13184223 \pm 5.0 \cdot 10^{-8} \) | \(a_{878}= -0.59014164 \pm 3.7 \cdot 10^{-8} \) | \(a_{879}= -1.50252563 \pm 5.9 \cdot 10^{-8} \) |
\(a_{880}= -0.06144282 \pm 1.1 \cdot 10^{-7} \) | \(a_{881}= +1.91128137 \pm 4.5 \cdot 10^{-8} \) | \(a_{882}= -0.35234212 \pm 3.5 \cdot 10^{-8} \) |
\(a_{883}= -1.05783664 \pm 5.3 \cdot 10^{-8} \) | \(a_{884}= -0.58634106 \pm 2.0 \cdot 10^{-8} \) | \(a_{885}= -2.19008870 \pm 6.7 \cdot 10^{-8} \) |
\(a_{886}= -0.00660126 \pm 5.4 \cdot 10^{-8} \) | \(a_{887}= +0.66091883 \pm 5.8 \cdot 10^{-8} \) | \(a_{888}= +0.40769080 \pm 4.1 \cdot 10^{-8} \) |
\(a_{889}= +1.24196320 \pm 3.5 \cdot 10^{-8} \) | \(a_{890}= +0.50978093 \pm 3.6 \cdot 10^{-8} \) | \(a_{891}= +0.35444652 \pm 4.4 \cdot 10^{-8} \) |
\(a_{892}= +0.42756851 \pm 3.3 \cdot 10^{-8} \) | \(a_{893}= +0.00348618 \pm 3.5 \cdot 10^{-8} \) | \(a_{894}= +1.03690907 \pm 3.9 \cdot 10^{-8} \) |
\(a_{895}= +1.39439802 \pm 5.2 \cdot 10^{-8} \) | \(a_{896}= -2.12022834 \pm 4.0 \cdot 10^{-8} \) | \(a_{897}= +1.31985931 \pm 2.0 \cdot 10^{-8} \) |
\(a_{898}= +0.24022834 \pm 4.1 \cdot 10^{-8} \) | \(a_{899}= -1.16618498 \pm 5.0 \cdot 10^{-8} \) | \(a_{900}= +0.56399515 \pm 2.8 \cdot 10^{-8} \) |
\(a_{901}= +0.26882912 \pm 4.5 \cdot 10^{-8} \) | \(a_{902}= +0.21487384 \pm 1.1 \cdot 10^{-7} \) | \(a_{903}= +1.29148925 \pm 4.5 \cdot 10^{-8} \) |
\(a_{904}= -0.72568263 \pm 6.2 \cdot 10^{-8} \) | \(a_{905}= -1.95030406 \pm 5.7 \cdot 10^{-8} \) | \(a_{906}= +2.18768978 \pm 3.3 \cdot 10^{-8} \) |
\(a_{907}= -0.14749553 \pm 5.2 \cdot 10^{-8} \) | \(a_{908}= -1.50491603 \pm 3.1 \cdot 10^{-8} \) | \(a_{909}= +0.11156795 \pm 8.9 \cdot 10^{-8} \) |
\(a_{910}= +4.52180868 \pm 2.7 \cdot 10^{-8} \) | \(a_{911}= -0.01595074 \pm 6.0 \cdot 10^{-8} \) | \(a_{912}= +0.02234340 \pm 5.9 \cdot 10^{-8} \) |
\(a_{913}= -0.07560463 \pm 5.2 \cdot 10^{-8} \) | \(a_{914}= +2.24629167 \pm 4.4 \cdot 10^{-8} \) | \(a_{915}= +1.87532093 \pm 3.8 \cdot 10^{-8} \) |
\(a_{916}= +2.91474611 \pm 4.8 \cdot 10^{-8} \) | \(a_{917}= -1.12459822 \pm 1.9 \cdot 10^{-8} \) | \(a_{918}= +0.41156722 \pm 3.6 \cdot 10^{-8} \) |
\(a_{919}= -1.22711534 \pm 5.5 \cdot 10^{-8} \) | \(a_{920}= -1.37349949 \pm 3.6 \cdot 10^{-8} \) | \(a_{921}= -0.96677728 \pm 8.3 \cdot 10^{-8} \) |
\(a_{922}= -2.97453788 \pm 3.4 \cdot 10^{-8} \) | \(a_{923}= -2.43276127 \pm 4.6 \cdot 10^{-8} \) | \(a_{924}= +0.73117495 \pm 1.4 \cdot 10^{-7} \) |
\(a_{925}= -0.65382544 \pm 2.7 \cdot 10^{-8} \) | \(a_{926}= +1.44345526 \pm 6.0 \cdot 10^{-8} \) | \(a_{927}= -0.33104087 \pm 6.0 \cdot 10^{-8} \) |
\(a_{928}= -1.83408567 \pm 4.7 \cdot 10^{-8} \) | \(a_{929}= -1.58287160 \pm 3.7 \cdot 10^{-8} \) | \(a_{930}= +1.99271064 \pm 3.9 \cdot 10^{-8} \) |
\(a_{931}= -0.15445431 \pm 2.8 \cdot 10^{-8} \) | \(a_{932}= -1.73568538 \pm 3.9 \cdot 10^{-8} \) | \(a_{933}= +0.32014578 \pm 4.2 \cdot 10^{-8} \) |
\(a_{934}= +2.82086064 \pm 2.6 \cdot 10^{-8} \) | \(a_{935}= +0.14583970 \pm 9.8 \cdot 10^{-8} \) | \(a_{936}= +0.25459389 \pm 4.6 \cdot 10^{-8} \) |
\(a_{937}= +0.74317406 \pm 5.5 \cdot 10^{-8} \) | \(a_{938}= +1.71371609 \pm 4.2 \cdot 10^{-8} \) | \(a_{939}= +0.56252772 \pm 6.8 \cdot 10^{-8} \) |
\(a_{940}= +0.05494415 \pm 6.0 \cdot 10^{-8} \) | \(a_{941}= -0.29077847 \pm 5.0 \cdot 10^{-8} \) | \(a_{942}= -1.03165691 \pm 3.1 \cdot 10^{-8} \) |
\(a_{943}= -0.42421423 \pm 1.7 \cdot 10^{-8} \) | \(a_{944}= -0.15546012 \pm 7.4 \cdot 10^{-8} \) | \(a_{945}= -1.93409452 \pm 2.2 \cdot 10^{-8} \) |
\(a_{946}= -0.40076460 \pm 1.0 \cdot 10^{-7} \) | \(a_{947}= -1.33808961 \pm 3.9 \cdot 10^{-8} \) | \(a_{948}= -0.72780432 \pm 4.6 \cdot 10^{-8} \) |
\(a_{949}= -0.14542501 \pm 5.3 \cdot 10^{-8} \) | \(a_{950}= +0.40572875 \pm 3.2 \cdot 10^{-8} \) | \(a_{951}= +0.49200683 \pm 5.0 \cdot 10^{-8} \) |
\(a_{952}= +0.37773758 \pm 2.5 \cdot 10^{-8} \) | \(a_{953}= +1.91702637 \pm 3.7 \cdot 10^{-8} \) | \(a_{954}= -0.32520289 \pm 6.6 \cdot 10^{-8} \) |
\(a_{955}= +1.97268996 \pm 3.8 \cdot 10^{-8} \) | \(a_{956}= +0.44258638 \pm 4.2 \cdot 10^{-8} \) | \(a_{957}= +0.55773017 \pm 1.2 \cdot 10^{-7} \) |
\(a_{958}= -0.01869010 \pm 3.6 \cdot 10^{-8} \) | \(a_{959}= -0.84970789 \pm 2.2 \cdot 10^{-8} \) | \(a_{960}= +2.90823512 \pm 3.3 \cdot 10^{-8} \) |
\(a_{961}= -0.51224675 \pm 4.1 \cdot 10^{-8} \) | \(a_{962}= -0.82227073 \pm 2.5 \cdot 10^{-8} \) | \(a_{963}= +0.00625808 \pm 3.1 \cdot 10^{-8} \) |
\(a_{964}= +0.48164011 \pm 4.0 \cdot 10^{-8} \) | \(a_{965}= +1.47596398 \pm 4.1 \cdot 10^{-8} \) | \(a_{966}= -2.36890664 \pm 2.1 \cdot 10^{-8} \) |
\(a_{967}= -1.11105638 \pm 5.2 \cdot 10^{-8} \) | \(a_{968}= -0.08144032 \pm 6.6 \cdot 10^{-8} \) | \(a_{969}= -0.05303393 \pm 7.0 \cdot 10^{-8} \) |
\(a_{970}= -4.16582580 \pm 5.7 \cdot 10^{-8} \) | \(a_{971}= +1.26683211 \pm 4.4 \cdot 10^{-8} \) | \(a_{972}= -0.69595054 \pm 2.9 \cdot 10^{-8} \) |
\(a_{973}= +0.97377807 \pm 4.0 \cdot 10^{-8} \) | \(a_{974}= +1.24116444 \pm 7.2 \cdot 10^{-8} \) | \(a_{975}= -2.20559595 \pm 3.2 \cdot 10^{-8} \) |
\(a_{976}= +0.13311681 \pm 5.7 \cdot 10^{-8} \) | \(a_{977}= -1.68544954 \pm 6.8 \cdot 10^{-8} \) | \(a_{978}= -1.86837143 \pm 6.7 \cdot 10^{-8} \) |
\(a_{979}= -0.05967552 \pm 5.3 \cdot 10^{-8} \) | \(a_{980}= -2.43428529 \pm 5.1 \cdot 10^{-8} \) | \(a_{981}= +0.12034771 \pm 3.4 \cdot 10^{-8} \) |
\(a_{982}= -1.47371014 \pm 4.3 \cdot 10^{-8} \) | \(a_{983}= +0.40915170 \pm 6.0 \cdot 10^{-8} \) | \(a_{984}= -0.44203092 \pm 6.6 \cdot 10^{-8} \) |
\(a_{985}= +1.97461427 \pm 3.5 \cdot 10^{-8} \) | \(a_{986}= +0.80273730 \pm 4.6 \cdot 10^{-8} \) | \(a_{987}= +0.03401422 \pm 2.0 \cdot 10^{-8} \) |
\(a_{988}= +0.31093087 \pm 1.7 \cdot 10^{-8} \) | \(a_{989}= +0.79120867 \pm 1.7 \cdot 10^{-8} \) | \(a_{990}= -0.17642245 \pm 1.7 \cdot 10^{-7} \) |
\(a_{991}= +1.74959339 \pm 5.0 \cdot 10^{-8} \) | \(a_{992}= +0.76710064 \pm 3.3 \cdot 10^{-8} \) | \(a_{993}= -0.17806359 \pm 7.6 \cdot 10^{-8} \) |
\(a_{994}= +4.36636259 \pm 4.3 \cdot 10^{-8} \) | \(a_{995}= +1.95969496 \pm 4.9 \cdot 10^{-8} \) | \(a_{996}= +0.43330922 \pm 5.5 \cdot 10^{-8} \) |
\(a_{997}= -0.08238812 \pm 5.2 \cdot 10^{-8} \) | \(a_{998}= -2.02450247 \pm 7.4 \cdot 10^{-8} \) | \(a_{999}= +0.35170646 \pm 3.4 \cdot 10^{-8} \) |
\(a_{1000}= +0.85308245 \pm 4.3 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000