Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.4637893382526451096086714008 \pm 2 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.17423596 \pm 1.5 \cdot 10^{-7} \) | \(a_{3}= -0.13743090 \pm 1.6 \cdot 10^{-7} \) |
\(a_{4}= +0.37883010 \pm 1.1 \cdot 10^{-7} \) | \(a_{5}= -0.32132566 \pm 1.2 \cdot 10^{-7} \) | \(a_{6}= +0.16137630 \pm 1.7 \cdot 10^{-7} \) |
\(a_{7}= -0.60231504 \pm 9.5 \cdot 10^{-8} \) | \(a_{8}= +0.72940004 \pm 1.5 \cdot 10^{-7} \) | \(a_{9}= -0.98111275 \pm 1.6 \cdot 10^{-7} \) |
\(a_{10}= +0.37731214 \pm 1.4 \cdot 10^{-7} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= -0.05206296 \pm 1.0 \cdot 10^{-7} \) |
\(a_{13}= +0.89969709 \pm 1.3 \cdot 10^{-7} \) | \(a_{14}= +0.70725998 \pm 1.0 \cdot 10^{-7} \) | \(a_{15}= +0.04416007 \pm 1.3 \cdot 10^{-7} \) |
\(a_{16}= -1.23531785 \pm 1.6 \cdot 10^{-7} \) | \(a_{17}= -0.40030830 \pm 1.1 \cdot 10^{-7} \) | \(a_{18}= +1.15205787 \pm 1.6 \cdot 10^{-7} \) |
\(a_{19}= -1.02579385 \pm 1.2 \cdot 10^{-7} \) | \(a_{20}= -0.12172783 \pm 1.4 \cdot 10^{-7} \) | \(a_{21}= +0.08277670 \pm 1.3 \cdot 10^{-7} \) |
\(a_{22}= +0.35404546 \pm 1.6 \cdot 10^{-7} \) | \(a_{23}= -1.50816262 \pm 1.2 \cdot 10^{-7} \) | \(a_{24}= -0.10024210 \pm 1.6 \cdot 10^{-7} \) |
\(a_{25}= -0.89674982 \pm 1.0 \cdot 10^{-7} \) | \(a_{26}= -1.05645667 \pm 1.4 \cdot 10^{-7} \) | \(a_{27}= +0.27226611 \pm 1.0 \cdot 10^{-7} \) |
\(a_{28}= -0.22817506 \pm 7.6 \cdot 10^{-8} \) | \(a_{29}= -1.24812960 \pm 1.4 \cdot 10^{-7} \) | \(a_{30}= -0.05185435 \pm 1.4 \cdot 10^{-7} \) |
\(a_{31}= -1.15178777 \pm 1.1 \cdot 10^{-7} \) | \(a_{32}= +0.72115461 \pm 1.0 \cdot 10^{-7} \) | \(a_{33}= +0.04143698 \pm 1.7 \cdot 10^{-7} \) |
\(a_{34}= +0.47005641 \pm 1.1 \cdot 10^{-7} \) | \(a_{35}= +0.19353928 \pm 8.1 \cdot 10^{-8} \) | \(a_{36}= -0.37167504 \pm 7.7 \cdot 10^{-8} \) |
\(a_{37}= -0.00309026 \pm 1.2 \cdot 10^{-7} \) | \(a_{38}= +1.20452403 \pm 1.2 \cdot 10^{-7} \) | \(a_{39}= -0.12364618 \pm 1.2 \cdot 10^{-7} \) |
\(a_{40}= -0.23437495 \pm 1.6 \cdot 10^{-7} \) | \(a_{41}= +0.50626780 \pm 1.4 \cdot 10^{-7} \) | \(a_{42}= -0.09719937 \pm 1.4 \cdot 10^{-7} \) |
\(a_{43}= +1.41103813 \pm 1.1 \cdot 10^{-7} \) | \(a_{44}= -0.11422157 \pm 1.2 \cdot 10^{-7} \) | \(a_{45}= +0.31525670 \pm 1.2 \cdot 10^{-7} \) |
\(a_{46}= +1.77093879 \pm 1.3 \cdot 10^{-7} \) | \(a_{47}= +0.85264322 \pm 1.4 \cdot 10^{-7} \) | \(a_{48}= +0.16977084 \pm 1.8 \cdot 10^{-7} \) |
\(a_{49}= -0.63721660 \pm 9.9 \cdot 10^{-8} \) | \(a_{50}= +1.05299589 \pm 1.2 \cdot 10^{-7} \) | \(a_{51}= +0.05501473 \pm 1.3 \cdot 10^{-7} \) |
\(a_{52}= +0.34083233 \pm 6.7 \cdot 10^{-8} \) | \(a_{53}= -0.74661814 \pm 1.4 \cdot 10^{-7} \) | \(a_{54}= -0.31970465 \pm 1.2 \cdot 10^{-7} \) |
\(a_{55}= +0.09688333 \pm 1.3 \cdot 10^{-7} \) | \(a_{56}= -0.43932861 \pm 1.0 \cdot 10^{-7} \) | \(a_{57}= +0.14097577 \pm 1.6 \cdot 10^{-7} \) |
\(a_{58}= +1.46559866 \pm 1.5 \cdot 10^{-7} \) | \(a_{59}= -0.29293821 \pm 1.8 \cdot 10^{-7} \) | \(a_{60}= +0.01672917 \pm 1.3 \cdot 10^{-7} \) |
\(a_{61}= +0.05264475 \pm 1.0 \cdot 10^{-7} \) | \(a_{62}= +1.35247062 \pm 1.1 \cdot 10^{-7} \) | \(a_{63}= +0.59093896 \pm 1.2 \cdot 10^{-7} \) |
\(a_{64}= +0.38851218 \pm 1.0 \cdot 10^{-7} \) | \(a_{65}= -0.28909576 \pm 9.5 \cdot 10^{-8} \) | \(a_{66}= -0.04865679 \pm 3.2 \cdot 10^{-7} \) |
\(a_{67}= +0.19813799 \pm 1.3 \cdot 10^{-7} \) | \(a_{68}= -0.15164883 \pm 1.2 \cdot 10^{-7} \) | \(a_{69}= +0.20726815 \pm 6.3 \cdot 10^{-8} \) |
\(a_{70}= -0.22726078 \pm 9.3 \cdot 10^{-8} \) | \(a_{71}= -1.43336787 \pm 1.4 \cdot 10^{-7} \) | \(a_{72}= -0.71562368 \pm 1.4 \cdot 10^{-7} \) |
\(a_{73}= +0.07123741 \pm 1.2 \cdot 10^{-7} \) | \(a_{74}= +0.00362870 \pm 1.0 \cdot 10^{-7} \) | \(a_{75}= +0.12324113 \pm 1.2 \cdot 10^{-7} \) |
\(a_{76}= -0.38860158 \pm 6.1 \cdot 10^{-8} \) | \(a_{77}= +0.18160482 \pm 1.0 \cdot 10^{-7} \) | \(a_{78}= +0.14518979 \pm 1.2 \cdot 10^{-7} \) |
\(a_{79}= +1.03826297 \pm 1.4 \cdot 10^{-7} \) | \(a_{80}= +0.39693932 \pm 1.4 \cdot 10^{-7} \) | \(a_{81}= +0.94369497 \pm 9.3 \cdot 10^{-8} \) |
\(a_{82}= -0.59447785 \pm 1.5 \cdot 10^{-7} \) | \(a_{83}= +1.18315771 \pm 1.1 \cdot 10^{-7} \) | \(a_{84}= +0.03135830 \pm 8.5 \cdot 10^{-8} \) |
\(a_{85}= +0.12862933 \pm 1.1 \cdot 10^{-7} \) | \(a_{86}= -1.65689172 \pm 1.2 \cdot 10^{-7} \) | \(a_{87}= +0.17153157 \pm 8.9 \cdot 10^{-8} \) |
\(a_{88}= -0.21992239 \pm 1.6 \cdot 10^{-7} \) | \(a_{89}= +0.98799308 \pm 1.1 \cdot 10^{-7} \) | \(a_{90}= -0.37018575 \pm 1.1 \cdot 10^{-7} \) |
\(a_{91}= -0.54190108 \pm 8.0 \cdot 10^{-8} \) | \(a_{92}= -0.57133739 \pm 7.2 \cdot 10^{-8} \) | \(a_{93}= +0.15829123 \pm 1.0 \cdot 10^{-7} \) |
\(a_{94}= -1.00120433 \pm 1.6 \cdot 10^{-7} \) | \(a_{95}= +0.32961388 \pm 8.9 \cdot 10^{-8} \) | \(a_{96}= -0.09910893 \pm 9.6 \cdot 10^{-8} \) |
\(a_{97}= +0.60142840 \pm 1.7 \cdot 10^{-7} \) | \(a_{98}= +0.74824265 \pm 1.1 \cdot 10^{-7} \) | \(a_{99}= +0.29581662 \pm 1.7 \cdot 10^{-7} \) |
\(a_{100}= -0.33971582 \pm 1.1 \cdot 10^{-7} \) | \(a_{101}= -0.52562742 \pm 2.0 \cdot 10^{-7} \) | \(a_{102}= -0.06460027 \pm 1.2 \cdot 10^{-7} \) |
\(a_{103}= -1.01291399 \pm 1.2 \cdot 10^{-7} \) | \(a_{104}= +0.65623909 \pm 1.2 \cdot 10^{-7} \) | \(a_{105}= -0.02659828 \pm 1.0 \cdot 10^{-7} \) |
\(a_{106}= +0.87670587 \pm 1.4 \cdot 10^{-7} \) | \(a_{107}= +0.89195460 \pm 8.4 \cdot 10^{-8} \) | \(a_{108}= +0.10314260 \pm 1.1 \cdot 10^{-7} \) |
\(a_{109}= -1.81166250 \pm 9.0 \cdot 10^{-8} \) | \(a_{110}= -0.11376389 \pm 2.8 \cdot 10^{-7} \) | \(a_{111}= +0.00042470 \pm 1.2 \cdot 10^{-7} \) |
\(a_{112}= +0.74405052 \pm 1.0 \cdot 10^{-7} \) | \(a_{113}= +0.96127940 \pm 1.2 \cdot 10^{-7} \) | \(a_{114}= -0.16553882 \pm 1.6 \cdot 10^{-7} \) |
\(a_{115}= +0.48461135 \pm 8.8 \cdot 10^{-8} \) | \(a_{116}= -0.47282906 \pm 1.3 \cdot 10^{-7} \) | \(a_{117}= -0.88270428 \pm 1.4 \cdot 10^{-7} \) |
\(a_{118}= +0.34397858 \pm 1.9 \cdot 10^{-7} \) | \(a_{119}= +0.24111171 \pm 6.5 \cdot 10^{-8} \) | \(a_{120}= +0.03221036 \pm 1.5 \cdot 10^{-7} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= -0.06181736 \pm 1.3 \cdot 10^{-7} \) | \(a_{123}= -0.06957684 \pm 2.0 \cdot 10^{-7} \) |
\(a_{124}= -0.43633187 \pm 1.0 \cdot 10^{-7} \) | \(a_{125}= +0.60947439 \pm 1.3 \cdot 10^{-7} \) | \(a_{126}= -0.69390178 \pm 1.3 \cdot 10^{-7} \) |
\(a_{127}= +1.10019394 \pm 1.4 \cdot 10^{-7} \) | \(a_{128}= -1.17735958 \pm 1.4 \cdot 10^{-7} \) | \(a_{129}= -0.19392024 \pm 1.4 \cdot 10^{-7} \) |
\(a_{130}= +0.33946664 \pm 1.0 \cdot 10^{-7} \) | \(a_{131}= -1.63318169 \pm 1.0 \cdot 10^{-7} \) | \(a_{132}= +0.01569757 \pm 2.8 \cdot 10^{-7} \) |
\(a_{133}= +0.61785106 \pm 9.1 \cdot 10^{-8} \) | \(a_{134}= -0.23266075 \pm 1.5 \cdot 10^{-7} \) | \(a_{135}= -0.08748609 \pm 9.0 \cdot 10^{-8} \) |
\(a_{136}= -0.29198489 \pm 1.4 \cdot 10^{-7} \) | \(a_{137}= +0.18605646 \pm 9.2 \cdot 10^{-8} \) | \(a_{138}= -0.24338171 \pm 6.6 \cdot 10^{-8} \) |
\(a_{139}= +0.66129404 \pm 1.5 \cdot 10^{-7} \) | \(a_{140}= +0.07331850 \pm 8.3 \cdot 10^{-8} \) | \(a_{141}= -0.11717952 \pm 8.5 \cdot 10^{-8} \) |
\(a_{142}= +1.68311210 \pm 1.4 \cdot 10^{-7} \) | \(a_{143}= -0.27126888 \pm 1.4 \cdot 10^{-7} \) | \(a_{144}= +1.21198609 \pm 1.7 \cdot 10^{-7} \) |
\(a_{145}= +0.40105607 \pm 1.2 \cdot 10^{-7} \) | \(a_{146}= -0.08364952 \pm 1.3 \cdot 10^{-7} \) | \(a_{147}= +0.08757325 \pm 7.8 \cdot 10^{-8} \) |
\(a_{148}= -0.00117068 \pm 9.1 \cdot 10^{-8} \) | \(a_{149}= +0.49273545 \pm 1.5 \cdot 10^{-7} \) | \(a_{150}= -0.14471417 \pm 1.2 \cdot 10^{-7} \) |
\(a_{151}= -1.28086161 \pm 8.7 \cdot 10^{-8} \) | \(a_{152}= -0.74821408 \pm 1.2 \cdot 10^{-7} \) | \(a_{153}= +0.39274758 \pm 1.2 \cdot 10^{-7} \) |
\(a_{154}= -0.21324691 \pm 2.5 \cdot 10^{-7} \) | \(a_{155}= +0.37009896 \pm 9.9 \cdot 10^{-8} \) | \(a_{156}= -0.04684089 \pm 6.2 \cdot 10^{-8} \) |
\(a_{157}= -0.30558018 \pm 9.7 \cdot 10^{-8} \) | \(a_{158}= -1.21916572 \pm 1.7 \cdot 10^{-7} \) | \(a_{159}= +0.10260840 \pm 1.7 \cdot 10^{-7} \) |
\(a_{160}= -0.23172548 \pm 1.0 \cdot 10^{-7} \) | \(a_{161}= +0.90838902 \pm 5.4 \cdot 10^{-8} \) | \(a_{162}= -1.10812057 \pm 9.9 \cdot 10^{-8} \) |
\(a_{163}= -1.30385713 \pm 1.2 \cdot 10^{-7} \) | \(a_{164}= +0.19178948 \pm 9.0 \cdot 10^{-8} \) | \(a_{165}= -0.01331476 \pm 2.9 \cdot 10^{-7} \) |
\(a_{166}= -1.38930633 \pm 1.3 \cdot 10^{-7} \) | \(a_{167}= +1.81903719 \pm 1.1 \cdot 10^{-7} \) | \(a_{168}= +0.06037733 \pm 1.2 \cdot 10^{-7} \) |
\(a_{169}= -0.19054515 \pm 1.2 \cdot 10^{-7} \) | \(a_{170}= -0.15104118 \pm 1.2 \cdot 10^{-7} \) | \(a_{171}= +1.00641942 \pm 1.5 \cdot 10^{-7} \) |
\(a_{172}= +0.53454371 \pm 1.0 \cdot 10^{-7} \) | \(a_{173}= +1.36328181 \pm 1.3 \cdot 10^{-7} \) | \(a_{174}= -0.20141854 \pm 1.0 \cdot 10^{-7} \) |
\(a_{175}= +0.54012590 \pm 7.4 \cdot 10^{-8} \) | \(a_{176}= +0.37246235 \pm 1.7 \cdot 10^{-7} \) | \(a_{177}= +0.04025876 \pm 2.6 \cdot 10^{-7} \) |
\(a_{178}= -1.16013700 \pm 1.2 \cdot 10^{-7} \) | \(a_{179}= +0.56056579 \pm 1.4 \cdot 10^{-7} \) | \(a_{180}= +0.11942873 \pm 8.1 \cdot 10^{-8} \) |
\(a_{181}= +0.32046425 \pm 1.7 \cdot 10^{-7} \) | \(a_{182}= +0.63631974 \pm 9.1 \cdot 10^{-8} \) | \(a_{183}= -0.00723502 \pm 1.2 \cdot 10^{-7} \) |
\(a_{184}= -1.10005388 \pm 1.1 \cdot 10^{-7} \) | \(a_{185}= +0.00099298 \pm 1.1 \cdot 10^{-7} \) | \(a_{186}= -0.18587125 \pm 1.1 \cdot 10^{-7} \) |
\(a_{187}= +0.12069750 \pm 1.3 \cdot 10^{-7} \) | \(a_{188}= +0.32300691 \pm 1.2 \cdot 10^{-7} \) | \(a_{189}= -0.16398997 \pm 7.9 \cdot 10^{-8} \) |
\(a_{190}= -0.38704448 \pm 8.9 \cdot 10^{-8} \) | \(a_{191}= +0.05518957 \pm 1.1 \cdot 10^{-7} \) | \(a_{192}= -0.05339358 \pm 1.3 \cdot 10^{-7} \) |
\(a_{193}= -0.63743417 \pm 1.1 \cdot 10^{-7} \) | \(a_{194}= -0.70621886 \pm 1.9 \cdot 10^{-7} \) | \(a_{195}= +0.03973069 \pm 8.6 \cdot 10^{-8} \) |
\(a_{196}= -0.24139683 \pm 1.0 \cdot 10^{-7} \) | \(a_{197}= -0.92124232 \pm 9.0 \cdot 10^{-8} \) | \(a_{198}= -0.34735852 \pm 3.2 \cdot 10^{-7} \) |
\(a_{199}= +0.50725880 \pm 1.5 \cdot 10^{-7} \) | \(a_{200}= -0.65408935 \pm 1.3 \cdot 10^{-7} \) | \(a_{201}= -0.02723028 \pm 1.8 \cdot 10^{-7} \) |
\(a_{202}= +0.61721062 \pm 2.2 \cdot 10^{-7} \) | \(a_{203}= +0.75176722 \pm 5.8 \cdot 10^{-8} \) | \(a_{204}= +0.02084124 \pm 1.1 \cdot 10^{-7} \) |
\(a_{205}= -0.16267683 \pm 1.1 \cdot 10^{-7} \) | \(a_{206}= +1.18940004 \pm 1.3 \cdot 10^{-7} \) | \(a_{207}= +1.47967757 \pm 1.1 \cdot 10^{-7} \) |
\(a_{208}= -1.11141187 \pm 1.5 \cdot 10^{-7} \) | \(a_{209}= +0.30928848 \pm 1.3 \cdot 10^{-7} \) | \(a_{210}= +0.03123265 \pm 1.0 \cdot 10^{-7} \) |
\(a_{211}= -0.87453553 \pm 1.1 \cdot 10^{-7} \) | \(a_{212}= -0.28284142 \pm 8.5 \cdot 10^{-8} \) | \(a_{213}= +0.19698904 \pm 1.8 \cdot 10^{-7} \) |
\(a_{214}= -1.04736517 \pm 8.5 \cdot 10^{-8} \) | \(a_{215}= -0.45340276 \pm 1.0 \cdot 10^{-7} \) | \(a_{216}= +0.19859091 \pm 1.3 \cdot 10^{-7} \) |
\(a_{217}= +0.69373909 \pm 6.2 \cdot 10^{-8} \) | \(a_{218}= +2.12731926 \pm 1.1 \cdot 10^{-7} \) | \(a_{219}= -0.00979022 \pm 1.2 \cdot 10^{-7} \) |
\(a_{220}= +0.03670232 \pm 2.4 \cdot 10^{-7} \) | \(a_{221}= -0.36015622 \pm 8.7 \cdot 10^{-8} \) | \(a_{222}= -0.00049870 \pm 1.2 \cdot 10^{-7} \) |
\(a_{223}= -0.58532816 \pm 1.1 \cdot 10^{-7} \) | \(a_{224}= -0.43436227 \pm 6.7 \cdot 10^{-8} \) | \(a_{225}= +0.87981268 \pm 1.1 \cdot 10^{-7} \) |
\(a_{226}= -1.12876884 \pm 1.4 \cdot 10^{-7} \) | \(a_{227}= -0.91811383 \pm 1.2 \cdot 10^{-7} \) | \(a_{228}= +0.05340587 \pm 5.7 \cdot 10^{-8} \) |
\(a_{229}= +1.89098393 \pm 1.1 \cdot 10^{-7} \) | \(a_{230}= -0.56904807 \pm 1.0 \cdot 10^{-7} \) | \(a_{231}= -0.02495811 \pm 2.6 \cdot 10^{-7} \) |
\(a_{232}= -0.91038578 \pm 1.6 \cdot 10^{-7} \) | \(a_{233}= +1.13852557 \pm 1.1 \cdot 10^{-7} \) | \(a_{234}= +1.03650311 \pm 1.5 \cdot 10^{-7} \) |
\(a_{235}= -0.27397614 \pm 1.2 \cdot 10^{-7} \) | \(a_{236}= -0.11097381 \pm 6.0 \cdot 10^{-8} \) | \(a_{237}= -0.14268941 \pm 1.2 \cdot 10^{-7} \) |
\(a_{238}= -0.28312204 \pm 6.0 \cdot 10^{-8} \) | \(a_{239}= +1.94841635 \pm 1.7 \cdot 10^{-7} \) | \(a_{240}= -0.05455173 \pm 1.5 \cdot 10^{-7} \) |
\(a_{241}= -1.93105009 \pm 7.9 \cdot 10^{-8} \) | \(a_{242}= -0.10674872 \pm 1.6 \cdot 10^{-7} \) | \(a_{243}= -0.40195896 \pm 1.4 \cdot 10^{-7} \) |
\(a_{244}= +0.01994342 \pm 1.3 \cdot 10^{-7} \) | \(a_{245}= +0.20475404 \pm 9.1 \cdot 10^{-8} \) | \(a_{246}= +0.08169963 \pm 2.2 \cdot 10^{-7} \) |
\(a_{247}= -0.92290374 \pm 1.1 \cdot 10^{-7} \) | \(a_{248}= -0.84011404 \pm 1.3 \cdot 10^{-7} \) | \(a_{249}= -0.16260243 \pm 1.1 \cdot 10^{-7} \) |
\(a_{250}= -0.71566674 \pm 1.3 \cdot 10^{-7} \) | \(a_{251}= +0.36936387 \pm 1.1 \cdot 10^{-7} \) | \(a_{252}= +0.22386546 \pm 6.2 \cdot 10^{-8} \) |
\(a_{253}= +0.45472814 \pm 1.3 \cdot 10^{-7} \) | \(a_{254}= -1.29188729 \pm 1.4 \cdot 10^{-7} \) | \(a_{255}= -0.01767764 \pm 1.2 \cdot 10^{-7} \) |
\(a_{256}= +0.99398578 \pm 1.1 \cdot 10^{-7} \) | \(a_{257}= -0.76628314 \pm 1.5 \cdot 10^{-7} \) | \(a_{258}= +0.22770812 \pm 1.6 \cdot 10^{-7} \) |
\(a_{259}= +0.00186131 \pm 6.9 \cdot 10^{-8} \) | \(a_{260}= -0.10951817 \pm 6.7 \cdot 10^{-8} \) | \(a_{261}= +1.22455586 \pm 1.3 \cdot 10^{-7} \) |
\(a_{262}= +1.91774068 \pm 1.0 \cdot 10^{-7} \) | \(a_{263}= -1.49162334 \pm 1.3 \cdot 10^{-7} \) | \(a_{264}= +0.03022413 \pm 3.2 \cdot 10^{-7} \) |
\(a_{265}= +0.23990757 \pm 1.2 \cdot 10^{-7} \) | \(a_{266}= -0.72550293 \pm 9.9 \cdot 10^{-8} \) | \(a_{267}= -0.13578078 \pm 1.7 \cdot 10^{-7} \) |
\(a_{268}= +0.07506063 \pm 9.7 \cdot 10^{-8} \) | \(a_{269}= +1.81848097 \pm 1.2 \cdot 10^{-7} \) | \(a_{270}= +0.10272931 \pm 1.3 \cdot 10^{-7} \) |
\(a_{271}= +1.41683539 \pm 1.2 \cdot 10^{-7} \) | \(a_{272}= +0.49450800 \pm 1.1 \cdot 10^{-7} \) | \(a_{273}= +0.07447395 \pm 9.5 \cdot 10^{-8} \) |
\(a_{274}= -0.21847418 \pm 1.0 \cdot 10^{-7} \) | \(a_{275}= +0.27038024 \pm 1.1 \cdot 10^{-7} \) | \(a_{276}= +0.07851941 \pm 6.6 \cdot 10^{-8} \) |
\(a_{277}= -1.77442896 \pm 7.5 \cdot 10^{-8} \) | \(a_{278}= -0.77651524 \pm 1.9 \cdot 10^{-7} \) | \(a_{279}= +1.13003366 \pm 1.1 \cdot 10^{-7} \) |
\(a_{280}= +0.14116756 \pm 8.5 \cdot 10^{-8} \) | \(a_{281}= -0.44371848 \pm 1.2 \cdot 10^{-7} \) | \(a_{282}= +0.13759641 \pm 9.8 \cdot 10^{-8} \) |
\(a_{283}= +0.51094992 \pm 1.6 \cdot 10^{-7} \) | \(a_{284}= -0.54300289 \pm 8.6 \cdot 10^{-8} \) | \(a_{285}= -0.04529913 \pm 9.5 \cdot 10^{-8} \) |
\(a_{286}= +0.31853367 \pm 3.0 \cdot 10^{-7} \) | \(a_{287}= -0.30493271 \pm 1.1 \cdot 10^{-7} \) | \(a_{288}= -0.70753398 \pm 9.4 \cdot 10^{-8} \) |
\(a_{289}= -0.83975326 \pm 1.3 \cdot 10^{-7} \) | \(a_{290}= -0.47093445 \pm 1.5 \cdot 10^{-7} \) | \(a_{291}= -0.08265485 \pm 2.0 \cdot 10^{-7} \) |
\(a_{292}= +0.02698687 \pm 7.1 \cdot 10^{-8} \) | \(a_{293}= -0.74515545 \pm 1.1 \cdot 10^{-7} \) | \(a_{294}= -0.10283166 \pm 9.5 \cdot 10^{-8} \) |
\(a_{295}= +0.09412856 \pm 1.3 \cdot 10^{-7} \) | \(a_{296}= -0.00225404 \pm 1.2 \cdot 10^{-7} \) | \(a_{297}= -0.08209132 \pm 1.1 \cdot 10^{-7} \) |
\(a_{298}= -0.57858768 \pm 1.6 \cdot 10^{-7} \) | \(a_{299}= -1.35688952 \pm 1.7 \cdot 10^{-7} \) | \(a_{300}= +0.04668745 \pm 1.2 \cdot 10^{-7} \) |
\(a_{301}= -0.84988948 \pm 9.4 \cdot 10^{-8} \) | \(a_{302}= +1.50403376 \pm 8.8 \cdot 10^{-8} \) | \(a_{303}= +0.07223745 \pm 2.3 \cdot 10^{-7} \) |
\(a_{304}= +1.26718146 \pm 1.2 \cdot 10^{-7} \) | \(a_{305}= -0.01691611 \pm 1.0 \cdot 10^{-7} \) | \(a_{306}= -0.46117833 \pm 9.3 \cdot 10^{-8} \) |
\(a_{307}= +0.27482874 \pm 1.7 \cdot 10^{-7} \) | \(a_{308}= +0.06879737 \pm 2.1 \cdot 10^{-7} \) | \(a_{309}= +0.13920568 \pm 1.7 \cdot 10^{-7} \) |
\(a_{310}= -0.43458351 \pm 1.2 \cdot 10^{-7} \) | \(a_{311}= +1.70866769 \pm 1.1 \cdot 10^{-7} \) | \(a_{312}= -0.09018753 \pm 1.1 \cdot 10^{-7} \) |
\(a_{313}= +1.32059079 \pm 1.5 \cdot 10^{-7} \) | \(a_{314}= +0.35882324 \pm 1.0 \cdot 10^{-7} \) | \(a_{315}= -0.18988385 \pm 9.1 \cdot 10^{-8} \) |
\(a_{316}= +0.39332526 \pm 1.4 \cdot 10^{-7} \) | \(a_{317}= +0.18537294 \pm 1.2 \cdot 10^{-7} \) | \(a_{318}= -0.12048648 \pm 1.8 \cdot 10^{-7} \) |
\(a_{319}= +0.37632523 \pm 1.5 \cdot 10^{-7} \) | \(a_{320}= -0.12483893 \pm 7.9 \cdot 10^{-8} \) | \(a_{321}= -0.12258212 \pm 9.3 \cdot 10^{-8} \) |
\(a_{322}= -1.06666306 \pm 6.4 \cdot 10^{-8} \) | \(a_{323}= +0.41063380 \pm 1.4 \cdot 10^{-7} \) | \(a_{324}= +0.35750006 \pm 8.4 \cdot 10^{-8} \) |
\(a_{325}= -0.80680320 \pm 9.6 \cdot 10^{-8} \) | \(a_{326}= +1.53103594 \pm 1.4 \cdot 10^{-7} \) | \(a_{327}= +0.24897841 \pm 1.1 \cdot 10^{-7} \) |
\(a_{328}= +0.36927175 \pm 1.3 \cdot 10^{-7} \) | \(a_{329}= -0.51355983 \pm 5.8 \cdot 10^{-8} \) | \(a_{330}= +0.01563467 \pm 4.4 \cdot 10^{-7} \) |
\(a_{331}= -1.84045331 \pm 1.8 \cdot 10^{-7} \) | \(a_{332}= +0.44821575 \pm 1.5 \cdot 10^{-7} \) | \(a_{333}= +0.00303190 \pm 1.3 \cdot 10^{-7} \) |
\(a_{334}= -2.13597888 \pm 1.4 \cdot 10^{-7} \) | \(a_{335}= -0.06366682 \pm 1.0 \cdot 10^{-7} \) | \(a_{336}= -0.10225553 \pm 1.4 \cdot 10^{-7} \) |
\(a_{337}= +0.70564805 \pm 1.7 \cdot 10^{-7} \) | \(a_{338}= +0.22374497 \pm 1.3 \cdot 10^{-7} \) | \(a_{339}= -0.13210949 \pm 1.5 \cdot 10^{-7} \) |
\(a_{340}= +0.04872866 \pm 1.6 \cdot 10^{-7} \) | \(a_{341}= +0.34727708 \pm 1.2 \cdot 10^{-7} \) | \(a_{342}= -1.18177388 \pm 1.5 \cdot 10^{-7} \) |
\(a_{343}= +0.98612017 \pm 1.2 \cdot 10^{-7} \) | \(a_{344}= +1.02921127 \pm 1.3 \cdot 10^{-7} \) | \(a_{345}= -0.06660057 \pm 7.0 \cdot 10^{-8} \) |
\(a_{346}= -1.60081453 \pm 1.3 \cdot 10^{-7} \) | \(a_{347}= +0.24745680 \pm 1.1 \cdot 10^{-7} \) | \(a_{348}= +0.06498132 \pm 1.0 \cdot 10^{-7} \) |
\(a_{349}= -0.33287496 \pm 1.6 \cdot 10^{-7} \) | \(a_{350}= -0.63423526 \pm 8.0 \cdot 10^{-8} \) | \(a_{351}= +0.24495702 \pm 8.3 \cdot 10^{-8} \) |
\(a_{352}= -0.21743630 \pm 1.1 \cdot 10^{-7} \) | \(a_{353}= +0.72234528 \pm 9.5 \cdot 10^{-8} \) | \(a_{354}= -0.04727329 \pm 2.9 \cdot 10^{-7} \) |
\(a_{355}= +0.46057788 \pm 1.0 \cdot 10^{-7} \) | \(a_{356}= +0.37428151 \pm 7.5 \cdot 10^{-8} \) | \(a_{357}= -0.03313620 \pm 8.9 \cdot 10^{-8} \) |
\(a_{358}= -0.65823651 \pm 1.4 \cdot 10^{-7} \) | \(a_{359}= +0.02000766 \pm 1.6 \cdot 10^{-7} \) | \(a_{360}= +0.22994825 \pm 1.0 \cdot 10^{-7} \) |
\(a_{361}= +0.05225302 \pm 1.3 \cdot 10^{-7} \) | \(a_{362}= -0.37630065 \pm 2.1 \cdot 10^{-7} \) | \(a_{363}= -0.01249372 \pm 1.7 \cdot 10^{-7} \) |
\(a_{364}= -0.20528844 \pm 6.0 \cdot 10^{-8} \) | \(a_{365}= -0.02289041 \pm 9.2 \cdot 10^{-8} \) | \(a_{366}= +0.00849562 \pm 1.4 \cdot 10^{-7} \) |
\(a_{367}= -0.55277862 \pm 1.5 \cdot 10^{-7} \) | \(a_{368}= +1.86306021 \pm 1.4 \cdot 10^{-7} \) | \(a_{369}= -0.49670579 \pm 1.9 \cdot 10^{-7} \) |
\(a_{370}= -0.00116599 \pm 9.3 \cdot 10^{-8} \) | \(a_{371}= +0.44969933 \pm 9.8 \cdot 10^{-8} \) | \(a_{372}= +0.05996548 \pm 9.3 \cdot 10^{-8} \) |
\(a_{373}= +0.26162772 \pm 1.6 \cdot 10^{-7} \) | \(a_{374}= -0.14172734 \pm 2.8 \cdot 10^{-7} \) | \(a_{375}= -0.08376061 \pm 1.5 \cdot 10^{-7} \) |
\(a_{376}= +0.62191800 \pm 1.6 \cdot 10^{-7} \) | \(a_{377}= -1.12293856 \pm 1.5 \cdot 10^{-7} \) | \(a_{378}= +0.19256292 \pm 1.0 \cdot 10^{-7} \) |
\(a_{379}= -0.54089303 \pm 1.5 \cdot 10^{-7} \) | \(a_{380}= +0.12486766 \pm 5.9 \cdot 10^{-8} \) | \(a_{381}= -0.15120064 \pm 1.5 \cdot 10^{-7} \) |
\(a_{382}= -0.06480557 \pm 1.1 \cdot 10^{-7} \) | \(a_{383}= +1.15554864 \pm 1.5 \cdot 10^{-7} \) | \(a_{384}= +0.16180559 \pm 1.7 \cdot 10^{-7} \) |
\(a_{385}= -0.05835429 \pm 2.2 \cdot 10^{-7} \) | \(a_{386}= +0.74849813 \pm 1.1 \cdot 10^{-7} \) | \(a_{387}= -1.38438750 \pm 1.3 \cdot 10^{-7} \) |
\(a_{388}= +0.22783918 \pm 1.0 \cdot 10^{-7} \) | \(a_{389}= +0.15325643 \pm 1.3 \cdot 10^{-7} \) | \(a_{390}= -0.04665321 \pm 8.6 \cdot 10^{-8} \) |
\(a_{391}= +0.60373002 \pm 6.4 \cdot 10^{-8} \) | \(a_{392}= -0.46478581 \pm 1.2 \cdot 10^{-7} \) | \(a_{393}= +0.22444963 \pm 7.7 \cdot 10^{-8} \) |
\(a_{394}= +1.08175586 \pm 1.2 \cdot 10^{-7} \) | \(a_{395}= -0.33362053 \pm 1.3 \cdot 10^{-7} \) | \(a_{396}= +0.11206424 \pm 2.8 \cdot 10^{-7} \) |
\(a_{397}= +0.67716160 \pm 1.7 \cdot 10^{-7} \) | \(a_{398}= -0.59564153 \pm 1.8 \cdot 10^{-7} \) | \(a_{399}= -0.08491183 \pm 1.2 \cdot 10^{-7} \) |
\(a_{400}= +1.10777106 \pm 1.3 \cdot 10^{-7} \) | \(a_{401}= -0.10396631 \pm 1.1 \cdot 10^{-7} \) | \(a_{402}= +0.03197478 \pm 1.9 \cdot 10^{-7} \) |
\(a_{403}= -1.03626010 \pm 9.4 \cdot 10^{-8} \) | \(a_{404}= -0.19912349 \pm 1.2 \cdot 10^{-7} \) | \(a_{405}= -0.30323341 \pm 8.1 \cdot 10^{-8} \) |
\(a_{406}= -0.88275211 \pm 6.8 \cdot 10^{-8} \) | \(a_{407}= +0.00093175 \pm 1.3 \cdot 10^{-7} \) | \(a_{408}= +0.04012775 \pm 1.4 \cdot 10^{-7} \) |
\(a_{409}= -0.38688867 \pm 1.2 \cdot 10^{-7} \) | \(a_{410}= +0.19102099 \pm 1.3 \cdot 10^{-7} \) | \(a_{411}= -0.02556991 \pm 1.1 \cdot 10^{-7} \) |
\(a_{412}= -0.38372231 \pm 5.3 \cdot 10^{-8} \) | \(a_{413}= +0.17644109 \pm 1.4 \cdot 10^{-7} \) | \(a_{414}= -1.73749062 \pm 1.3 \cdot 10^{-7} \) |
\(a_{415}= -0.38017893 \pm 1.4 \cdot 10^{-7} \) | \(a_{416}= +0.64882070 \pm 8.2 \cdot 10^{-8} \) | \(a_{417}= -0.09088223 \pm 2.0 \cdot 10^{-7} \) |
\(a_{418}= -0.36317766 \pm 2.9 \cdot 10^{-7} \) | \(a_{419}= +0.75494850 \pm 1.1 \cdot 10^{-7} \) | \(a_{420}= -0.01007623 \pm 8.8 \cdot 10^{-8} \) |
\(a_{421}= -1.62197330 \pm 1.2 \cdot 10^{-7} \) | \(a_{422}= +1.02691107 \pm 1.0 \cdot 10^{-7} \) | \(a_{423}= -0.83653913 \pm 1.3 \cdot 10^{-7} \) |
\(a_{424}= -0.54458330 \pm 1.3 \cdot 10^{-7} \) | \(a_{425}= +0.35897640 \pm 1.1 \cdot 10^{-7} \) | \(a_{426}= -0.23131161 \pm 1.9 \cdot 10^{-7} \) |
\(a_{427}= -0.03170872 \pm 6.9 \cdot 10^{-8} \) | \(a_{428}= +0.33789925 \pm 8.5 \cdot 10^{-8} \) | \(a_{429}= +0.03728073 \pm 3.0 \cdot 10^{-7} \) |
\(a_{430}= +0.53240182 \pm 1.2 \cdot 10^{-7} \) | \(a_{431}= +1.26416447 \pm 1.3 \cdot 10^{-7} \) | \(a_{432}= -0.33633518 \pm 1.3 \cdot 10^{-7} \) |
\(a_{433}= +1.70657750 \pm 1.0 \cdot 10^{-7} \) | \(a_{434}= -0.81461339 \pm 6.7 \cdot 10^{-8} \) | \(a_{435}= -0.05511750 \pm 8.5 \cdot 10^{-8} \) |
\(a_{436}= -0.68631228 \pm 1.2 \cdot 10^{-7} \) | \(a_{437}= +1.54706394 \pm 7.7 \cdot 10^{-8} \) | \(a_{438}= +0.01149603 \pm 1.4 \cdot 10^{-7} \) |
\(a_{439}= -0.63655576 \pm 8.3 \cdot 10^{-8} \) | \(a_{440}= +0.07066671 \pm 2.8 \cdot 10^{-7} \) | \(a_{441}= +0.62518133 \pm 9.5 \cdot 10^{-8} \) |
\(a_{442}= +0.42290838 \pm 7.9 \cdot 10^{-8} \) | \(a_{443}= +1.58989787 \pm 1.1 \cdot 10^{-7} \) | \(a_{444}= +0.00016089 \pm 8.0 \cdot 10^{-8} \) |
\(a_{445}= -0.31746753 \pm 1.0 \cdot 10^{-7} \) | \(a_{446}= +0.68731337 \pm 1.2 \cdot 10^{-7} \) | \(a_{447}= -0.06771708 \pm 1.2 \cdot 10^{-7} \) |
\(a_{448}= -0.23400672 \pm 8.5 \cdot 10^{-8} \) | \(a_{449}= +1.25930182 \pm 1.0 \cdot 10^{-7} \) | \(a_{450}= -1.03310769 \pm 1.0 \cdot 10^{-7} \) |
\(a_{451}= -0.15264548 \pm 1.5 \cdot 10^{-7} \) | \(a_{452}= +0.36416157 \pm 1.3 \cdot 10^{-7} \) | \(a_{453}= +0.17602996 \pm 1.0 \cdot 10^{-7} \) |
\(a_{454}= +1.07808228 \pm 1.2 \cdot 10^{-7} \) | \(a_{455}= +0.17412672 \pm 6.8 \cdot 10^{-8} \) | \(a_{456}= +0.10282773 \pm 1.6 \cdot 10^{-7} \) |
\(a_{457}= -0.21794182 \pm 1.2 \cdot 10^{-7} \) | \(a_{458}= -2.22046133 \pm 1.2 \cdot 10^{-7} \) | \(a_{459}= -0.10899038 \pm 9.0 \cdot 10^{-8} \) |
\(a_{460}= +0.18358536 \pm 8.8 \cdot 10^{-8} \) | \(a_{461}= -1.11809352 \pm 9.5 \cdot 10^{-8} \) | \(a_{462}= +0.02930671 \pm 4.2 \cdot 10^{-7} \) |
\(a_{463}= -1.48150651 \pm 1.5 \cdot 10^{-7} \) | \(a_{464}= +1.54183678 \pm 1.5 \cdot 10^{-7} \) | \(a_{465}= -0.05086303 \pm 8.8 \cdot 10^{-8} \) |
\(a_{466}= -1.33689767 \pm 1.4 \cdot 10^{-7} \) | \(a_{467}= -1.27309207 \pm 7.0 \cdot 10^{-8} \) | \(a_{468}= -0.33439495 \pm 5.4 \cdot 10^{-8} \) |
\(a_{469}= -0.11934149 \pm 1.0 \cdot 10^{-7} \) | \(a_{470}= +0.32171264 \pm 1.4 \cdot 10^{-7} \) | \(a_{471}= +0.04199616 \pm 8.2 \cdot 10^{-8} \) |
\(a_{472}= -0.21366914 \pm 1.6 \cdot 10^{-7} \) | \(a_{473}= -0.42544400 \pm 1.2 \cdot 10^{-7} \) | \(a_{474}= +0.16755104 \pm 1.4 \cdot 10^{-7} \) |
\(a_{475}= +0.91988045 \pm 8.8 \cdot 10^{-8} \) | \(a_{476}= +0.09134037 \pm 5.2 \cdot 10^{-8} \) | \(a_{477}= +0.73251657 \pm 1.8 \cdot 10^{-7} \) |
\(a_{478}= -2.28790055 \pm 1.9 \cdot 10^{-7} \) | \(a_{479}= -0.25167996 \pm 9.1 \cdot 10^{-8} \) | \(a_{480}= +0.03184624 \pm 9.9 \cdot 10^{-8} \) |
\(a_{481}= -0.00278030 \pm 7.4 \cdot 10^{-8} \) | \(a_{482}= +2.26750847 \pm 1.0 \cdot 10^{-7} \) | \(a_{483}= -0.12484072 \pm 4.9 \cdot 10^{-8} \) |
\(a_{484}= +0.03443910 \pm 1.2 \cdot 10^{-7} \) | \(a_{485}= -0.19325438 \pm 1.4 \cdot 10^{-7} \) | \(a_{486}= +0.47199466 \pm 1.4 \cdot 10^{-7} \) |
\(a_{487}= -1.26241555 \pm 1.8 \cdot 10^{-7} \) | \(a_{488}= +0.03839908 \pm 1.6 \cdot 10^{-7} \) | \(a_{489}= +0.17919026 \pm 1.6 \cdot 10^{-7} \) |
\(a_{490}= -0.24042956 \pm 1.2 \cdot 10^{-7} \) | \(a_{491}= -1.28401634 \pm 1.3 \cdot 10^{-7} \) | \(a_{492}= -0.02635780 \pm 9.7 \cdot 10^{-8} \) |
\(a_{493}= +0.49963664 \pm 1.3 \cdot 10^{-7} \) | \(a_{494}= +1.08370676 \pm 1.1 \cdot 10^{-7} \) | \(a_{495}= -0.09505347 \pm 2.9 \cdot 10^{-7} \) |
\(a_{496}= +1.42282399 \pm 1.1 \cdot 10^{-7} \) | \(a_{497}= +0.86333902 \pm 1.0 \cdot 10^{-7} \) | \(a_{498}= +0.19093362 \pm 1.2 \cdot 10^{-7} \) |
\(a_{499}= +0.63249738 \pm 1.7 \cdot 10^{-7} \) | \(a_{500}= +0.23088724 \pm 6.6 \cdot 10^{-8} \) | \(a_{501}= -0.24999192 \pm 1.5 \cdot 10^{-7} \) |
\(a_{502}= -0.43372034 \pm 1.1 \cdot 10^{-7} \) | \(a_{503}= -0.57964836 \pm 1.4 \cdot 10^{-7} \) | \(a_{504}= +0.43103090 \pm 1.0 \cdot 10^{-7} \) |
\(a_{505}= +0.16889758 \pm 1.6 \cdot 10^{-7} \) | \(a_{506}= -0.53395814 \pm 2.8 \cdot 10^{-7} \) | \(a_{507}= +0.02618679 \pm 8.6 \cdot 10^{-8} \) |
\(a_{508}= +0.41678658 \pm 1.0 \cdot 10^{-7} \) | \(a_{509}= +0.57876134 \pm 1.2 \cdot 10^{-7} \) | \(a_{510}= +0.02075773 \pm 1.1 \cdot 10^{-7} \) |
\(a_{511}= -0.04290736 \pm 8.2 \cdot 10^{-8} \) | \(a_{512}= +0.01018572 \pm 1.1 \cdot 10^{-7} \) | \(a_{513}= -0.27928890 \pm 8.1 \cdot 10^{-8} \) |
\(a_{514}= +0.89979722 \pm 1.8 \cdot 10^{-7} \) | \(a_{515}= +0.32547526 \pm 9.1 \cdot 10^{-8} \) | \(a_{516}= -0.07346282 \pm 9.5 \cdot 10^{-8} \) |
\(a_{517}= -0.25708160 \pm 1.5 \cdot 10^{-7} \) | \(a_{518}= -0.00218562 \pm 7.8 \cdot 10^{-8} \) | \(a_{519}= -0.18735705 \pm 1.8 \cdot 10^{-7} \) |
\(a_{520}= -0.21086646 \pm 9.2 \cdot 10^{-8} \) | \(a_{521}= +0.00910090 \pm 1.2 \cdot 10^{-7} \) | \(a_{522}= -1.43791753 \pm 1.2 \cdot 10^{-7} \) |
\(a_{523}= -1.91064149 \pm 1.3 \cdot 10^{-7} \) | \(a_{524}= -0.61869838 \pm 7.8 \cdot 10^{-8} \) | \(a_{525}= -0.07422999 \pm 9.7 \cdot 10^{-8} \) |
\(a_{526}= +1.75151776 \pm 1.5 \cdot 10^{-7} \) | \(a_{527}= +0.46107021 \pm 1.1 \cdot 10^{-7} \) | \(a_{528}= -0.05118784 \pm 3.3 \cdot 10^{-7} \) |
\(a_{529}= +1.27455449 \pm 1.6 \cdot 10^{-7} \) | \(a_{530}= -0.28170809 \pm 1.0 \cdot 10^{-7} \) | \(a_{531}= +0.28740541 \pm 2.5 \cdot 10^{-7} \) |
\(a_{532}= +0.23406058 \pm 5.6 \cdot 10^{-8} \) | \(a_{533}= +0.45548766 \pm 1.0 \cdot 10^{-7} \) | \(a_{534}= +0.15943867 \pm 1.7 \cdot 10^{-7} \) |
\(a_{535}= -0.28660790 \pm 8.8 \cdot 10^{-8} \) | \(a_{536}= +0.14452186 \pm 1.4 \cdot 10^{-7} \) | \(a_{537}= -0.07703906 \pm 1.6 \cdot 10^{-7} \) |
\(a_{538}= -2.13532575 \pm 1.3 \cdot 10^{-7} \) | \(a_{539}= +0.19212803 \pm 1.0 \cdot 10^{-7} \) | \(a_{540}= -0.03314236 \pm 1.4 \cdot 10^{-7} \) |
\(a_{541}= -0.04112979 \pm 1.3 \cdot 10^{-7} \) | \(a_{542}= -1.66369907 \pm 1.0 \cdot 10^{-7} \) | \(a_{543}= -0.04404169 \pm 2.4 \cdot 10^{-7} \) |
\(a_{544}= -0.28868418 \pm 1.0 \cdot 10^{-7} \) | \(a_{545}= +0.58213365 \pm 9.3 \cdot 10^{-8} \) | \(a_{546}= -0.08744999 \pm 1.0 \cdot 10^{-7} \) |
\(a_{547}= +0.58899688 \pm 1.7 \cdot 10^{-7} \) | \(a_{548}= +0.07048379 \pm 9.2 \cdot 10^{-8} \) | \(a_{549}= -0.05165043 \pm 1.1 \cdot 10^{-7} \) |
\(a_{550}= -0.31749021 \pm 2.7 \cdot 10^{-7} \) | \(a_{551}= +1.28032366 \pm 1.1 \cdot 10^{-7} \) | \(a_{552}= +0.15118139 \pm 6.9 \cdot 10^{-8} \) |
\(a_{553}= -0.62536140 \pm 8.5 \cdot 10^{-8} \) | \(a_{554}= +2.08359829 \pm 7.8 \cdot 10^{-8} \) | \(a_{555}= -0.00013647 \pm 9.9 \cdot 10^{-8} \) |
\(a_{556}= +0.25051808 \pm 1.6 \cdot 10^{-7} \) | \(a_{557}= -1.42934335 \pm 1.1 \cdot 10^{-7} \) | \(a_{558}= -1.32692616 \pm 1.0 \cdot 10^{-7} \) |
\(a_{559}= +1.26950690 \pm 8.6 \cdot 10^{-8} \) | \(a_{560}= -0.23908252 \pm 8.1 \cdot 10^{-8} \) | \(a_{561}= -0.01658757 \pm 2.9 \cdot 10^{-7} \) |
\(a_{562}= +0.52103020 \pm 1.3 \cdot 10^{-7} \) | \(a_{563}= -0.55939533 \pm 8.9 \cdot 10^{-8} \) | \(a_{564}= -0.04439113 \pm 1.0 \cdot 10^{-7} \) |
\(a_{565}= -0.30888374 \pm 9.2 \cdot 10^{-8} \) | \(a_{566}= -0.59997577 \pm 1.6 \cdot 10^{-7} \) | \(a_{567}= -0.56840167 \pm 6.1 \cdot 10^{-8} \) |
\(a_{568}= -1.04549858 \pm 1.4 \cdot 10^{-7} \) | \(a_{569}= +0.28573495 \pm 1.3 \cdot 10^{-7} \) | \(a_{570}= +0.05319187 \pm 1.0 \cdot 10^{-7} \) |
\(a_{571}= -0.09214950 \pm 1.5 \cdot 10^{-7} \) | \(a_{572}= -0.10276482 \pm 2.6 \cdot 10^{-7} \) | \(a_{573}= -0.00758475 \pm 1.0 \cdot 10^{-7} \) |
\(a_{574}= +0.35806295 \pm 1.4 \cdot 10^{-7} \) | \(a_{575}= +1.35244456 \pm 9.1 \cdot 10^{-8} \) | \(a_{576}= -0.38117425 \pm 1.2 \cdot 10^{-7} \) |
\(a_{577}= -1.09957587 \pm 1.6 \cdot 10^{-7} \) | \(a_{578}= +0.98606848 \pm 1.3 \cdot 10^{-7} \) | \(a_{579}= +0.08760315 \pm 1.0 \cdot 10^{-7} \) |
\(a_{580}= +0.15193211 \pm 1.7 \cdot 10^{-7} \) | \(a_{581}= -0.71263368 \pm 7.7 \cdot 10^{-8} \) | \(a_{582}= +0.09705629 \pm 2.2 \cdot 10^{-7} \) |
\(a_{583}= +0.22511384 \pm 1.6 \cdot 10^{-7} \) | \(a_{584}= +0.05196057 \pm 1.2 \cdot 10^{-7} \) | \(a_{585}= +0.28363553 \pm 1.0 \cdot 10^{-7} \) |
\(a_{586}= +0.87498833 \pm 1.2 \cdot 10^{-7} \) | \(a_{587}= +1.42948798 \pm 8.2 \cdot 10^{-8} \) | \(a_{588}= +0.03317538 \pm 9.4 \cdot 10^{-8} \) |
\(a_{589}= +1.18149681 \pm 8.2 \cdot 10^{-8} \) | \(a_{590}= -0.11052914 \pm 1.3 \cdot 10^{-7} \) | \(a_{591}= +0.12660716 \pm 1.0 \cdot 10^{-7} \) |
\(a_{592}= +0.00381746 \pm 9.0 \cdot 10^{-8} \) | \(a_{593}= -0.34393661 \pm 1.1 \cdot 10^{-7} \) | \(a_{594}= +0.09639458 \pm 2.6 \cdot 10^{-7} \) |
\(a_{595}= -0.07747538 \pm 6.1 \cdot 10^{-8} \) | \(a_{596}= +0.18666302 \pm 1.2 \cdot 10^{-7} \) | \(a_{597}= -0.06971303 \pm 1.8 \cdot 10^{-7} \) |
\(a_{598}= +1.59330847 \pm 2.0 \cdot 10^{-7} \) | \(a_{599}= -0.90769374 \pm 1.6 \cdot 10^{-7} \) | \(a_{600}= +0.08989209 \pm 1.3 \cdot 10^{-7} \) |
\(a_{601}= -1.78604280 \pm 9.9 \cdot 10^{-8} \) | \(a_{602}= +0.99797080 \pm 1.2 \cdot 10^{-7} \) | \(a_{603}= -0.19439571 \pm 1.7 \cdot 10^{-7} \) |
\(a_{604}= -0.48522893 \pm 5.7 \cdot 10^{-8} \) | \(a_{605}= -0.02921142 \pm 1.3 \cdot 10^{-7} \) | \(a_{606}= -0.08482381 \pm 2.5 \cdot 10^{-7} \) |
\(a_{607}= +1.04795978 \pm 1.5 \cdot 10^{-7} \) | \(a_{608}= -0.73975597 \pm 7.8 \cdot 10^{-8} \) | \(a_{609}= -0.10331605 \pm 5.9 \cdot 10^{-8} \) |
\(a_{610}= +0.01986350 \pm 1.5 \cdot 10^{-7} \) | \(a_{611}= +0.76712062 \pm 1.8 \cdot 10^{-7} \) | \(a_{612}= +0.14878460 \pm 7.9 \cdot 10^{-8} \) |
\(a_{613}= -0.03483892 \pm 2.0 \cdot 10^{-7} \) | \(a_{614}= -0.32271379 \pm 1.8 \cdot 10^{-7} \) | \(a_{615}= +0.02235682 \pm 1.5 \cdot 10^{-7} \) |
\(a_{616}= +0.13246256 \pm 2.6 \cdot 10^{-7} \) | \(a_{617}= -1.53664263 \pm 1.3 \cdot 10^{-7} \) | \(a_{618}= -0.16346032 \pm 1.8 \cdot 10^{-7} \) |
\(a_{619}= +0.50068211 \pm 1.1 \cdot 10^{-7} \) | \(a_{620}= +0.14020463 \pm 1.4 \cdot 10^{-7} \) | \(a_{621}= -0.41062157 \pm 6.5 \cdot 10^{-8} \) |
\(a_{622}= -2.00637905 \pm 1.5 \cdot 10^{-7} \) | \(a_{623}= -0.59508309 \pm 9.1 \cdot 10^{-8} \) | \(a_{624}= +0.15274233 \pm 1.3 \cdot 10^{-7} \) |
\(a_{625}= +0.70091006 \pm 7.2 \cdot 10^{-8} \) | \(a_{626}= -1.55068520 \pm 1.5 \cdot 10^{-7} \) | \(a_{627}= -0.04250579 \pm 3.0 \cdot 10^{-7} \) |
\(a_{628}= -0.11576297 \pm 1.1 \cdot 10^{-7} \) | \(a_{629}= +0.00123706 \pm 1.3 \cdot 10^{-7} \) | \(a_{630}= +0.22296845 \pm 9.2 \cdot 10^{-8} \) |
\(a_{631}= -1.15299438 \pm 9.6 \cdot 10^{-8} \) | \(a_{632}= +0.75730905 \pm 1.7 \cdot 10^{-7} \) | \(a_{633}= +0.12018820 \pm 1.0 \cdot 10^{-7} \) |
\(a_{634}= -0.21767157 \pm 1.5 \cdot 10^{-7} \) | \(a_{635}= -0.35352054 \pm 1.2 \cdot 10^{-7} \) | \(a_{636}= +0.03887115 \pm 8.1 \cdot 10^{-8} \) |
\(a_{637}= -0.57330192 \pm 1.0 \cdot 10^{-7} \) | \(a_{638}= -0.44189462 \pm 3.1 \cdot 10^{-7} \) | \(a_{639}= +1.40629549 \pm 1.8 \cdot 10^{-7} \) |
\(a_{640}= +0.37831584 \pm 1.2 \cdot 10^{-7} \) | \(a_{641}= +0.16441682 \pm 1.0 \cdot 10^{-7} \) | \(a_{642}= +0.14394034 \pm 7.5 \cdot 10^{-8} \) |
\(a_{643}= -0.72427137 \pm 1.3 \cdot 10^{-7} \) | \(a_{644}= +0.34412510 \pm 4.8 \cdot 10^{-8} \) | \(a_{645}= +0.06231155 \pm 1.2 \cdot 10^{-7} \) |
\(a_{646}= -0.48218097 \pm 1.2 \cdot 10^{-7} \) | \(a_{647}= +1.01567380 \pm 1.4 \cdot 10^{-7} \) | \(a_{648}= +0.68833115 \pm 9.8 \cdot 10^{-8} \) |
\(a_{649}= +0.08832419 \pm 1.9 \cdot 10^{-7} \) | \(a_{650}= +0.94737733 \pm 1.0 \cdot 10^{-7} \) | \(a_{651}= -0.09534119 \pm 7.6 \cdot 10^{-8} \) |
\(a_{652}= -0.49394032 \pm 1.2 \cdot 10^{-7} \) | \(a_{653}= -0.36254192 \pm 1.3 \cdot 10^{-7} \) | \(a_{654}= -0.29235940 \pm 1.2 \cdot 10^{-7} \) |
\(a_{655}= +0.52478318 \pm 9.7 \cdot 10^{-8} \) | \(a_{656}= -0.62540165 \pm 1.6 \cdot 10^{-7} \) | \(a_{657}= -0.06989193 \pm 1.4 \cdot 10^{-7} \) |
\(a_{658}= +0.60304042 \pm 6.5 \cdot 10^{-8} \) | \(a_{659}= +1.15547525 \pm 1.2 \cdot 10^{-7} \) | \(a_{660}= -0.00504403 \pm 4.0 \cdot 10^{-7} \) |
\(a_{661}= -0.59314826 \pm 1.3 \cdot 10^{-7} \) | \(a_{662}= +2.16112646 \pm 1.8 \cdot 10^{-7} \) | \(a_{663}= +0.04949659 \pm 1.0 \cdot 10^{-7} \) |
\(a_{664}= +0.86299528 \pm 1.6 \cdot 10^{-7} \) | \(a_{665}= -0.19853140 \pm 7.0 \cdot 10^{-8} \) | \(a_{666}= -0.00356016 \pm 1.2 \cdot 10^{-7} \) |
\(a_{667}= +1.88238240 \pm 1.5 \cdot 10^{-7} \) | \(a_{668}= +0.68910603 \pm 1.2 \cdot 10^{-7} \) | \(a_{669}= +0.08044218 \pm 1.5 \cdot 10^{-7} \) |
\(a_{670}= +0.07475987 \pm 1.3 \cdot 10^{-7} \) | \(a_{671}= -0.01587299 \pm 1.2 \cdot 10^{-7} \) | \(a_{672}= +0.05969480 \pm 8.4 \cdot 10^{-8} \) |
\(a_{673}= -1.18844691 \pm 1.2 \cdot 10^{-7} \) | \(a_{674}= -0.82859732 \pm 2.0 \cdot 10^{-7} \) | \(a_{675}= -0.24415458 \pm 8.0 \cdot 10^{-8} \) |
\(a_{676}= -0.07218424 \pm 9.3 \cdot 10^{-8} \) | \(a_{677}= -1.23062072 \pm 1.2 \cdot 10^{-7} \) | \(a_{678}= +0.15512772 \pm 1.6 \cdot 10^{-7} \) |
\(a_{679}= -0.36224937 \pm 1.2 \cdot 10^{-7} \) | \(a_{680}= +0.09382224 \pm 1.6 \cdot 10^{-7} \) | \(a_{681}= +0.12617721 \pm 1.5 \cdot 10^{-7} \) |
\(a_{682}= -0.40778523 \pm 2.7 \cdot 10^{-7} \) | \(a_{683}= +0.77674802 \pm 1.8 \cdot 10^{-7} \) | \(a_{684}= +0.38126197 \pm 5.1 \cdot 10^{-8} \) |
\(a_{685}= -0.05978471 \pm 8.9 \cdot 10^{-8} \) | \(a_{686}= -1.15793777 \pm 1.2 \cdot 10^{-7} \) | \(a_{687}= -0.25987962 \pm 1.0 \cdot 10^{-7} \) |
\(a_{688}= -1.74308060 \pm 1.2 \cdot 10^{-7} \) | \(a_{689}= -0.67173016 \pm 1.1 \cdot 10^{-7} \) | \(a_{690}= +0.07820479 \pm 6.2 \cdot 10^{-8} \) |
\(a_{691}= +0.64985320 \pm 1.0 \cdot 10^{-7} \) | \(a_{692}= +0.51645218 \pm 6.4 \cdot 10^{-8} \) | \(a_{693}= -0.17817480 \pm 2.7 \cdot 10^{-7} \) |
\(a_{694}= -0.29057267 \pm 1.2 \cdot 10^{-7} \) | \(a_{695}= -0.21249074 \pm 1.4 \cdot 10^{-7} \) | \(a_{696}= +0.12511514 \pm 1.2 \cdot 10^{-7} \) |
\(a_{697}= -0.20266320 \pm 7.8 \cdot 10^{-8} \) | \(a_{698}= +0.39087375 \pm 1.8 \cdot 10^{-7} \) | \(a_{699}= -0.15646859 \pm 7.0 \cdot 10^{-8} \) |
\(a_{700}= +0.20461595 \pm 7.2 \cdot 10^{-8} \) | \(a_{701}= -1.11221772 \pm 1.7 \cdot 10^{-7} \) | \(a_{702}= -0.28763735 \pm 8.9 \cdot 10^{-8} \) |
\(a_{703}= +0.00316997 \pm 1.2 \cdot 10^{-7} \) | \(a_{704}= -0.11714083 \pm 1.1 \cdot 10^{-7} \) | \(a_{705}= +0.03765279 \pm 9.9 \cdot 10^{-8} \) |
\(a_{706}= -0.84820380 \pm 1.0 \cdot 10^{-7} \) | \(a_{707}= +0.31659330 \pm 1.3 \cdot 10^{-7} \) | \(a_{708}= +0.01525123 \pm 7.4 \cdot 10^{-8} \) |
\(a_{709}= +0.77263275 \pm 1.9 \cdot 10^{-7} \) | \(a_{710}= -0.54082711 \pm 1.1 \cdot 10^{-7} \) | \(a_{711}= -1.01865303 \pm 1.4 \cdot 10^{-7} \) |
\(a_{712}= +0.72064219 \pm 1.1 \cdot 10^{-7} \) | \(a_{713}= +1.73708326 \pm 7.8 \cdot 10^{-8} \) | \(a_{714}= +0.03890972 \pm 7.5 \cdot 10^{-8} \) |
\(a_{715}= +0.08716565 \pm 2.6 \cdot 10^{-7} \) | \(a_{716}= +0.21235919 \pm 1.1 \cdot 10^{-7} \) | \(a_{717}= -0.26777261 \pm 2.5 \cdot 10^{-7} \) |
\(a_{718}= -0.02349371 \pm 1.8 \cdot 10^{-7} \) | \(a_{719}= +0.19882157 \pm 1.5 \cdot 10^{-7} \) | \(a_{720}= -0.38944223 \pm 1.2 \cdot 10^{-7} \) |
\(a_{721}= +0.61009333 \pm 9.3 \cdot 10^{-8} \) | \(a_{722}= -0.06135738 \pm 1.3 \cdot 10^{-7} \) | \(a_{723}= +0.26538595 \pm 1.0 \cdot 10^{-7} \) |
\(a_{724}= +0.12140150 \pm 1.6 \cdot 10^{-7} \) | \(a_{725}= +1.11925999 \pm 9.4 \cdot 10^{-8} \) | \(a_{726}= +0.01467057 \pm 3.2 \cdot 10^{-7} \) |
\(a_{727}= -0.50195553 \pm 1.3 \cdot 10^{-7} \) | \(a_{728}= -0.39526267 \pm 8.9 \cdot 10^{-8} \) | \(a_{729}= -0.88845339 \pm 1.6 \cdot 10^{-7} \) |
\(a_{730}= +0.02687874 \pm 1.0 \cdot 10^{-7} \) | \(a_{731}= -0.56485028 \pm 9.4 \cdot 10^{-8} \) | \(a_{732}= -0.00274084 \pm 1.2 \cdot 10^{-7} \) |
\(a_{733}= +0.33375146 \pm 1.9 \cdot 10^{-7} \) | \(a_{734}= +0.64909253 \pm 1.4 \cdot 10^{-7} \) | \(a_{735}= -0.02813953 \pm 7.4 \cdot 10^{-8} \) |
\(a_{736}= -1.08761843 \pm 8.0 \cdot 10^{-8} \) | \(a_{737}= -0.05974085 \pm 1.4 \cdot 10^{-7} \) | \(a_{738}= +0.58324980 \pm 2.0 \cdot 10^{-7} \) |
\(a_{739}= +1.62139343 \pm 1.7 \cdot 10^{-7} \) | \(a_{740}= +0.00037617 \pm 1.0 \cdot 10^{-7} \) | \(a_{741}= +0.12683549 \pm 1.3 \cdot 10^{-7} \) |
\(a_{742}= -0.52805313 \pm 1.0 \cdot 10^{-7} \) | \(a_{743}= +0.76328937 \pm 1.1 \cdot 10^{-7} \) | \(a_{744}= +0.11545763 \pm 1.1 \cdot 10^{-7} \) |
\(a_{745}= -0.15832854 \pm 1.4 \cdot 10^{-7} \) | \(a_{746}= -0.30721268 \pm 1.6 \cdot 10^{-7} \) | \(a_{747}= -1.16081111 \pm 1.0 \cdot 10^{-7} \) |
\(a_{748}= +0.04572384 \pm 2.4 \cdot 10^{-7} \) | \(a_{749}= -0.53723767 \pm 5.7 \cdot 10^{-8} \) | \(a_{750}= +0.09835472 \pm 1.6 \cdot 10^{-7} \) |
\(a_{751}= +1.30231760 \pm 1.8 \cdot 10^{-7} \) | \(a_{752}= -1.05328539 \pm 1.7 \cdot 10^{-7} \) | \(a_{753}= -0.05076201 \pm 1.1 \cdot 10^{-7} \) |
\(a_{754}= +1.31859484 \pm 1.7 \cdot 10^{-7} \) | \(a_{755}= +0.41157370 \pm 7.5 \cdot 10^{-8} \) | \(a_{756}= -0.06212434 \pm 8.6 \cdot 10^{-8} \) |
\(a_{757}= -1.36432320 \pm 1.6 \cdot 10^{-7} \) | \(a_{758}= +0.63513605 \pm 1.6 \cdot 10^{-7} \) | \(a_{759}= -0.06249370 \pm 2.9 \cdot 10^{-7} \) |
\(a_{760}= +0.24042038 \pm 8.9 \cdot 10^{-8} \) | \(a_{761}= +0.99942285 \pm 9.9 \cdot 10^{-8} \) | \(a_{762}= +0.17754523 \pm 1.6 \cdot 10^{-7} \) |
\(a_{763}= +1.09119157 \pm 6.2 \cdot 10^{-8} \) | \(a_{764}= +0.02090747 \pm 1.2 \cdot 10^{-7} \) | \(a_{765}= -0.12619988 \pm 1.0 \cdot 10^{-7} \) |
\(a_{766}= -1.35688677 \pm 1.7 \cdot 10^{-7} \) | \(a_{767}= -0.26355565 \pm 1.4 \cdot 10^{-7} \) | \(a_{768}= -0.13660436 \pm 1.1 \cdot 10^{-7} \) |
\(a_{769}= -0.92513224 \pm 1.5 \cdot 10^{-7} \) | \(a_{770}= +0.06852170 \pm 3.8 \cdot 10^{-7} \) | \(a_{771}= +0.10531098 \pm 1.2 \cdot 10^{-7} \) |
\(a_{772}= -0.24147925 \pm 8.2 \cdot 10^{-8} \) | \(a_{773}= -1.02179131 \pm 1.1 \cdot 10^{-7} \) | \(a_{774}= +1.62559759 \pm 1.4 \cdot 10^{-7} \) |
\(a_{775}= +1.03286547 \pm 8.3 \cdot 10^{-8} \) | \(a_{776}= +0.43868190 \pm 1.7 \cdot 10^{-7} \) | \(a_{777}= -0.00025580 \pm 1.0 \cdot 10^{-7} \) |
\(a_{778}= -0.17995921 \pm 1.4 \cdot 10^{-7} \) | \(a_{779}= -0.51932639 \pm 1.1 \cdot 10^{-7} \) | \(a_{780}= +0.01505118 \pm 6.3 \cdot 10^{-8} \) |
\(a_{781}= +0.43217667 \pm 1.5 \cdot 10^{-7} \) | \(a_{782}= -0.70892150 \pm 6.8 \cdot 10^{-8} \) | \(a_{783}= -0.33982339 \pm 1.0 \cdot 10^{-7} \) |
\(a_{784}= +0.78716504 \pm 1.1 \cdot 10^{-7} \) | \(a_{785}= +0.09819075 \pm 1.0 \cdot 10^{-7} \) | \(a_{786}= -0.26355683 \pm 6.9 \cdot 10^{-8} \) |
\(a_{787}= +0.23413503 \pm 1.0 \cdot 10^{-7} \) | \(a_{788}= -0.34899432 \pm 1.4 \cdot 10^{-7} \) | \(a_{789}= +0.20499514 \pm 1.6 \cdot 10^{-7} \) |
\(a_{790}= +0.39174923 \pm 1.7 \cdot 10^{-7} \) | \(a_{791}= -0.57899304 \pm 8.6 \cdot 10^{-8} \) | \(a_{792}= +0.21576866 \pm 3.2 \cdot 10^{-7} \) |
\(a_{793}= +0.04736433 \pm 9.5 \cdot 10^{-8} \) | \(a_{794}= -0.79514751 \pm 2.0 \cdot 10^{-7} \) | \(a_{795}= -0.03297071 \pm 1.4 \cdot 10^{-7} \) |
\(a_{796}= +0.19216490 \pm 1.5 \cdot 10^{-7} \) | \(a_{797}= -1.60898869 \pm 1.0 \cdot 10^{-7} \) | \(a_{798}= +0.09970652 \pm 1.3 \cdot 10^{-7} \) |
\(a_{799}= -0.34132016 \pm 1.0 \cdot 10^{-7} \) | \(a_{800}= -0.64669527 \pm 8.6 \cdot 10^{-8} \) | \(a_{801}= -0.96933260 \pm 1.5 \cdot 10^{-7} \) |
\(a_{802}= +0.12208099 \pm 1.2 \cdot 10^{-7} \) | \(a_{803}= -0.02147889 \pm 1.3 \cdot 10^{-7} \) | \(a_{804}= -0.01031565 \pm 1.0 \cdot 10^{-7} \) |
\(a_{805}= -0.29188870 \pm 4.7 \cdot 10^{-8} \) | \(a_{806}= +1.21681387 \pm 9.7 \cdot 10^{-8} \) | \(a_{807}= -0.24991548 \pm 8.5 \cdot 10^{-8} \) |
\(a_{808}= -0.38339266 \pm 2.0 \cdot 10^{-7} \) | \(a_{809}= -1.05017650 \pm 1.9 \cdot 10^{-7} \) | \(a_{810}= +0.35606757 \pm 8.8 \cdot 10^{-8} \) |
\(a_{811}= +1.15409622 \pm 1.2 \cdot 10^{-7} \) | \(a_{812}= +0.28479205 \pm 5.6 \cdot 10^{-8} \) | \(a_{813}= -0.19471696 \pm 1.1 \cdot 10^{-7} \) |
\(a_{814}= -0.00109409 \pm 2.8 \cdot 10^{-7} \) | \(a_{815}= +0.41896275 \pm 1.1 \cdot 10^{-7} \) | \(a_{816}= -0.06796068 \pm 1.2 \cdot 10^{-7} \) |
\(a_{817}= -1.44743424 \pm 1.0 \cdot 10^{-7} \) | \(a_{818}= +0.45429859 \pm 1.0 \cdot 10^{-7} \) | \(a_{819}= +0.53166606 \pm 9.5 \cdot 10^{-8} \) |
\(a_{820}= -0.06162688 \pm 1.1 \cdot 10^{-7} \) | \(a_{821}= -0.87377243 \pm 1.1 \cdot 10^{-7} \) | \(a_{822}= +0.03002510 \pm 1.2 \cdot 10^{-7} \) |
\(a_{823}= +0.04256718 \pm 8.9 \cdot 10^{-8} \) | \(a_{824}= -0.73881951 \pm 1.1 \cdot 10^{-7} \) | \(a_{825}= -0.03715860 \pm 2.8 \cdot 10^{-7} \) |
\(a_{826}= -0.20718347 \pm 1.6 \cdot 10^{-7} \) | \(a_{827}= +0.85762206 \pm 1.0 \cdot 10^{-7} \) | \(a_{828}= +0.56054640 \pm 5.4 \cdot 10^{-8} \) |
\(a_{829}= +1.19290586 \pm 1.0 \cdot 10^{-7} \) | \(a_{830}= +0.44641977 \pm 1.7 \cdot 10^{-7} \) | \(a_{831}= +0.24386137 \pm 8.1 \cdot 10^{-8} \) |
\(a_{832}= +0.34954327 \pm 9.8 \cdot 10^{-8} \) | \(a_{833}= +0.25508310 \pm 9.1 \cdot 10^{-8} \) | \(a_{834}= +0.10671719 \pm 2.3 \cdot 10^{-7} \) |
\(a_{835}= -0.58450332 \pm 1.0 \cdot 10^{-7} \) | \(a_{836}= +0.11716779 \pm 2.5 \cdot 10^{-7} \) | \(a_{837}= -0.31359277 \pm 1.0 \cdot 10^{-7} \) |
\(a_{838}= -0.88648768 \pm 1.2 \cdot 10^{-7} \) | \(a_{839}= +0.44568105 \pm 1.6 \cdot 10^{-7} \) | \(a_{840}= -0.01940078 \pm 9.5 \cdot 10^{-8} \) |
\(a_{841}= +0.55782749 \pm 1.5 \cdot 10^{-7} \) | \(a_{842}= +1.90457938 \pm 1.2 \cdot 10^{-7} \) | \(a_{843}= +0.06098063 \pm 1.2 \cdot 10^{-7} \) |
\(a_{844}= -0.33130038 \pm 1.1 \cdot 10^{-7} \) | \(a_{845}= +0.06122705 \pm 1.0 \cdot 10^{-7} \) | \(a_{846}= +0.98229433 \pm 1.3 \cdot 10^{-7} \) |
\(a_{847}= -0.05475591 \pm 1.0 \cdot 10^{-7} \) | \(a_{848}= +0.92231072 \pm 1.3 \cdot 10^{-7} \) | \(a_{849}= -0.07022031 \pm 2.1 \cdot 10^{-7} \) |
\(a_{850}= -0.42152300 \pm 1.1 \cdot 10^{-7} \) | \(a_{851}= +0.00466062 \pm 4.5 \cdot 10^{-8} \) | \(a_{852}= +0.07462538 \pm 9.0 \cdot 10^{-8} \) |
\(a_{853}= -0.61767438 \pm 1.2 \cdot 10^{-7} \) | \(a_{854}= +0.03723352 \pm 8.4 \cdot 10^{-8} \) | \(a_{855}= -0.32338838 \pm 1.0 \cdot 10^{-7} \) |
\(a_{856}= +0.65059172 \pm 1.0 \cdot 10^{-7} \) | \(a_{857}= +0.98610928 \pm 1.5 \cdot 10^{-7} \) | \(a_{858}= -0.04377637 \pm 4.6 \cdot 10^{-7} \) |
\(a_{859}= +1.78513721 \pm 1.1 \cdot 10^{-7} \) | \(a_{860}= -0.17176261 \pm 1.3 \cdot 10^{-7} \) | \(a_{861}= +0.04190718 \pm 1.7 \cdot 10^{-7} \) |
\(a_{862}= -1.48442738 \pm 1.2 \cdot 10^{-7} \) | \(a_{863}= +1.11513933 \pm 1.1 \cdot 10^{-7} \) | \(a_{864}= +0.19634596 \pm 9.0 \cdot 10^{-8} \) |
\(a_{865}= -0.43805743 \pm 1.0 \cdot 10^{-7} \) | \(a_{866}= -2.00392467 \pm 9.8 \cdot 10^{-8} \) | \(a_{867}= +0.11540805 \pm 1.7 \cdot 10^{-7} \) |
\(a_{868}= +0.26280925 \pm 4.4 \cdot 10^{-8} \) | \(a_{869}= -0.31304806 \pm 1.5 \cdot 10^{-7} \) | \(a_{870}= +0.06472095 \pm 1.1 \cdot 10^{-7} \) |
\(a_{871}= +0.17826417 \pm 1.3 \cdot 10^{-7} \) | \(a_{872}= -1.32142670 \pm 1.4 \cdot 10^{-7} \) | \(a_{873}= -0.59006907 \pm 2.1 \cdot 10^{-7} \) |
\(a_{874}= -1.81661812 \pm 8.6 \cdot 10^{-8} \) | \(a_{875}= -0.36709559 \pm 8.8 \cdot 10^{-8} \) | \(a_{876}= -0.00370883 \pm 7.5 \cdot 10^{-8} \) |
\(a_{877}= +1.23866496 \pm 1.3 \cdot 10^{-7} \) | \(a_{878}= +0.74746667 \pm 1.0 \cdot 10^{-7} \) | \(a_{879}= +0.10240738 \pm 1.6 \cdot 10^{-7} \) |
\(a_{880}= -0.11968171 \pm 2.9 \cdot 10^{-7} \) | \(a_{881}= -1.40233098 \pm 1.2 \cdot 10^{-7} \) | \(a_{882}= -0.73411040 \pm 9.8 \cdot 10^{-8} \) |
\(a_{883}= -0.98215578 \pm 1.4 \cdot 10^{-7} \) | \(a_{884}= -0.13643801 \pm 5.7 \cdot 10^{-8} \) | \(a_{885}= -0.01293617 \pm 1.8 \cdot 10^{-7} \) |
\(a_{886}= -1.86691526 \pm 1.5 \cdot 10^{-7} \) | \(a_{887}= +1.90978699 \pm 1.5 \cdot 10^{-7} \) | \(a_{888}= +0.00030977 \pm 1.1 \cdot 10^{-7} \) |
\(a_{889}= -0.66266335 \pm 9.7 \cdot 10^{-8} \) | \(a_{890}= +0.37278179 \pm 1.0 \cdot 10^{-7} \) | \(a_{891}= -0.28453474 \pm 1.0 \cdot 10^{-7} \) |
\(a_{892}= -0.22173992 \pm 9.1 \cdot 10^{-8} \) | \(a_{893}= -0.87463617 \pm 9.8 \cdot 10^{-8} \) | \(a_{894}= +0.07951583 \pm 1.0 \cdot 10^{-7} \) |
\(a_{895}= -0.18012417 \pm 1.4 \cdot 10^{-7} \) | \(a_{896}= +0.70914138 \pm 1.1 \cdot 10^{-7} \) | \(a_{897}= +0.18647855 \pm 5.5 \cdot 10^{-8} \) |
\(a_{898}= -1.47871748 \pm 1.1 \cdot 10^{-7} \) | \(a_{899}= +1.43758040 \pm 1.3 \cdot 10^{-7} \) | \(a_{900}= +0.33329952 \pm 7.7 \cdot 10^{-8} \) |
\(a_{901}= +0.29887744 \pm 1.2 \cdot 10^{-7} \) | \(a_{902}= +0.17924182 \pm 3.0 \cdot 10^{-7} \) | \(a_{903}= +0.11680108 \pm 1.2 \cdot 10^{-7} \) |
\(a_{904}= +0.70115723 \pm 1.7 \cdot 10^{-7} \) | \(a_{905}= -0.10297339 \pm 1.5 \cdot 10^{-7} \) | \(a_{906}= -0.20670071 \pm 9.2 \cdot 10^{-8} \) |
\(a_{907}= +0.78827937 \pm 1.4 \cdot 10^{-7} \) | \(a_{908}= -0.34780915 \pm 8.6 \cdot 10^{-8} \) | \(a_{909}= +0.51569977 \pm 2.4 \cdot 10^{-7} \) |
\(a_{910}= -0.20446586 \pm 7.6 \cdot 10^{-8} \) | \(a_{911}= -0.02696298 \pm 1.6 \cdot 10^{-7} \) | \(a_{912}= -0.17414989 \pm 1.6 \cdot 10^{-7} \) |
\(a_{913}= -0.35673547 \pm 1.2 \cdot 10^{-7} \) | \(a_{914}= +0.25591513 \pm 1.2 \cdot 10^{-7} \) | \(a_{915}= +0.00232480 \pm 1.0 \cdot 10^{-7} \) |
\(a_{916}= +0.71636162 \pm 1.3 \cdot 10^{-7} \) | \(a_{917}= +0.98368989 \pm 5.4 \cdot 10^{-8} \) | \(a_{918}= +0.12798043 \pm 1.0 \cdot 10^{-7} \) |
\(a_{919}= -0.47839556 \pm 1.5 \cdot 10^{-7} \) | \(a_{920}= +0.35347554 \pm 1.0 \cdot 10^{-7} \) | \(a_{921}= -0.03776996 \pm 2.2 \cdot 10^{-7} \) |
\(a_{922}= +1.31290562 \pm 9.5 \cdot 10^{-8} \) | \(a_{923}= -1.28959690 \pm 1.2 \cdot 10^{-7} \) | \(a_{924}= -0.00945488 \pm 3.8 \cdot 10^{-7} \) |
\(a_{925}= +0.00277119 \pm 7.5 \cdot 10^{-8} \) | \(a_{926}= +1.73963822 \pm 1.6 \cdot 10^{-7} \) | \(a_{927}= +0.99378283 \pm 1.6 \cdot 10^{-7} \) |
\(a_{928}= -0.90009441 \pm 1.3 \cdot 10^{-7} \) | \(a_{929}= -1.39306738 \pm 1.0 \cdot 10^{-7} \) | \(a_{930}= +0.05972520 \pm 1.0 \cdot 10^{-7} \) |
\(a_{931}= +0.65365287 \pm 7.8 \cdot 10^{-8} \) | \(a_{932}= +0.43130775 \pm 1.0 \cdot 10^{-7} \) | \(a_{933}= -0.23482374 \pm 1.1 \cdot 10^{-7} \) |
\(a_{934}= +1.49491049 \pm 7.3 \cdot 10^{-8} \) | \(a_{935}= -0.03878320 \pm 2.5 \cdot 10^{-7} \) | \(a_{936}= -0.64384454 \pm 1.2 \cdot 10^{-7} \) |
\(a_{937}= +0.67513676 \pm 1.5 \cdot 10^{-7} \) | \(a_{938}= +0.14013507 \pm 1.1 \cdot 10^{-7} \) | \(a_{939}= -0.18148998 \pm 1.8 \cdot 10^{-7} \) |
\(a_{940}= -0.10379041 \pm 1.6 \cdot 10^{-7} \) | \(a_{941}= -0.36844141 \pm 1.3 \cdot 10^{-7} \) | \(a_{942}= -0.04931340 \pm 8.7 \cdot 10^{-8} \) |
\(a_{943}= -0.76353417 \pm 4.7 \cdot 10^{-8} \) | \(a_{944}= +0.36187180 \pm 2.0 \cdot 10^{-7} \) | \(a_{945}= +0.05269419 \pm 6.1 \cdot 10^{-8} \) |
\(a_{946}= +0.49957165 \pm 2.8 \cdot 10^{-7} \) | \(a_{947}= -0.82263273 \pm 1.0 \cdot 10^{-7} \) | \(a_{948}= -0.05405504 \pm 1.2 \cdot 10^{-7} \) |
\(a_{949}= +0.06409209 \pm 1.4 \cdot 10^{-7} \) | \(a_{950}= -1.08015671 \pm 9.0 \cdot 10^{-8} \) | \(a_{951}= -0.02547597 \pm 1.3 \cdot 10^{-7} \) |
\(a_{952}= +0.17586689 \pm 7.0 \cdot 10^{-8} \) | \(a_{953}= +0.36873616 \pm 1.0 \cdot 10^{-7} \) | \(a_{954}= -0.86014731 \pm 1.8 \cdot 10^{-7} \) |
\(a_{955}= -0.01773382 \pm 1.0 \cdot 10^{-7} \) | \(a_{956}= +0.73811875 \pm 1.1 \cdot 10^{-7} \) | \(a_{957}= -0.05171872 \pm 3.2 \cdot 10^{-7} \) |
\(a_{958}= +0.29553166 \pm 9.9 \cdot 10^{-8} \) | \(a_{959}= -0.11206460 \pm 6.3 \cdot 10^{-8} \) | \(a_{960}= +0.01715673 \pm 9.1 \cdot 10^{-8} \) |
\(a_{961}= +0.32661506 \pm 1.1 \cdot 10^{-7} \) | \(a_{962}= +0.00326473 \pm 6.8 \cdot 10^{-8} \) | \(a_{963}= -0.87510803 \pm 8.7 \cdot 10^{-8} \) |
\(a_{964}= -0.73153989 \pm 1.1 \cdot 10^{-7} \) | \(a_{965}= +0.20482395 \pm 1.1 \cdot 10^{-7} \) | \(a_{966}= +0.14659246 \pm 5.9 \cdot 10^{-8} \) |
\(a_{967}= -0.44493718 \pm 1.4 \cdot 10^{-7} \) | \(a_{968}= +0.06630909 \pm 1.6 \cdot 10^{-7} \) | \(a_{969}= -0.05643377 \pm 1.9 \cdot 10^{-7} \) |
\(a_{970}= +0.22692624 \pm 1.5 \cdot 10^{-7} \) | \(a_{971}= -0.91642373 \pm 1.2 \cdot 10^{-7} \) | \(a_{972}= -0.15227415 \pm 8.2 \cdot 10^{-8} \) |
\(a_{973}= -0.39830734 \pm 1.1 \cdot 10^{-7} \) | \(a_{974}= +1.48237374 \pm 1.9 \cdot 10^{-7} \) | \(a_{975}= +0.11087969 \pm 9.0 \cdot 10^{-8} \) |
\(a_{976}= -0.06503300 \pm 1.5 \cdot 10^{-7} \) | \(a_{977}= -1.71149363 \pm 1.8 \cdot 10^{-7} \) | \(a_{978}= -0.21041165 \pm 1.8 \cdot 10^{-7} \) |
\(a_{979}= -0.29789112 \pm 1.2 \cdot 10^{-7} \) | \(a_{980}= +0.07756699 \pm 1.4 \cdot 10^{-7} \) | \(a_{981}= +1.77744518 \pm 9.5 \cdot 10^{-8} \) |
\(a_{982}= +1.50773817 \pm 1.2 \cdot 10^{-7} \) | \(a_{983}= +0.52001185 \pm 1.6 \cdot 10^{-7} \) | \(a_{984}= -0.05074935 \pm 1.8 \cdot 10^{-7} \) |
\(a_{985}= +0.29601879 \pm 9.6 \cdot 10^{-8} \) | \(a_{986}= -0.58669131 \pm 1.2 \cdot 10^{-7} \) | \(a_{987}= +0.07057899 \pm 5.6 \cdot 10^{-8} \) |
\(a_{988}= -0.34962371 \pm 4.7 \cdot 10^{-8} \) | \(a_{989}= -2.12807497 \pm 4.6 \cdot 10^{-8} \) | \(a_{990}= +0.11161520 \pm 4.5 \cdot 10^{-7} \) |
\(a_{991}= -0.05272792 \pm 1.3 \cdot 10^{-7} \) | \(a_{992}= -0.83061706 \pm 9.2 \cdot 10^{-8} \) | \(a_{993}= +0.25293515 \pm 2.1 \cdot 10^{-7} \) |
\(a_{994}= -1.01376373 \pm 1.2 \cdot 10^{-7} \) | \(a_{995}= -0.16299527 \pm 1.3 \cdot 10^{-7} \) | \(a_{996}= -0.06159869 \pm 1.5 \cdot 10^{-7} \) |
\(a_{997}= +1.41424693 \pm 1.4 \cdot 10^{-7} \) | \(a_{998}= -0.74270117 \pm 2.0 \cdot 10^{-7} \) | \(a_{999}= -0.00084137 \pm 9.4 \cdot 10^{-8} \) |
\(a_{1000}= +0.44455064 \pm 1.1 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000