Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(13.5421737879709685184071760475 \pm 10 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.40646650 \pm 3.3 \cdot 10^{-5} \) | \(a_{3}= -1.84127746 \pm 2.7 \cdot 10^{-5} \) |
\(a_{4}= -0.83478498 \pm 3.9 \cdot 10^{-5} \) | \(a_{5}= -1.48852194 \pm 2.8 \cdot 10^{-5} \) | \(a_{6}= -0.74841761 \pm 3.4 \cdot 10^{-5} \) |
\(a_{7}= +0.80165017 \pm 2.8 \cdot 10^{-5} \) | \(a_{8}= -0.74577863 \pm 3.3 \cdot 10^{-5} \) | \(a_{9}= +2.39030267 \pm 3.1 \cdot 10^{-5} \) |
\(a_{10}= -0.60503431 \pm 3.5 \cdot 10^{-5} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +1.53707077 \pm 3.6 \cdot 10^{-5} \) |
\(a_{13}= +1.03237429 \pm 2.2 \cdot 10^{-5} \) | \(a_{14}= +0.32584394 \pm 2.4 \cdot 10^{-5} \) | \(a_{15}= +2.74078189 \pm 2.1 \cdot 10^{-5} \) |
\(a_{16}= +0.53165095 \pm 2.9 \cdot 10^{-5} \) | \(a_{17}= +0.00058707 \pm 2.8 \cdot 10^{-5} \) | \(a_{18}= +0.97157797 \pm 3.1 \cdot 10^{-5} \) |
\(a_{19}= -1.06133060 \pm 2.0 \cdot 10^{-5} \) | \(a_{20}= +1.24259576 \pm 3.8 \cdot 10^{-5} \) | \(a_{21}= -1.47606038 \pm 2.2 \cdot 10^{-5} \) |
\(a_{22}= -0.12255426 \pm 3.3 \cdot 10^{-5} \) | \(a_{23}= -0.97369245 \pm 2.6 \cdot 10^{-5} \) | \(a_{24}= +1.37318539 \pm 3.8 \cdot 10^{-5} \) |
\(a_{25}= +1.21569756 \pm 2.3 \cdot 10^{-5} \) | \(a_{26}= +0.41962557 \pm 1.7 \cdot 10^{-5} \) | \(a_{27}= -2.55993296 \pm 2.6 \cdot 10^{-5} \) |
\(a_{28}= -0.66920552 \pm 2.9 \cdot 10^{-5} \) | \(a_{29}= +0.92384540 \pm 2.6 \cdot 10^{-5} \) | \(a_{30}= +1.11403603 \pm 2.0 \cdot 10^{-5} \) |
\(a_{31}= +0.82574695 \pm 2.8 \cdot 10^{-5} \) | \(a_{32}= +0.96187694 \pm 2.4 \cdot 10^{-5} \) | \(a_{33}= +0.55516604 \pm 2.7 \cdot 10^{-5} \) |
\(a_{34}= +0.00023862 \pm 3.4 \cdot 10^{-5} \) | \(a_{35}= -1.19327386 \pm 2.7 \cdot 10^{-5} \) | \(a_{36}= -1.99538877 \pm 3.2 \cdot 10^{-5} \) |
\(a_{37}= +0.19738509 \pm 2.8 \cdot 10^{-5} \) | \(a_{38}= -0.43139534 \pm 2.8 \cdot 10^{-5} \) | \(a_{39}= -1.90088751 \pm 1.6 \cdot 10^{-5} \) |
\(a_{40}= +1.11010786 \pm 2.7 \cdot 10^{-5} \) | \(a_{41}= +0.69961162 \pm 1.8 \cdot 10^{-5} \) | \(a_{42}= -0.59996910 \pm 2.4 \cdot 10^{-5} \) |
\(a_{43}= +0.66129722 \pm 2.7 \cdot 10^{-5} \) | \(a_{44}= +0.25169714 \pm 3.9 \cdot 10^{-5} \) | \(a_{45}= -3.55801797 \pm 3.0 \cdot 10^{-5} \) |
\(a_{46}= -0.39577337 \pm 3.8 \cdot 10^{-5} \) | \(a_{47}= +1.30289297 \pm 2.2 \cdot 10^{-5} \) | \(a_{48}= -0.97891691 \pm 3.0 \cdot 10^{-5} \) |
\(a_{49}= -0.35735701 \pm 2.5 \cdot 10^{-5} \) | \(a_{50}= +0.49414034 \pm 3.6 \cdot 10^{-5} \) | \(a_{51}= -0.00108095 \pm 2.8 \cdot 10^{-5} \) |
\(a_{52}= -0.86181055 \pm 2.4 \cdot 10^{-5} \) | \(a_{53}= -1.20943553 \pm 2.2 \cdot 10^{-5} \) | \(a_{54}= -1.04052700 \pm 2.2 \cdot 10^{-5} \) |
\(a_{55}= +0.44880625 \pm 2.8 \cdot 10^{-5} \) | \(a_{56}= -0.59785357 \pm 1.9 \cdot 10^{-5} \) | \(a_{57}= +1.95420411 \pm 1.8 \cdot 10^{-5} \) |
\(a_{58}= +0.37551221 \pm 2.5 \cdot 10^{-5} \) | \(a_{59}= -1.53744290 \pm 3.2 \cdot 10^{-5} \) | \(a_{60}= -2.28796356 \pm 1.7 \cdot 10^{-5} \) |
\(a_{61}= +0.91523590 \pm 2.3 \cdot 10^{-5} \) | \(a_{62}= +0.33563847 \pm 2.5 \cdot 10^{-5} \) | \(a_{63}= +1.91618654 \pm 2.2 \cdot 10^{-5} \) |
\(a_{64}= -0.14068020 \pm 3.0 \cdot 10^{-5} \) | \(a_{65}= -1.53671178 \pm 1.9 \cdot 10^{-5} \) | \(a_{66}= +0.22565640 \pm 6.1 \cdot 10^{-5} \) |
\(a_{67}= -0.04609907 \pm 3.3 \cdot 10^{-5} \) | \(a_{68}= -0.00049007 \pm 4.3 \cdot 10^{-5} \) | \(a_{69}= +1.79283796 \pm 3.1 \cdot 10^{-5} \) |
\(a_{70}= -0.48502585 \pm 2.4 \cdot 10^{-5} \) | \(a_{71}= -0.42799978 \pm 2.1 \cdot 10^{-5} \) | \(a_{72}= -1.78263666 \pm 3.2 \cdot 10^{-5} \) |
\(a_{73}= +0.69893484 \pm 2.7 \cdot 10^{-5} \) | \(a_{74}= +0.08023043 \pm 2.6 \cdot 10^{-5} \) | \(a_{75}= -2.23843652 \pm 1.7 \cdot 10^{-5} \) |
\(a_{76}= +0.88598285 \pm 2.8 \cdot 10^{-5} \) | \(a_{77}= -0.24170662 \pm 2.8 \cdot 10^{-5} \) | \(a_{78}= -0.77264710 \pm 2.1 \cdot 10^{-5} \) |
\(a_{79}= +0.99446783 \pm 2.2 \cdot 10^{-5} \) | \(a_{80}= -0.79137410 \pm 1.7 \cdot 10^{-5} \) | \(a_{81}= +2.32324419 \pm 3.0 \cdot 10^{-5} \) |
\(a_{82}= +0.28436869 \pm 1.9 \cdot 10^{-5} \) | \(a_{83}= -0.19000974 \pm 2.7 \cdot 10^{-5} \) | \(a_{84}= +1.23219304 \pm 2.2 \cdot 10^{-5} \) |
\(a_{85}= -0.00087386 \pm 2.2 \cdot 10^{-5} \) | \(a_{86}= +0.26879517 \pm 3.1 \cdot 10^{-5} \) | \(a_{87}= -1.70105570 \pm 1.9 \cdot 10^{-5} \) |
\(a_{88}= +0.22486072 \pm 3.3 \cdot 10^{-5} \) | \(a_{89}= -0.08774198 \pm 2.8 \cdot 10^{-5} \) | \(a_{90}= -1.44621512 \pm 3.6 \cdot 10^{-5} \) |
\(a_{91}= +0.82760302 \pm 2.6 \cdot 10^{-5} \) | \(a_{92}= +0.81282384 \pm 4.4 \cdot 10^{-5} \) | \(a_{93}= -1.52042924 \pm 2.8 \cdot 10^{-5} \) |
\(a_{94}= +0.52958235 \pm 2.3 \cdot 10^{-5} \) | \(a_{95}= +1.57981388 \pm 2.4 \cdot 10^{-5} \) | \(a_{96}= -1.77108232 \pm 2.5 \cdot 10^{-5} \) |
\(a_{97}= +1.02919173 \pm 2.4 \cdot 10^{-5} \) | \(a_{98}= -0.14525365 \pm 2.8 \cdot 10^{-5} \) | \(a_{99}= -0.72070337 \pm 3.1 \cdot 10^{-5} \) |
\(a_{100}= -1.01484607 \pm 4.0 \cdot 10^{-5} \) | \(a_{101}= +0.91452472 \pm 2.1 \cdot 10^{-5} \) | \(a_{102}= -0.00043937 \pm 4.0 \cdot 10^{-5} \) |
\(a_{103}= -0.75531878 \pm 3.0 \cdot 10^{-5} \) | \(a_{104}= -0.76992269 \pm 1.3 \cdot 10^{-5} \) | \(a_{105}= +2.19714826 \pm 2.0 \cdot 10^{-5} \) |
\(a_{106}= -0.49159503 \pm 2.7 \cdot 10^{-5} \) | \(a_{107}= -1.32301634 \pm 3.1 \cdot 10^{-5} \) | \(a_{108}= +2.13699359 \pm 2.0 \cdot 10^{-5} \) |
\(a_{109}= -0.86634355 \pm 2.0 \cdot 10^{-5} \) | \(a_{110}= +0.18242471 \pm 6.2 \cdot 10^{-5} \) | \(a_{111}= -0.36344072 \pm 1.6 \cdot 10^{-5} \) |
\(a_{112}= +0.42619807 \pm 2.4 \cdot 10^{-5} \) | \(a_{113}= -0.58382238 \pm 3.4 \cdot 10^{-5} \) | \(a_{114}= +0.79431851 \pm 2.1 \cdot 10^{-5} \) |
\(a_{115}= +1.44936258 \pm 1.9 \cdot 10^{-5} \) | \(a_{116}= -0.77121226 \pm 3.4 \cdot 10^{-5} \) | \(a_{117}= +2.46768703 \pm 2.1 \cdot 10^{-5} \) |
\(a_{118}= -0.62491904 \pm 3.9 \cdot 10^{-5} \) | \(a_{119}= +0.00047062 \pm 2.5 \cdot 10^{-5} \) | \(a_{120}= -2.04401657 \pm 2.0 \cdot 10^{-5} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +0.37201274 \pm 3.2 \cdot 10^{-5} \) | \(a_{123}= -1.28817910 \pm 2.3 \cdot 10^{-5} \) |
\(a_{124}= -0.68932115 \pm 2.6 \cdot 10^{-5} \) | \(a_{125}= -0.32107056 \pm 2.6 \cdot 10^{-5} \) | \(a_{126}= +0.77886564 \pm 1.9 \cdot 10^{-5} \) |
\(a_{127}= +0.53683726 \pm 2.8 \cdot 10^{-5} \) | \(a_{128}= -1.01905872 \pm 2.9 \cdot 10^{-5} \) | \(a_{129}= -1.21763167 \pm 2.7 \cdot 10^{-5} \) |
\(a_{130}= -0.62462186 \pm 1.5 \cdot 10^{-5} \) | \(a_{131}= +0.59146595 \pm 3.2 \cdot 10^{-5} \) | \(a_{132}= -0.46344427 \pm 6.7 \cdot 10^{-5} \) |
\(a_{133}= -0.85081585 \pm 1.8 \cdot 10^{-5} \) | \(a_{134}= -0.01873773 \pm 3.7 \cdot 10^{-5} \) | \(a_{135}= +3.81051638 \pm 2.4 \cdot 10^{-5} \) |
\(a_{136}= -0.00043782 \pm 3.9 \cdot 10^{-5} \) | \(a_{137}= +0.76406147 \pm 2.7 \cdot 10^{-5} \) | \(a_{138}= +0.72872858 \pm 4.6 \cdot 10^{-5} \) |
\(a_{139}= +0.56257514 \pm 2.2 \cdot 10^{-5} \) | \(a_{140}= +0.99612710 \pm 2.8 \cdot 10^{-5} \) | \(a_{141}= -2.39898745 \pm 3.1 \cdot 10^{-5} \) |
\(a_{142}= -0.17396757 \pm 1.7 \cdot 10^{-5} \) | \(a_{143}= -0.31127256 \pm 2.2 \cdot 10^{-5} \) | \(a_{144}= +1.27080668 \pm 2.3 \cdot 10^{-5} \) |
\(a_{145}= -1.37516414 \pm 2.4 \cdot 10^{-5} \) | \(a_{146}= +0.28409360 \pm 3.0 \cdot 10^{-5} \) | \(a_{147}= +0.65799340 \pm 2.7 \cdot 10^{-5} \) |
\(a_{148}= -0.16477411 \pm 3.4 \cdot 10^{-5} \) | \(a_{149}= -1.87155939 \pm 2.1 \cdot 10^{-5} \) | \(a_{150}= -0.90984946 \pm 2.6 \cdot 10^{-5} \) |
\(a_{151}= +0.45988255 \pm 3.6 \cdot 10^{-5} \) | \(a_{152}= +0.79151769 \pm 2.1 \cdot 10^{-5} \) | \(a_{153}= +0.00140326 \pm 2.8 \cdot 10^{-5} \) |
\(a_{154}= -0.09824564 \pm 6.2 \cdot 10^{-5} \) | \(a_{155}= -1.22914245 \pm 2.6 \cdot 10^{-5} \) | \(a_{156}= +1.58683235 \pm 1.9 \cdot 10^{-5} \) |
\(a_{157}= +0.30569662 \pm 2.4 \cdot 10^{-5} \) | \(a_{158}= +0.40421786 \pm 2.2 \cdot 10^{-5} \) | \(a_{159}= +2.22690637 \pm 1.9 \cdot 10^{-5} \) |
\(a_{160}= -1.43177492 \pm 2.3 \cdot 10^{-5} \) | \(a_{161}= -0.78056072 \pm 2.1 \cdot 10^{-5} \) | \(a_{162}= +0.94432094 \pm 3.6 \cdot 10^{-5} \) |
\(a_{163}= -1.65952350 \pm 2.7 \cdot 10^{-5} \) | \(a_{164}= -0.58402527 \pm 1.6 \cdot 10^{-5} \) | \(a_{165}= -0.82637683 \pm 5.6 \cdot 10^{-5} \) |
\(a_{166}= -0.07723259 \pm 2.3 \cdot 10^{-5} \) | \(a_{167}= +1.12456138 \pm 3.5 \cdot 10^{-5} \) | \(a_{168}= +1.10081430 \pm 1.7 \cdot 10^{-5} \) |
\(a_{169}= +0.06579668 \pm 2.3 \cdot 10^{-5} \) | \(a_{170}= -0.00035519 \pm 2.3 \cdot 10^{-5} \) | \(a_{171}= -2.53690137 \pm 1.9 \cdot 10^{-5} \) |
\(a_{172}= -0.55204099 \pm 3.7 \cdot 10^{-5} \) | \(a_{173}= -1.53839600 \pm 2.7 \cdot 10^{-5} \) | \(a_{174}= -0.69142216 \pm 2.6 \cdot 10^{-5} \) |
\(a_{175}= +0.97456416 \pm 1.6 \cdot 10^{-5} \) | \(a_{176}= -0.16029879 \pm 2.9 \cdot 10^{-5} \) | \(a_{177}= +2.83085896 \pm 2.9 \cdot 10^{-5} \) |
\(a_{178}= -0.03566417 \pm 4.0 \cdot 10^{-5} \) | \(a_{179}= +1.97408223 \pm 3.1 \cdot 10^{-5} \) | \(a_{180}= +2.97017997 \pm 3.6 \cdot 10^{-5} \) |
\(a_{181}= +0.04740404 \pm 2.5 \cdot 10^{-5} \) | \(a_{182}= +0.33639291 \pm 2.0 \cdot 10^{-5} \) | \(a_{183}= -1.68520323 \pm 1.3 \cdot 10^{-5} \) |
\(a_{184}= +0.72615903 \pm 4.2 \cdot 10^{-5} \) | \(a_{185}= -0.29381204 \pm 2.8 \cdot 10^{-5} \) | \(a_{186}= -0.61800355 \pm 2.6 \cdot 10^{-5} \) |
\(a_{187}= -0.00017701 \pm 2.8 \cdot 10^{-5} \) | \(a_{188}= -1.08763548 \pm 2.6 \cdot 10^{-5} \) | \(a_{189}= -2.05217069 \pm 2.2 \cdot 10^{-5} \) |
\(a_{190}= +0.64214142 \pm 3.4 \cdot 10^{-5} \) | \(a_{191}= -1.65062675 \pm 2.8 \cdot 10^{-5} \) | \(a_{192}= +0.25903127 \pm 2.4 \cdot 10^{-5} \) |
\(a_{193}= -0.42293187 \pm 2.8 \cdot 10^{-5} \) | \(a_{194}= +0.41833196 \pm 3.7 \cdot 10^{-5} \) | \(a_{195}= +2.82951276 \pm 1.4 \cdot 10^{-5} \) |
\(a_{196}= +0.29831626 \pm 3.1 \cdot 10^{-5} \) | \(a_{197}= -0.27133302 \pm 2.0 \cdot 10^{-5} \) | \(a_{198}= -0.29294178 \pm 6.4 \cdot 10^{-5} \) |
\(a_{199}= -1.59074009 \pm 3.1 \cdot 10^{-5} \) | \(a_{200}= -0.90664127 \pm 3.3 \cdot 10^{-5} \) | \(a_{201}= +0.08488119 \pm 1.9 \cdot 10^{-5} \) |
\(a_{202}= +0.37172366 \pm 3.2 \cdot 10^{-5} \) | \(a_{203}= +0.74060082 \pm 2.7 \cdot 10^{-5} \) | \(a_{204}= +0.00090236 \pm 4.7 \cdot 10^{-5} \) |
\(a_{205}= -1.04138724 \pm 1.6 \cdot 10^{-5} \) | \(a_{206}= -0.30701178 \pm 2.4 \cdot 10^{-5} \) | \(a_{207}= -2.32741967 \pm 2.5 \cdot 10^{-5} \) |
\(a_{208}= +0.54886277 \pm 2.1 \cdot 10^{-5} \) | \(a_{209}= +0.32000322 \pm 2.0 \cdot 10^{-5} \) | \(a_{210}= +0.89306717 \pm 1.9 \cdot 10^{-5} \) |
\(a_{211}= +1.19759786 \pm 3.2 \cdot 10^{-5} \) | \(a_{212}= +1.00961862 \pm 2.7 \cdot 10^{-5} \) | \(a_{213}= +0.78806635 \pm 2.5 \cdot 10^{-5} \) |
\(a_{214}= -0.53776183 \pm 4.7 \cdot 10^{-5} \) | \(a_{215}= -0.98435543 \pm 2.6 \cdot 10^{-5} \) | \(a_{216}= +1.90914331 \pm 2.7 \cdot 10^{-5} \) |
\(a_{217}= +0.66196018 \pm 3.3 \cdot 10^{-5} \) | \(a_{218}= -0.35213963 \pm 2.2 \cdot 10^{-5} \) | \(a_{219}= -1.28693297 \pm 1.8 \cdot 10^{-5} \) |
\(a_{220}= -0.37465672 \pm 6.8 \cdot 10^{-5} \) | \(a_{221}= +0.00060607 \pm 2.1 \cdot 10^{-5} \) | \(a_{222}= -0.14772648 \pm 2.0 \cdot 10^{-5} \) |
\(a_{223}= -0.79097419 \pm 2.9 \cdot 10^{-5} \) | \(a_{224}= +0.77108881 \pm 2.3 \cdot 10^{-5} \) | \(a_{225}= +2.90588513 \pm 2.0 \cdot 10^{-5} \) |
\(a_{226}= -0.23730424 \pm 3.7 \cdot 10^{-5} \) | \(a_{227}= -0.19322689 \pm 2.3 \cdot 10^{-5} \) | \(a_{228}= -1.63134024 \pm 2.0 \cdot 10^{-5} \) |
\(a_{229}= -0.22948816 \pm 2.3 \cdot 10^{-5} \) | \(a_{230}= +0.58911734 \pm 2.1 \cdot 10^{-5} \) | \(a_{231}= +0.44504895 \pm 5.6 \cdot 10^{-5} \) |
\(a_{232}= -0.68898416 \pm 2.6 \cdot 10^{-5} \) | \(a_{233}= -0.24947381 \pm 3.3 \cdot 10^{-5} \) | \(a_{234}= +1.00303211 \pm 1.6 \cdot 10^{-5} \) |
\(a_{235}= -1.93938476 \pm 1.8 \cdot 10^{-5} \) | \(a_{236}= +1.28343425 \pm 4.6 \cdot 10^{-5} \) | \(a_{237}= -1.83109120 \pm 2.0 \cdot 10^{-5} \) |
\(a_{238}= +0.00019129 \pm 1.7 \cdot 10^{-5} \) | \(a_{239}= +0.66975066 \pm 2.6 \cdot 10^{-5} \) | \(a_{240}= +1.45713929 \pm 1.4 \cdot 10^{-5} \) |
\(a_{241}= +1.32195076 \pm 3.9 \cdot 10^{-5} \) | \(a_{242}= +0.03695150 \pm 3.3 \cdot 10^{-5} \) | \(a_{243}= -1.71780418 \pm 2.0 \cdot 10^{-5} \) |
\(a_{244}= -0.76402519 \pm 3.4 \cdot 10^{-5} \) | \(a_{245}= +0.53193375 \pm 2.6 \cdot 10^{-5} \) | \(a_{246}= -0.52360165 \pm 2.3 \cdot 10^{-5} \) |
\(a_{247}= -1.09569043 \pm 1.0 \cdot 10^{-5} \) | \(a_{248}= -0.61582443 \pm 1.9 \cdot 10^{-5} \) | \(a_{249}= +0.34986064 \pm 3.5 \cdot 10^{-5} \) |
\(a_{250}= -0.13050443 \pm 2.3 \cdot 10^{-5} \) | \(a_{251}= -0.05042876 \pm 3.2 \cdot 10^{-5} \) | \(a_{252}= -1.59960374 \pm 2.4 \cdot 10^{-5} \) |
\(a_{253}= +0.29357932 \pm 2.6 \cdot 10^{-5} \) | \(a_{254}= +0.21820636 \pm 3.2 \cdot 10^{-5} \) | \(a_{255}= +0.00160902 \pm 1.7 \cdot 10^{-5} \) |
\(a_{256}= -0.27353304 \pm 3.4 \cdot 10^{-5} \) | \(a_{257}= -0.19891390 \pm 2.3 \cdot 10^{-5} \) | \(a_{258}= -0.49492649 \pm 3.4 \cdot 10^{-5} \) |
\(a_{259}= +0.15823379 \pm 2.9 \cdot 10^{-5} \) | \(a_{260}= +1.28282392 \pm 1.9 \cdot 10^{-5} \) | \(a_{261}= +2.20827012 \pm 2.1 \cdot 10^{-5} \) |
\(a_{262}= +0.24041110 \pm 3.4 \cdot 10^{-5} \) | \(a_{263}= +1.03355654 \pm 3.7 \cdot 10^{-5} \) | \(a_{264}= -0.41403097 \pm 6.0 \cdot 10^{-5} \) |
\(a_{265}= +1.80027132 \pm 2.5 \cdot 10^{-5} \) | \(a_{266}= -0.34582814 \pm 2.2 \cdot 10^{-5} \) | \(a_{267}= +0.16155732 \pm 2.8 \cdot 10^{-5} \) |
\(a_{268}= +0.03848282 \pm 4.5 \cdot 10^{-5} \) | \(a_{269}= +0.18744089 \pm 2.6 \cdot 10^{-5} \) | \(a_{270}= +1.54884726 \pm 1.8 \cdot 10^{-5} \) |
\(a_{271}= -1.50851847 \pm 2.7 \cdot 10^{-5} \) | \(a_{272}= +0.00031211 \pm 3.4 \cdot 10^{-5} \) | \(a_{273}= -1.52384679 \pm 1.9 \cdot 10^{-5} \) |
\(a_{274}= +0.31056539 \pm 2.5 \cdot 10^{-5} \) | \(a_{275}= -0.36654661 \pm 2.3 \cdot 10^{-5} \) | \(a_{276}= -1.49663421 \pm 5.3 \cdot 10^{-5} \) |
\(a_{277}= -1.52415753 \pm 3.9 \cdot 10^{-5} \) | \(a_{278}= +0.22866795 \pm 2.8 \cdot 10^{-5} \) | \(a_{279}= +1.97378513 \pm 2.8 \cdot 10^{-5} \) |
\(a_{280}= +0.88991815 \pm 2.0 \cdot 10^{-5} \) | \(a_{281}= +0.24229782 \pm 3.2 \cdot 10^{-5} \) | \(a_{282}= -0.97510804 \pm 3.2 \cdot 10^{-5} \) |
\(a_{283}= +0.41396302 \pm 2.4 \cdot 10^{-5} \) | \(a_{284}= +0.35728779 \pm 2.0 \cdot 10^{-5} \) | \(a_{285}= -2.90887569 \pm 1.5 \cdot 10^{-5} \) |
\(a_{286}= -0.12652187 \pm 5.6 \cdot 10^{-5} \) | \(a_{287}= +0.56084377 \pm 1.8 \cdot 10^{-5} \) | \(a_{288}= +2.29917701 \pm 2.3 \cdot 10^{-5} \) |
\(a_{289}= -0.99999966 \pm 1.7 \cdot 10^{-5} \) | \(a_{290}= -0.55895816 \pm 2.3 \cdot 10^{-5} \) | \(a_{291}= -1.89502753 \pm 1.7 \cdot 10^{-5} \) |
\(a_{292}= -0.58346031 \pm 3.4 \cdot 10^{-5} \) | \(a_{293}= +0.85448303 \pm 2.8 \cdot 10^{-5} \) | \(a_{294}= +0.26745228 \pm 3.1 \cdot 10^{-5} \) |
\(a_{295}= +2.28851749 \pm 3.5 \cdot 10^{-5} \) | \(a_{296}= -0.14720558 \pm 2.0 \cdot 10^{-5} \) | \(a_{297}= +0.77184883 \pm 2.6 \cdot 10^{-5} \) |
\(a_{298}= -0.76072620 \pm 2.0 \cdot 10^{-5} \) | \(a_{299}= -1.00521506 \pm 1.6 \cdot 10^{-5} \) | \(a_{300}= +1.86861319 \pm 3.2 \cdot 10^{-5} \) |
\(a_{301}= +0.53012903 \pm 2.8 \cdot 10^{-5} \) | \(a_{302}= +0.18692685 \pm 4.4 \cdot 10^{-5} \) | \(a_{303}= -1.68389375 \pm 2.5 \cdot 10^{-5} \) |
\(a_{304}= -0.56425742 \pm 1.7 \cdot 10^{-5} \) | \(a_{305}= -1.36234872 \pm 3.1 \cdot 10^{-5} \) | \(a_{306}= +0.00057038 \pm 2.7 \cdot 10^{-5} \) |
\(a_{307}= -0.77376918 \pm 3.2 \cdot 10^{-5} \) | \(a_{308}= +0.20177306 \pm 6.8 \cdot 10^{-5} \) | \(a_{309}= +1.39075143 \pm 3.0 \cdot 10^{-5} \) |
\(a_{310}= -0.49960523 \pm 2.6 \cdot 10^{-5} \) | \(a_{311}= -1.06531308 \pm 3.3 \cdot 10^{-5} \) | \(a_{312}= +1.41764129 \pm 1.4 \cdot 10^{-5} \) |
\(a_{313}= +1.59911601 \pm 2.7 \cdot 10^{-5} \) | \(a_{314}= +0.12425544 \pm 2.5 \cdot 10^{-5} \) | \(a_{315}= -2.85228570 \pm 2.0 \cdot 10^{-5} \) |
\(a_{316}= -0.83016681 \pm 2.6 \cdot 10^{-5} \) | \(a_{317}= +0.94579640 \pm 3.1 \cdot 10^{-5} \) | \(a_{318}= +0.90516284 \pm 2.0 \cdot 10^{-5} \) |
\(a_{319}= -0.27854987 \pm 2.6 \cdot 10^{-5} \) | \(a_{320}= +0.20940556 \pm 3.5 \cdot 10^{-5} \) | \(a_{321}= +2.43604017 \pm 3.2 \cdot 10^{-5} \) |
\(a_{322}= -0.31727179 \pm 2.3 \cdot 10^{-5} \) | \(a_{323}= -0.00062307 \pm 1.6 \cdot 10^{-5} \) | \(a_{324}= -1.93940936 \pm 4.1 \cdot 10^{-5} \) |
\(a_{325}= +1.25505491 \pm 1.1 \cdot 10^{-5} \) | \(a_{326}= -0.67454071 \pm 3.6 \cdot 10^{-5} \) | \(a_{327}= +1.59517885 \pm 2.1 \cdot 10^{-5} \) |
\(a_{328}= -0.52175540 \pm 1.3 \cdot 10^{-5} \) | \(a_{329}= +1.04446436 \pm 1.7 \cdot 10^{-5} \) | \(a_{330}= -0.33589450 \pm 9.0 \cdot 10^{-5} \) |
\(a_{331}= +0.88067827 \pm 2.1 \cdot 10^{-5} \) | \(a_{332}= +0.15861727 \pm 2.7 \cdot 10^{-5} \) | \(a_{333}= +0.47181011 \pm 2.7 \cdot 10^{-5} \) |
\(a_{334}= +0.45709653 \pm 3.6 \cdot 10^{-5} \) | \(a_{335}= +0.06861948 \pm 3.5 \cdot 10^{-5} \) | \(a_{336}= -0.78474890 \pm 1.9 \cdot 10^{-5} \) |
\(a_{337}= +0.34099135 \pm 2.9 \cdot 10^{-5} \) | \(a_{338}= +0.02674415 \pm 3.0 \cdot 10^{-5} \) | \(a_{339}= +1.07497899 \pm 2.9 \cdot 10^{-5} \) |
\(a_{340}= +0.00072948 \pm 2.7 \cdot 10^{-5} \) | \(a_{341}= -0.24897207 \pm 2.8 \cdot 10^{-5} \) | \(a_{342}= -1.03116543 \pm 2.5 \cdot 10^{-5} \) |
\(a_{343}= -1.08812547 \pm 2.4 \cdot 10^{-5} \) | \(a_{344}= -0.49318134 \pm 3.3 \cdot 10^{-5} \) | \(a_{345}= -2.66867864 \pm 2.1 \cdot 10^{-5} \) |
\(a_{346}= -0.62530644 \pm 3.5 \cdot 10^{-5} \) | \(a_{347}= -1.74773453 \pm 2.4 \cdot 10^{-5} \) | \(a_{348}= +1.42001575 \pm 3.1 \cdot 10^{-5} \) |
\(a_{349}= -0.13304612 \pm 2.8 \cdot 10^{-5} \) | \(a_{350}= +0.39612768 \pm 1.9 \cdot 10^{-5} \) | \(a_{351}= -2.64280898 \pm 1.2 \cdot 10^{-5} \) |
\(a_{352}= -0.29001681 \pm 2.4 \cdot 10^{-5} \) | \(a_{353}= -0.16805324 \pm 2.9 \cdot 10^{-5} \) | \(a_{354}= +1.15064934 \pm 3.5 \cdot 10^{-5} \) |
\(a_{355}= +0.63708707 \pm 2.0 \cdot 10^{-5} \) | \(a_{356}= +0.07324568 \pm 5.0 \cdot 10^{-5} \) | \(a_{357}= -0.00086654 \pm 1.7 \cdot 10^{-5} \) |
\(a_{358}= +0.80239830 \pm 4.5 \cdot 10^{-5} \) | \(a_{359}= +0.60831177 \pm 2.8 \cdot 10^{-5} \) | \(a_{360}= +2.65349378 \pm 3.0 \cdot 10^{-5} \) |
\(a_{361}= +0.12642265 \pm 2.4 \cdot 10^{-5} \) | \(a_{362}= +0.01926815 \pm 1.5 \cdot 10^{-5} \) | \(a_{363}= -0.16738886 \pm 2.7 \cdot 10^{-5} \) |
\(a_{364}= -0.69087058 \pm 2.5 \cdot 10^{-5} \) | \(a_{365}= -1.04037985 \pm 3.3 \cdot 10^{-5} \) | \(a_{366}= -0.68497866 \pm 1.3 \cdot 10^{-5} \) |
\(a_{367}= +1.37263378 \pm 2.9 \cdot 10^{-5} \) | \(a_{368}= -0.51766452 \pm 3.5 \cdot 10^{-5} \) | \(a_{369}= +1.67228352 \pm 2.5 \cdot 10^{-5} \) |
\(a_{370}= -0.11942475 \pm 3.5 \cdot 10^{-5} \) | \(a_{371}= -0.96954419 \pm 2.4 \cdot 10^{-5} \) | \(a_{372}= +1.26923150 \pm 2.1 \cdot 10^{-5} \) |
\(a_{373}= +1.14427450 \pm 1.9 \cdot 10^{-5} \) | \(a_{374}= -0.00007195 \pm 6.2 \cdot 10^{-5} \) | \(a_{375}= +0.59117998 \pm 2.4 \cdot 10^{-5} \) |
\(a_{376}= -0.97166974 \pm 2.7 \cdot 10^{-5} \) | \(a_{377}= +0.95375424 \pm 2.3 \cdot 10^{-5} \) | \(a_{378}= -0.83413864 \pm 1.6 \cdot 10^{-5} \) |
\(a_{379}= -0.44195504 \pm 2.5 \cdot 10^{-5} \) | \(a_{380}= -1.31880491 \pm 3.5 \cdot 10^{-5} \) | \(a_{381}= -0.98846634 \pm 2.1 \cdot 10^{-5} \) |
\(a_{382}= -0.67092448 \pm 2.4 \cdot 10^{-5} \) | \(a_{383}= -0.85686403 \pm 2.9 \cdot 10^{-5} \) | \(a_{384}= +1.87636985 \pm 2.0 \cdot 10^{-5} \) |
\(a_{385}= +0.35978561 \pm 5.7 \cdot 10^{-5} \) | \(a_{386}= -0.17190764 \pm 3.7 \cdot 10^{-5} \) | \(a_{387}= +1.58070052 \pm 2.7 \cdot 10^{-5} \) |
\(a_{388}= -0.85915380 \pm 3.9 \cdot 10^{-5} \) | \(a_{389}= +0.40489669 \pm 2.7 \cdot 10^{-5} \) | \(a_{390}= +1.15010215 \pm 1.8 \cdot 10^{-5} \) |
\(a_{391}= -0.00057162 \pm 2.9 \cdot 10^{-5} \) | \(a_{392}= +0.26650922 \pm 3.1 \cdot 10^{-5} \) | \(a_{393}= -1.08905292 \pm 3.7 \cdot 10^{-5} \) |
\(a_{394}= -0.11028778 \pm 3.0 \cdot 10^{-5} \) | \(a_{395}= -1.48028719 \pm 1.9 \cdot 10^{-5} \) | \(a_{396}= +0.60163235 \pm 7.0 \cdot 10^{-5} \) |
\(a_{397}= +0.97031346 \pm 3.5 \cdot 10^{-5} \) | \(a_{398}= -0.64658256 \pm 3.4 \cdot 10^{-5} \) | \(a_{399}= +1.56658805 \pm 1.6 \cdot 10^{-5} \) |
\(a_{400}= +0.64632676 \pm 2.2 \cdot 10^{-5} \) | \(a_{401}= -0.18477244 \pm 2.3 \cdot 10^{-5} \) | \(a_{402}= +0.03450136 \pm 2.7 \cdot 10^{-5} \) |
\(a_{403}= +0.85247992 \pm 1.9 \cdot 10^{-5} \) | \(a_{404}= -0.76343150 \pm 3.5 \cdot 10^{-5} \) | \(a_{405}= -3.45819994 \pm 2.7 \cdot 10^{-5} \) |
\(a_{406}= +0.30102942 \pm 1.7 \cdot 10^{-5} \) | \(a_{407}= -0.05951384 \pm 2.8 \cdot 10^{-5} \) | \(a_{408}= +0.00080615 \pm 4.8 \cdot 10^{-5} \) |
\(a_{409}= +1.54592705 \pm 3.0 \cdot 10^{-5} \) | \(a_{410}= -0.42328903 \pm 1.6 \cdot 10^{-5} \) | \(a_{411}= -1.40684915 \pm 2.7 \cdot 10^{-5} \) |
\(a_{412}= +0.63052877 \pm 3.1 \cdot 10^{-5} \) | \(a_{413}= -1.23249136 \pm 2.7 \cdot 10^{-5} \) | \(a_{414}= -0.94601813 \pm 2.9 \cdot 10^{-5} \) |
\(a_{415}= +0.28283366 \pm 2.2 \cdot 10^{-5} \) | \(a_{416}= +0.99301702 \pm 1.6 \cdot 10^{-5} \) | \(a_{417}= -1.03585692 \pm 2.0 \cdot 10^{-5} \) |
\(a_{418}= +0.13007059 \pm 5.4 \cdot 10^{-5} \) | \(a_{419}= -1.53106661 \pm 2.7 \cdot 10^{-5} \) | \(a_{420}= -1.83414637 \pm 1.8 \cdot 10^{-5} \) |
\(a_{421}= -0.44850102 \pm 2.0 \cdot 10^{-5} \) | \(a_{422}= +0.48678341 \pm 3.3 \cdot 10^{-5} \) | \(a_{423}= +3.11430854 \pm 3.5 \cdot 10^{-5} \) |
\(a_{424}= +0.90197118 \pm 2.3 \cdot 10^{-5} \) | \(a_{425}= +0.00071369 \pm 2.1 \cdot 10^{-5} \) | \(a_{426}= +0.32032257 \pm 2.3 \cdot 10^{-5} \) |
\(a_{427}= +0.73369901 \pm 2.0 \cdot 10^{-5} \) | \(a_{428}= +1.10443418 \pm 5.1 \cdot 10^{-5} \) | \(a_{429}= +0.57313915 \pm 5.0 \cdot 10^{-5} \) |
\(a_{430}= -0.40010751 \pm 2.9 \cdot 10^{-5} \) | \(a_{431}= -1.70395137 \pm 3.5 \cdot 10^{-5} \) | \(a_{432}= -1.36099079 \pm 1.9 \cdot 10^{-5} \) |
\(a_{433}= +0.71285502 \pm 3.3 \cdot 10^{-5} \) | \(a_{434}= +0.26906464 \pm 2.7 \cdot 10^{-5} \) | \(a_{435}= +2.53205873 \pm 1.5 \cdot 10^{-5} \) |
\(a_{436}= +0.72321058 \pm 2.1 \cdot 10^{-5} \) | \(a_{437}= +1.03340960 \pm 2.1 \cdot 10^{-5} \) | \(a_{438}= -0.52309514 \pm 1.3 \cdot 10^{-5} \) |
\(a_{439}= -1.55435596 \pm 3.4 \cdot 10^{-5} \) | \(a_{440}= -0.33471011 \pm 6.2 \cdot 10^{-5} \) | \(a_{441}= -0.85419141 \pm 2.5 \cdot 10^{-5} \) |
\(a_{442}= +0.00024635 \pm 1.3 \cdot 10^{-5} \) | \(a_{443}= -0.04577435 \pm 3.6 \cdot 10^{-5} \) | \(a_{444}= +0.30339485 \pm 1.9 \cdot 10^{-5} \) |
\(a_{445}= +0.13060586 \pm 1.9 \cdot 10^{-5} \) | \(a_{446}= -0.32150451 \pm 3.0 \cdot 10^{-5} \) | \(a_{447}= +3.44606010 \pm 1.0 \cdot 10^{-5} \) |
\(a_{448}= -0.11277630 \pm 2.6 \cdot 10^{-5} \) | \(a_{449}= -1.73278988 \pm 2.1 \cdot 10^{-5} \) | \(a_{450}= +1.18114497 \pm 3.2 \cdot 10^{-5} \) |
\(a_{451}= -0.21094084 \pm 1.8 \cdot 10^{-5} \) | \(a_{452}= +0.48736616 \pm 5.1 \cdot 10^{-5} \) | \(a_{453}= -0.84677136 \pm 3.5 \cdot 10^{-5} \) |
\(a_{454}= -0.07854026 \pm 3.6 \cdot 10^{-5} \) | \(a_{455}= -1.23190526 \pm 2.2 \cdot 10^{-5} \) | \(a_{456}= -1.45740367 \pm 2.1 \cdot 10^{-5} \) |
\(a_{457}= +0.73927914 \pm 2.3 \cdot 10^{-5} \) | \(a_{458}= -0.09327925 \pm 3.4 \cdot 10^{-5} \) | \(a_{459}= -0.00150285 \pm 2.3 \cdot 10^{-5} \) |
\(a_{460}= -1.20990612 \pm 2.1 \cdot 10^{-5} \) | \(a_{461}= +0.95672200 \pm 1.8 \cdot 10^{-5} \) | \(a_{462}= +0.18089749 \pm 9.0 \cdot 10^{-5} \) |
\(a_{463}= +0.58946934 \pm 2.2 \cdot 10^{-5} \) | \(a_{464}= +0.49116328 \pm 2.8 \cdot 10^{-5} \) | \(a_{465}= +2.26319228 \pm 2.4 \cdot 10^{-5} \) |
\(a_{466}= -0.10140275 \pm 2.5 \cdot 10^{-5} \) | \(a_{467}= -0.64303833 \pm 2.9 \cdot 10^{-5} \) | \(a_{468}= -2.05998807 \pm 2.2 \cdot 10^{-5} \) |
\(a_{469}= -0.03695533 \pm 3.1 \cdot 10^{-5} \) | \(a_{470}= -0.78829494 \pm 1.4 \cdot 10^{-5} \) | \(a_{471}= -0.56287229 \pm 2.2 \cdot 10^{-5} \) |
\(a_{472}= +1.14659207 \pm 3.9 \cdot 10^{-5} \) | \(a_{473}= -0.19938862 \pm 2.7 \cdot 10^{-5} \) | \(a_{474}= -0.74427724 \pm 2.5 \cdot 10^{-5} \) |
\(a_{475}= -1.29025703 \pm 2.1 \cdot 10^{-5} \) | \(a_{476}= -0.00039287 \pm 2.6 \cdot 10^{-5} \) | \(a_{477}= -2.89091697 \pm 2.0 \cdot 10^{-5} \) |
\(a_{478}= +0.27223121 \pm 3.4 \cdot 10^{-5} \) | \(a_{479}= +0.79501849 \pm 3.5 \cdot 10^{-5} \) | \(a_{480}= +2.63629489 \pm 1.9 \cdot 10^{-5} \) |
\(a_{481}= +0.20377529 \pm 2.9 \cdot 10^{-5} \) | \(a_{482}= +0.53732870 \pm 3.8 \cdot 10^{-5} \) | \(a_{483}= +1.43722886 \pm 1.9 \cdot 10^{-5} \) |
\(a_{484}= -0.07588954 \pm 3.9 \cdot 10^{-5} \) | \(a_{485}= -1.53197447 \pm 3.1 \cdot 10^{-5} \) | \(a_{486}= -0.69822986 \pm 2.8 \cdot 10^{-5} \) |
\(a_{487}= -0.95307898 \pm 1.6 \cdot 10^{-5} \) | \(a_{488}= -0.68256338 \pm 2.4 \cdot 10^{-5} \) | \(a_{489}= +3.05564321 \pm 2.4 \cdot 10^{-5} \) |
\(a_{490}= +0.21621325 \pm 2.7 \cdot 10^{-5} \) | \(a_{491}= -0.83991461 \pm 3.6 \cdot 10^{-5} \) | \(a_{492}= +1.07535257 \pm 1.6 \cdot 10^{-5} \) |
\(a_{493}= +0.00054236 \pm 2.5 \cdot 10^{-5} \) | \(a_{494}= -0.44536146 \pm 1.2 \cdot 10^{-5} \) | \(a_{495}= +1.07278278 \pm 5.9 \cdot 10^{-5} \) |
\(a_{496}= +0.43900915 \pm 2.3 \cdot 10^{-5} \) | \(a_{497}= -0.34310610 \pm 2.4 \cdot 10^{-5} \) | \(a_{498}= +0.14220663 \pm 3.3 \cdot 10^{-5} \) |
\(a_{499}= -0.36782374 \pm 3.2 \cdot 10^{-5} \) | \(a_{500}= +0.26802488 \pm 2.8 \cdot 10^{-5} \) | \(a_{501}= -2.07062952 \pm 2.8 \cdot 10^{-5} \) |
\(a_{502}= -0.02049760 \pm 3.3 \cdot 10^{-5} \) | \(a_{503}= -1.18312500 \pm 3.6 \cdot 10^{-5} \) | \(a_{504}= -1.42905098 \pm 1.2 \cdot 10^{-5} \) |
\(a_{505}= -1.36129011 \pm 1.4 \cdot 10^{-5} \) | \(a_{506}= +0.11933016 \pm 6.0 \cdot 10^{-5} \) | \(a_{507}= -0.12114994 \pm 2.5 \cdot 10^{-5} \) |
\(a_{508}= -0.44814368 \pm 3.6 \cdot 10^{-5} \) | \(a_{509}= +1.05898646 \pm 2.9 \cdot 10^{-5} \) | \(a_{510}= +0.00065401 \pm 1.5 \cdot 10^{-5} \) |
\(a_{511}= +0.56030123 \pm 3.0 \cdot 10^{-5} \) | \(a_{512}= +0.90787671 \pm 3.2 \cdot 10^{-5} \) | \(a_{513}= +2.71693519 \pm 1.8 \cdot 10^{-5} \) |
\(a_{514}= -0.08085184 \pm 3.1 \cdot 10^{-5} \) | \(a_{515}= +1.12430857 \pm 2.7 \cdot 10^{-5} \) | \(a_{516}= +1.01646063 \pm 3.8 \cdot 10^{-5} \) |
\(a_{517}= -0.39283701 \pm 2.3 \cdot 10^{-5} \) | \(a_{518}= +0.06431674 \pm 2.0 \cdot 10^{-5} \) | \(a_{519}= +2.83261388 \pm 2.9 \cdot 10^{-5} \) |
\(a_{520}= +1.14604681 \pm 1.0 \cdot 10^{-5} \) | \(a_{521}= -0.58097010 \pm 3.3 \cdot 10^{-5} \) | \(a_{522}= +0.89758783 \pm 1.9 \cdot 10^{-5} \) |
\(a_{523}= -0.69239868 \pm 2.2 \cdot 10^{-5} \) | \(a_{524}= -0.49374689 \pm 4.1 \cdot 10^{-5} \) | \(a_{525}= -1.79444301 \pm 1.1 \cdot 10^{-5} \) |
\(a_{526}= +0.42010611 \pm 3.7 \cdot 10^{-5} \) | \(a_{527}= +0.00048477 \pm 2.2 \cdot 10^{-5} \) | \(a_{528}= +0.29515455 \pm 5.7 \cdot 10^{-5} \) |
\(a_{529}= -0.05192300 \pm 2.7 \cdot 10^{-5} \) | \(a_{530}= +0.73174999 \pm 3.4 \cdot 10^{-5} \) | \(a_{531}= -3.67495388 \pm 3.5 \cdot 10^{-5} \) |
\(a_{532}= +0.71024830 \pm 2.0 \cdot 10^{-5} \) | \(a_{533}= +0.72226105 \pm 1.5 \cdot 10^{-5} \) | \(a_{534}= +0.06566764 \pm 4.8 \cdot 10^{-5} \) |
\(a_{535}= +1.96933885 \pm 3.5 \cdot 10^{-5} \) | \(a_{536}= +0.03437970 \pm 2.9 \cdot 10^{-5} \) | \(a_{537}= -3.63483311 \pm 2.2 \cdot 10^{-5} \) |
\(a_{538}= +0.07618844 \pm 4.1 \cdot 10^{-5} \) | \(a_{539}= +0.10774719 \pm 2.5 \cdot 10^{-5} \) | \(a_{540}= -3.18096185 \pm 1.6 \cdot 10^{-5} \) |
\(a_{541}= -0.35845763 \pm 2.1 \cdot 10^{-5} \) | \(a_{542}= -0.61316223 \pm 2.3 \cdot 10^{-5} \) | \(a_{543}= -0.08728399 \pm 2.6 \cdot 10^{-5} \) |
\(a_{544}= +0.00056468 \pm 2.1 \cdot 10^{-5} \) | \(a_{545}= +1.28957138 \pm 2.1 \cdot 10^{-5} \) | \(a_{546}= -0.61939267 \pm 2.5 \cdot 10^{-5} \) |
\(a_{547}= +0.17749260 \pm 2.5 \cdot 10^{-5} \) | \(a_{548}= -0.63782704 \pm 2.8 \cdot 10^{-5} \) | \(a_{549}= +2.18769082 \pm 2.1 \cdot 10^{-5} \) |
\(a_{550}= -0.14898892 \pm 5.7 \cdot 10^{-5} \) | \(a_{551}= -0.98050539 \pm 1.6 \cdot 10^{-5} \) | \(a_{552}= -1.33706025 \pm 5.4 \cdot 10^{-5} \) |
\(a_{553}= +0.79721530 \pm 2.7 \cdot 10^{-5} \) | \(a_{554}= -0.61951898 \pm 4.1 \cdot 10^{-5} \) | \(a_{555}= +0.54098948 \pm 1.2 \cdot 10^{-5} \) |
\(a_{556}= -0.46962928 \pm 3.0 \cdot 10^{-5} \) | \(a_{557}= -0.25442875 \pm 2.4 \cdot 10^{-5} \) | \(a_{558}= +0.80227754 \pm 2.5 \cdot 10^{-5} \) |
\(a_{559}= +0.68270625 \pm 1.6 \cdot 10^{-5} \) | \(a_{560}= -0.63440518 \pm 1.8 \cdot 10^{-5} \) | \(a_{561}= +0.00032592 \pm 5.6 \cdot 10^{-5} \) |
\(a_{562}= +0.09848595 \pm 4.0 \cdot 10^{-5} \) | \(a_{563}= -1.90215698 \pm 2.9 \cdot 10^{-5} \) | \(a_{564}= +2.00263869 \pm 3.1 \cdot 10^{-5} \) |
\(a_{565}= +0.86903243 \pm 2.6 \cdot 10^{-5} \) | \(a_{566}= +0.16826210 \pm 2.5 \cdot 10^{-5} \) | \(a_{567}= +1.86242909 \pm 2.3 \cdot 10^{-5} \) |
\(a_{568}= +0.31919309 \pm 2.1 \cdot 10^{-5} \) | \(a_{569}= -0.06375630 \pm 2.7 \cdot 10^{-5} \) | \(a_{570}= -1.18236053 \pm 1.4 \cdot 10^{-5} \) |
\(a_{571}= -0.41380741 \pm 2.6 \cdot 10^{-5} \) | \(a_{572}= +0.25984566 \pm 6.2 \cdot 10^{-5} \) | \(a_{573}= +3.03926181 \pm 3.0 \cdot 10^{-5} \) |
\(a_{574}= +0.22796421 \pm 2.0 \cdot 10^{-5} \) | \(a_{575}= -1.18371554 \pm 2.1 \cdot 10^{-5} \) | \(a_{576}= -0.33626825 \pm 3.4 \cdot 10^{-5} \) |
\(a_{577}= +1.04747458 \pm 2.4 \cdot 10^{-5} \) | \(a_{578}= -0.40646636 \pm 2.6 \cdot 10^{-5} \) | \(a_{579}= +0.77873492 \pm 2.1 \cdot 10^{-5} \) |
\(a_{580}= +1.14796637 \pm 3.0 \cdot 10^{-5} \) | \(a_{581}= -0.15232134 \pm 2.4 \cdot 10^{-5} \) | \(a_{582}= -0.77026521 \pm 2.5 \cdot 10^{-5} \) |
\(a_{583}= +0.36465853 \pm 2.2 \cdot 10^{-5} \) | \(a_{584}= -0.52125067 \pm 2.5 \cdot 10^{-5} \) | \(a_{585}= -3.67320628 \pm 1.7 \cdot 10^{-5} \) |
\(a_{586}= +0.34731873 \pm 3.3 \cdot 10^{-5} \) | \(a_{587}= -0.72005354 \pm 2.4 \cdot 10^{-5} \) | \(a_{588}= -0.54928301 \pm 3.2 \cdot 10^{-5} \) |
\(a_{589}= -0.87639050 \pm 2.4 \cdot 10^{-5} \) | \(a_{590}= +0.93020570 \pm 4.8 \cdot 10^{-5} \) | \(a_{591}= +0.49959937 \pm 2.5 \cdot 10^{-5} \) |
\(a_{592}= +0.10493997 \pm 2.6 \cdot 10^{-5} \) | \(a_{593}= +0.00453834 \pm 3.4 \cdot 10^{-5} \) | \(a_{594}= +0.31373069 \pm 6.0 \cdot 10^{-5} \) |
\(a_{595}= -0.00070053 \pm 2.2 \cdot 10^{-5} \) | \(a_{596}= +1.56234967 \pm 2.6 \cdot 10^{-5} \) | \(a_{597}= +2.92899386 \pm 2.8 \cdot 10^{-5} \) |
\(a_{598}= -0.40858625 \pm 2.0 \cdot 10^{-5} \) | \(a_{599}= -1.32945072 \pm 2.9 \cdot 10^{-5} \) | \(a_{600}= +1.66937813 \pm 3.1 \cdot 10^{-5} \) |
\(a_{601}= -0.08841926 \pm 2.6 \cdot 10^{-5} \) | \(a_{602}= +0.21547969 \pm 2.1 \cdot 10^{-5} \) | \(a_{603}= -0.11019074 \pm 3.1 \cdot 10^{-5} \) |
\(a_{604}= -0.38390304 \pm 5.4 \cdot 10^{-5} \) | \(a_{605}= -0.13532018 \pm 2.8 \cdot 10^{-5} \) | \(a_{606}= -0.68444640 \pm 3.8 \cdot 10^{-5} \) |
\(a_{607}= -1.73063385 \pm 2.8 \cdot 10^{-5} \) | \(a_{608}= -1.02086943 \pm 2.1 \cdot 10^{-5} \) | \(a_{609}= -1.36365159 \pm 1.7 \cdot 10^{-5} \) |
\(a_{610}= -0.55374912 \pm 4.9 \cdot 10^{-5} \) | \(a_{611}= +1.34507320 \pm 1.6 \cdot 10^{-5} \) | \(a_{612}= -0.00117142 \pm 3.2 \cdot 10^{-5} \) |
\(a_{613}= -1.26690159 \pm 2.3 \cdot 10^{-5} \) | \(a_{614}= -0.31451125 \pm 3.6 \cdot 10^{-5} \) | \(a_{615}= +1.91748285 \pm 2.0 \cdot 10^{-5} \) |
\(a_{616}= +0.18025963 \pm 6.2 \cdot 10^{-5} \) | \(a_{617}= +1.22725134 \pm 3.1 \cdot 10^{-5} \) | \(a_{618}= +0.56529387 \pm 3.0 \cdot 10^{-5} \) |
\(a_{619}= -1.11071236 \pm 2.3 \cdot 10^{-5} \) | \(a_{620}= +1.02606966 \pm 2.6 \cdot 10^{-5} \) | \(a_{621}= +2.49258741 \pm 2.5 \cdot 10^{-5} \) |
\(a_{622}= -0.43301408 \pm 3.7 \cdot 10^{-5} \) | \(a_{623}= -0.07033837 \pm 2.2 \cdot 10^{-5} \) | \(a_{624}= -1.01060865 \pm 1.4 \cdot 10^{-5} \) |
\(a_{625}= -0.73777700 \pm 2.1 \cdot 10^{-5} \) | \(a_{626}= +0.64998709 \pm 3.5 \cdot 10^{-5} \) | \(a_{627}= -0.58921471 \pm 4.8 \cdot 10^{-5} \) |
\(a_{628}= -0.25519095 \pm 2.6 \cdot 10^{-5} \) | \(a_{629}= +0.00011588 \pm 2.8 \cdot 10^{-5} \) | \(a_{630}= -1.15935859 \pm 2.2 \cdot 10^{-5} \) |
\(a_{631}= +0.33452218 \pm 3.0 \cdot 10^{-5} \) | \(a_{632}= -0.74165286 \pm 2.3 \cdot 10^{-5} \) | \(a_{633}= -2.20510994 \pm 3.2 \cdot 10^{-5} \) |
\(a_{634}= +0.38443455 \pm 4.6 \cdot 10^{-5} \) | \(a_{635}= -0.79909404 \pm 3.0 \cdot 10^{-5} \) | \(a_{636}= -1.85898800 \pm 1.9 \cdot 10^{-5} \) |
\(a_{637}= -0.36892619 \pm 1.4 \cdot 10^{-5} \) | \(a_{638}= -0.11322119 \pm 6.0 \cdot 10^{-5} \) | \(a_{639}= -1.02304902 \pm 2.5 \cdot 10^{-5} \) |
\(a_{640}= +1.51689127 \pm 3.5 \cdot 10^{-5} \) | \(a_{641}= -1.35097791 \pm 3.2 \cdot 10^{-5} \) | \(a_{642}= +0.99016873 \pm 4.3 \cdot 10^{-5} \) |
\(a_{643}= +1.27817627 \pm 2.5 \cdot 10^{-5} \) | \(a_{644}= +0.65160037 \pm 2.3 \cdot 10^{-5} \) | \(a_{645}= +1.81247146 \pm 2.1 \cdot 10^{-5} \) |
\(a_{646}= -0.00025326 \pm 2.2 \cdot 10^{-5} \) | \(a_{647}= +0.45423020 \pm 3.4 \cdot 10^{-5} \) | \(a_{648}= -1.73262588 \pm 3.8 \cdot 10^{-5} \) |
\(a_{649}= +0.46355648 \pm 3.2 \cdot 10^{-5} \) | \(a_{650}= +0.51013778 \pm 1.1 \cdot 10^{-5} \) | \(a_{651}= -1.21885235 \pm 2.8 \cdot 10^{-5} \) |
\(a_{652}= +1.38534530 \pm 3.7 \cdot 10^{-5} \) | \(a_{653}= +0.82815987 \pm 2.4 \cdot 10^{-5} \) | \(a_{654}= +0.64838677 \pm 2.3 \cdot 10^{-5} \) |
\(a_{655}= -0.88041004 \pm 2.4 \cdot 10^{-5} \) | \(a_{656}= +0.37194918 \pm 1.5 \cdot 10^{-5} \) | \(a_{657}= +1.67066582 \pm 2.4 \cdot 10^{-5} \) |
\(a_{658}= +0.42453978 \pm 1.4 \cdot 10^{-5} \) | \(a_{659}= +0.96891987 \pm 2.7 \cdot 10^{-5} \) | \(a_{660}= +0.68984697 \pm 9.6 \cdot 10^{-5} \) |
\(a_{661}= -1.15739812 \pm 3.2 \cdot 10^{-5} \) | \(a_{662}= +0.35796621 \pm 2.5 \cdot 10^{-5} \) | \(a_{663}= -0.00111595 \pm 1.1 \cdot 10^{-5} \) |
\(a_{664}= +0.14170520 \pm 2.9 \cdot 10^{-5} \) | \(a_{665}= +1.26645807 \pm 1.8 \cdot 10^{-5} \) | \(a_{666}= +0.19177501 \pm 2.5 \cdot 10^{-5} \) |
\(a_{667}= -0.89954129 \pm 2.4 \cdot 10^{-5} \) | \(a_{668}= -0.93876695 \pm 4.7 \cdot 10^{-5} \) | \(a_{669}= +1.45640295 \pm 3.1 \cdot 10^{-5} \) |
\(a_{670}= +0.02789152 \pm 4.9 \cdot 10^{-5} \) | \(a_{671}= -0.27595401 \pm 2.3 \cdot 10^{-5} \) | \(a_{672}= -1.41978844 \pm 2.3 \cdot 10^{-5} \) |
\(a_{673}= +1.19237695 \pm 2.1 \cdot 10^{-5} \) | \(a_{674}= +0.13860156 \pm 2.1 \cdot 10^{-5} \) | \(a_{675}= -3.11210427 \pm 1.1 \cdot 10^{-5} \) |
\(a_{676}= -0.05492608 \pm 3.4 \cdot 10^{-5} \) | \(a_{677}= -0.85438337 \pm 3.1 \cdot 10^{-5} \) | \(a_{678}= +0.43694295 \pm 4.5 \cdot 10^{-5} \) |
\(a_{679}= +0.82505172 \pm 1.9 \cdot 10^{-5} \) | \(a_{680}= +0.00065171 \pm 2.0 \cdot 10^{-5} \) | \(a_{681}= +0.35578432 \pm 2.4 \cdot 10^{-5} \) |
\(a_{682}= -0.10119881 \pm 6.2 \cdot 10^{-5} \) | \(a_{683}= -0.96794091 \pm 2.3 \cdot 10^{-5} \) | \(a_{684}= +2.11776717 \pm 2.4 \cdot 10^{-5} \) |
\(a_{685}= -1.13732226 \pm 2.7 \cdot 10^{-5} \) | \(a_{686}= -0.44228656 \pm 2.6 \cdot 10^{-5} \) | \(a_{687}= +0.42255138 \pm 1.5 \cdot 10^{-5} \) |
\(a_{688}= +0.35157930 \pm 2.6 \cdot 10^{-5} \) | \(a_{689}= -1.24859015 \pm 1.4 \cdot 10^{-5} \) | \(a_{690}= -1.08472847 \pm 2.0 \cdot 10^{-5} \) |
\(a_{691}= +0.60727486 \pm 2.9 \cdot 10^{-5} \) | \(a_{692}= +1.28422988 \pm 3.7 \cdot 10^{-5} \) | \(a_{693}= -0.57775198 \pm 5.9 \cdot 10^{-5} \) |
\(a_{694}= -0.71039554 \pm 2.9 \cdot 10^{-5} \) | \(a_{695}= -0.83740544 \pm 2.4 \cdot 10^{-5} \) | \(a_{696}= +1.26861100 \pm 3.0 \cdot 10^{-5} \) |
\(a_{697}= +0.00041072 \pm 1.6 \cdot 10^{-5} \) | \(a_{698}= -0.05407879 \pm 2.8 \cdot 10^{-5} \) | \(a_{699}= +0.45935051 \pm 3.6 \cdot 10^{-5} \) |
\(a_{700}= -0.81355152 \pm 2.0 \cdot 10^{-5} \) | \(a_{701}= +0.76571782 \pm 3.4 \cdot 10^{-5} \) | \(a_{702}= -1.07421332 \pm 1.1 \cdot 10^{-5} \) |
\(a_{703}= -0.20949084 \pm 1.7 \cdot 10^{-5} \) | \(a_{704}= +0.04241668 \pm 3.0 \cdot 10^{-5} \) | \(a_{705}= +3.57094544 \pm 2.5 \cdot 10^{-5} \) |
\(a_{706}= -0.06830801 \pm 2.5 \cdot 10^{-5} \) | \(a_{707}= +0.73312890 \pm 1.8 \cdot 10^{-5} \) | \(a_{708}= -2.36315855 \pm 4.0 \cdot 10^{-5} \) |
\(a_{709}= -1.30128441 \pm 2.4 \cdot 10^{-5} \) | \(a_{710}= +0.25895455 \pm 1.3 \cdot 10^{-5} \) | \(a_{711}= +2.37707911 \pm 1.2 \cdot 10^{-5} \) |
\(a_{712}= +0.06543609 \pm 4.5 \cdot 10^{-5} \) | \(a_{713}= -0.80402357 \pm 2.6 \cdot 10^{-5} \) | \(a_{714}= -0.00035222 \pm 1.8 \cdot 10^{-5} \) |
\(a_{715}= +0.46333604 \pm 5.1 \cdot 10^{-5} \) | \(a_{716}= -1.64793420 \pm 4.8 \cdot 10^{-5} \) | \(a_{717}= -1.23319680 \pm 2.0 \cdot 10^{-5} \) |
\(a_{718}= +0.24725836 \pm 3.5 \cdot 10^{-5} \) | \(a_{719}= +0.34939054 \pm 3.2 \cdot 10^{-5} \) | \(a_{720}= -1.89162363 \pm 1.6 \cdot 10^{-5} \) |
\(a_{721}= -0.60550142 \pm 3.2 \cdot 10^{-5} \) | \(a_{722}= +0.05138657 \pm 2.4 \cdot 10^{-5} \) | \(a_{723}= -2.43407813 \pm 4.0 \cdot 10^{-5} \) |
\(a_{724}= -0.03957218 \pm 2.1 \cdot 10^{-5} \) | \(a_{725}= +1.12311660 \pm 1.9 \cdot 10^{-5} \) | \(a_{726}= -0.06803796 \pm 6.1 \cdot 10^{-5} \) |
\(a_{727}= +0.86615827 \pm 3.1 \cdot 10^{-5} \) | \(a_{728}= -0.61720865 \pm 1.3 \cdot 10^{-5} \) | \(a_{729}= +0.83970992 \pm 2.4 \cdot 10^{-5} \) |
\(a_{730}= -0.42287956 \pm 4.4 \cdot 10^{-5} \) | \(a_{731}= +0.00038822 \pm 2.6 \cdot 10^{-5} \) | \(a_{732}= +1.40678235 \pm 1.1 \cdot 10^{-5} \) |
\(a_{733}= +1.25164672 \pm 3.8 \cdot 10^{-5} \) | \(a_{734}= +0.55792965 \pm 3.1 \cdot 10^{-5} \) | \(a_{735}= -0.97943762 \pm 2.3 \cdot 10^{-5} \) |
\(a_{736}= -0.93657231 \pm 2.5 \cdot 10^{-5} \) | \(a_{737}= +0.01389939 \pm 3.3 \cdot 10^{-5} \) | \(a_{738}= +0.67972723 \pm 2.2 \cdot 10^{-5} \) |
\(a_{739}= -0.93425090 \pm 3.5 \cdot 10^{-5} \) | \(a_{740}= +0.24526988 \pm 3.9 \cdot 10^{-5} \) | \(a_{741}= +2.01747008 \pm 1.1 \cdot 10^{-5} \) |
\(a_{742}= -0.39408724 \pm 2.2 \cdot 10^{-5} \) | \(a_{743}= -1.29389914 \pm 2.5 \cdot 10^{-5} \) | \(a_{744}= +1.13390364 \pm 2.4 \cdot 10^{-5} \) |
\(a_{745}= +2.78585721 \pm 2.3 \cdot 10^{-5} \) | \(a_{746}= +0.46510925 \pm 1.5 \cdot 10^{-5} \) | \(a_{747}= -0.45418078 \pm 4.0 \cdot 10^{-5} \) |
\(a_{748}= +0.00014776 \pm 6.8 \cdot 10^{-5} \) | \(a_{749}= -1.06059627 \pm 2.0 \cdot 10^{-5} \) | \(a_{750}= +0.24029486 \pm 2.4 \cdot 10^{-5} \) |
\(a_{751}= -0.42645292 \pm 3.0 \cdot 10^{-5} \) | \(a_{752}= +0.69268428 \pm 2.3 \cdot 10^{-5} \) | \(a_{753}= +0.09285334 \pm 3.2 \cdot 10^{-5} \) |
\(a_{754}= +0.38766915 \pm 1.3 \cdot 10^{-5} \) | \(a_{755}= -0.68454526 \pm 3.1 \cdot 10^{-5} \) | \(a_{756}= +1.71312127 \pm 1.8 \cdot 10^{-5} \) |
\(a_{757}= +0.92575814 \pm 2.5 \cdot 10^{-5} \) | \(a_{758}= -0.17963992 \pm 2.9 \cdot 10^{-5} \) | \(a_{759}= -0.54056099 \pm 5.4 \cdot 10^{-5} \) |
\(a_{760}= -1.17819144 \pm 2.3 \cdot 10^{-5} \) | \(a_{761}= +0.58543648 \pm 2.9 \cdot 10^{-5} \) | \(a_{762}= -0.40177846 \pm 2.5 \cdot 10^{-5} \) |
\(a_{763}= -0.69450445 \pm 2.4 \cdot 10^{-5} \) | \(a_{764}= +1.37791842 \pm 2.5 \cdot 10^{-5} \) | \(a_{765}= -0.00208879 \pm 2.4 \cdot 10^{-5} \) |
\(a_{766}= -0.34828653 \pm 4.2 \cdot 10^{-5} \) | \(a_{767}= -1.58721653 \pm 2.0 \cdot 10^{-5} \) | \(a_{768}= +0.50365022 \pm 3.3 \cdot 10^{-5} \) |
\(a_{769}= +1.02008309 \pm 2.4 \cdot 10^{-5} \) | \(a_{770}= +0.14624080 \pm 9.1 \cdot 10^{-5} \) | \(a_{771}= +0.36625567 \pm 1.5 \cdot 10^{-5} \) |
\(a_{772}= +0.35305717 \pm 4.3 \cdot 10^{-5} \) | \(a_{773}= +0.15421581 \pm 2.9 \cdot 10^{-5} \) | \(a_{774}= +0.64250181 \pm 2.8 \cdot 10^{-5} \) |
\(a_{775}= +1.00385855 \pm 1.3 \cdot 10^{-5} \) | \(a_{776}= -0.76754920 \pm 3.1 \cdot 10^{-5} \) | \(a_{777}= -0.29135231 \pm 1.7 \cdot 10^{-5} \) |
\(a_{778}= +0.16457694 \pm 1.8 \cdot 10^{-5} \) | \(a_{779}= -0.74251922 \pm 1.5 \cdot 10^{-5} \) | \(a_{780}= -2.36203476 \pm 1.6 \cdot 10^{-5} \) |
\(a_{781}= +0.12904679 \pm 2.1 \cdot 10^{-5} \) | \(a_{782}= -0.00023234 \pm 4.8 \cdot 10^{-5} \) | \(a_{783}= -2.36498228 \pm 1.7 \cdot 10^{-5} \) |
\(a_{784}= -0.18998919 \pm 2.2 \cdot 10^{-5} \) | \(a_{785}= -0.45503612 \pm 2.5 \cdot 10^{-5} \) | \(a_{786}= -0.44266353 \pm 4.4 \cdot 10^{-5} \) |
\(a_{787}= +1.22417764 \pm 3.7 \cdot 10^{-5} \) | \(a_{788}= +0.22650473 \pm 3.4 \cdot 10^{-5} \) | \(a_{789}= -1.90306436 \pm 3.3 \cdot 10^{-5} \) |
\(a_{790}= -0.60168715 \pm 1.3 \cdot 10^{-5} \) | \(a_{791}= -0.46802131 \pm 3.4 \cdot 10^{-5} \) | \(a_{792}= +0.53748518 \pm 6.4 \cdot 10^{-5} \) |
\(a_{793}= +0.94486602 \pm 1.3 \cdot 10^{-5} \) | \(a_{794}= +0.39439992 \pm 3.6 \cdot 10^{-5} \) | \(a_{795}= -3.31479899 \pm 1.6 \cdot 10^{-5} \) |
\(a_{796}= +1.32792594 \pm 3.4 \cdot 10^{-5} \) | \(a_{797}= +1.14036118 \pm 2.5 \cdot 10^{-5} \) | \(a_{798}= +0.63676557 \pm 1.9 \cdot 10^{-5} \) |
\(a_{799}= +0.00076488 \pm 2.3 \cdot 10^{-5} \) | \(a_{800}= +1.16935145 \pm 2.0 \cdot 10^{-5} \) | \(a_{801}= -0.20972988 \pm 2.3 \cdot 10^{-5} \) |
\(a_{802}= -0.07510381 \pm 3.1 \cdot 10^{-5} \) | \(a_{803}= -0.21073678 \pm 2.7 \cdot 10^{-5} \) | \(a_{804}= -0.07085754 \pm 2.8 \cdot 10^{-5} \) |
\(a_{805}= +1.16188176 \pm 1.9 \cdot 10^{-5} \) | \(a_{806}= +0.34650453 \pm 1.7 \cdot 10^{-5} \) | \(a_{807}= -0.34513068 \pm 2.5 \cdot 10^{-5} \) |
\(a_{808}= -0.68203300 \pm 3.3 \cdot 10^{-5} \) | \(a_{809}= -1.49087136 \pm 3.5 \cdot 10^{-5} \) | \(a_{810}= -1.40564243 \pm 3.4 \cdot 10^{-5} \) |
\(a_{811}= -1.96353218 \pm 2.7 \cdot 10^{-5} \) | \(a_{812}= -0.61824244 \pm 2.7 \cdot 10^{-5} \) | \(a_{813}= +2.77760105 \pm 3.7 \cdot 10^{-5} \) |
\(a_{814}= -0.02419038 \pm 6.2 \cdot 10^{-5} \) | \(a_{815}= +2.47023714 \pm 3.3 \cdot 10^{-5} \) | \(a_{816}= -0.00057469 \pm 3.8 \cdot 10^{-5} \) |
\(a_{817}= -0.70185498 \pm 1.8 \cdot 10^{-5} \) | \(a_{818}= +0.62836756 \pm 4.2 \cdot 10^{-5} \) | \(a_{819}= +1.97822172 \pm 2.3 \cdot 10^{-5} \) |
\(a_{820}= +0.86933443 \pm 1.4 \cdot 10^{-5} \) | \(a_{821}= -1.89805665 \pm 3.7 \cdot 10^{-5} \) | \(a_{822}= -0.57183705 \pm 2.5 \cdot 10^{-5} \) |
\(a_{823}= -0.17754145 \pm 2.5 \cdot 10^{-5} \) | \(a_{824}= +0.56330061 \pm 2.4 \cdot 10^{-5} \) | \(a_{825}= +0.67491400 \pm 5.1 \cdot 10^{-5} \) |
\(a_{826}= -0.50096645 \pm 2.0 \cdot 10^{-5} \) | \(a_{827}= +0.09615525 \pm 2.9 \cdot 10^{-5} \) | \(a_{828}= +1.94289499 \pm 2.9 \cdot 10^{-5} \) |
\(a_{829}= +1.24559161 \pm 2.1 \cdot 10^{-5} \) | \(a_{830}= +0.11496241 \pm 1.6 \cdot 10^{-5} \) | \(a_{831}= +2.80639690 \pm 3.7 \cdot 10^{-5} \) |
\(a_{832}= -0.14523462 \pm 2.3 \cdot 10^{-5} \) | \(a_{833}= -0.00020979 \pm 2.3 \cdot 10^{-5} \) | \(a_{834}= -0.42104114 \pm 2.7 \cdot 10^{-5} \) |
\(a_{835}= -1.67393429 \pm 2.8 \cdot 10^{-5} \) | \(a_{836}= -0.26713388 \pm 6.0 \cdot 10^{-5} \) | \(a_{837}= -2.11385683 \pm 3.2 \cdot 10^{-5} \) |
\(a_{838}= -0.62232729 \pm 2.7 \cdot 10^{-5} \) | \(a_{839}= +1.48720450 \pm 2.9 \cdot 10^{-5} \) | \(a_{840}= -1.63858623 \pm 1.4 \cdot 10^{-5} \) |
\(a_{841}= -0.14650968 \pm 1.9 \cdot 10^{-5} \) | \(a_{842}= -0.18230064 \pm 2.2 \cdot 10^{-5} \) | \(a_{843}= -0.44613751 \pm 2.5 \cdot 10^{-5} \) |
\(a_{844}= -0.99973671 \pm 3.5 \cdot 10^{-5} \) | \(a_{845}= -0.09793980 \pm 2.4 \cdot 10^{-5} \) | \(a_{846}= +1.26586210 \pm 2.9 \cdot 10^{-5} \) |
\(a_{847}= +0.07287729 \pm 2.8 \cdot 10^{-5} \) | \(a_{848}= -0.64299755 \pm 1.6 \cdot 10^{-5} \) | \(a_{849}= -0.76222077 \pm 2.7 \cdot 10^{-5} \) |
\(a_{850}= +0.00029009 \pm 3.4 \cdot 10^{-5} \) | \(a_{851}= -0.19219237 \pm 1.5 \cdot 10^{-5} \) | \(a_{852}= -0.65786596 \pm 2.2 \cdot 10^{-5} \) |
\(a_{853}= -1.28572350 \pm 3.5 \cdot 10^{-5} \) | \(a_{854}= +0.29822407 \pm 2.1 \cdot 10^{-5} \) | \(a_{855}= +3.77623335 \pm 2.3 \cdot 10^{-5} \) |
\(a_{856}= +0.98667732 \pm 4.4 \cdot 10^{-5} \) | \(a_{857}= -0.31010135 \pm 2.7 \cdot 10^{-5} \) | \(a_{858}= +0.23296187 \pm 8.4 \cdot 10^{-5} \) |
\(a_{859}= -0.55223465 \pm 3.1 \cdot 10^{-5} \) | \(a_{860}= +0.82172513 \pm 3.1 \cdot 10^{-5} \) | \(a_{861}= -1.03266899 \pm 1.9 \cdot 10^{-5} \) |
\(a_{862}= -0.69259915 \pm 4.0 \cdot 10^{-5} \) | \(a_{863}= +0.43803656 \pm 2.7 \cdot 10^{-5} \) | \(a_{864}= -2.46234048 \pm 2.1 \cdot 10^{-5} \) |
\(a_{865}= +2.28993620 \pm 3.1 \cdot 10^{-5} \) | \(a_{866}= +0.28975169 \pm 4.1 \cdot 10^{-5} \) | \(a_{867}= +1.84127682 \pm 1.8 \cdot 10^{-5} \) |
\(a_{868}= -0.55259442 \pm 3.0 \cdot 10^{-5} \) | \(a_{869}= -0.29984333 \pm 2.2 \cdot 10^{-5} \) | \(a_{870}= +1.02919706 \pm 1.1 \cdot 10^{-5} \) |
\(a_{871}= -0.04759150 \pm 3.0 \cdot 10^{-5} \) | \(a_{872}= +0.64610051 \pm 1.6 \cdot 10^{-5} \) | \(a_{873}= +2.46007974 \pm 2.1 \cdot 10^{-5} \) |
\(a_{874}= +0.42004638 \pm 2.9 \cdot 10^{-5} \) | \(a_{875}= -0.25738626 \pm 2.7 \cdot 10^{-5} \) | \(a_{876}= +1.07431232 \pm 1.4 \cdot 10^{-5} \) |
\(a_{877}= -1.80855277 \pm 2.9 \cdot 10^{-5} \) | \(a_{878}= -0.63179363 \pm 4.4 \cdot 10^{-5} \) | \(a_{879}= -1.57334034 \pm 2.6 \cdot 10^{-5} \) |
\(a_{880}= +0.23860827 \pm 5.8 \cdot 10^{-5} \) | \(a_{881}= +0.44519488 \pm 3.3 \cdot 10^{-5} \) | \(a_{882}= -0.34720020 \pm 2.6 \cdot 10^{-5} \) |
\(a_{883}= -0.38323575 \pm 3.3 \cdot 10^{-5} \) | \(a_{884}= -0.00050594 \pm 2.3 \cdot 10^{-5} \) | \(a_{885}= -4.21379567 \pm 2.2 \cdot 10^{-5} \) |
\(a_{886}= -0.01860574 \pm 4.5 \cdot 10^{-5} \) | \(a_{887}= +0.28468853 \pm 2.4 \cdot 10^{-5} \) | \(a_{888}= +0.27104632 \pm 1.6 \cdot 10^{-5} \) |
\(a_{889}= +0.43035568 \pm 2.5 \cdot 10^{-5} \) | \(a_{890}= +0.05308691 \pm 2.3 \cdot 10^{-5} \) | \(a_{891}= -0.70048448 \pm 3.0 \cdot 10^{-5} \) |
\(a_{892}= +0.66029338 \pm 3.5 \cdot 10^{-5} \) | \(a_{893}= -1.38280017 \pm 1.4 \cdot 10^{-5} \) | \(a_{894}= +1.40070800 \pm 1.2 \cdot 10^{-5} \) |
\(a_{895}= -2.93846471 \pm 3.9 \cdot 10^{-5} \) | \(a_{896}= -0.81692860 \pm 2.2 \cdot 10^{-5} \) | \(a_{897}= +1.85087982 \pm 1.7 \cdot 10^{-5} \) |
\(a_{898}= -0.70432104 \pm 2.5 \cdot 10^{-5} \) | \(a_{899}= +0.76286252 \pm 2.6 \cdot 10^{-5} \) | \(a_{900}= -2.42578927 \pm 3.4 \cdot 10^{-5} \) |
\(a_{901}= -0.00071002 \pm 1.9 \cdot 10^{-5} \) | \(a_{902}= -0.08574039 \pm 5.2 \cdot 10^{-5} \) | \(a_{903}= -0.97611463 \pm 2.2 \cdot 10^{-5} \) |
\(a_{904}= +0.43540226 \pm 4.5 \cdot 10^{-5} \) | \(a_{905}= -0.07056195 \pm 2.1 \cdot 10^{-5} \) | \(a_{906}= -0.34418419 \pm 5.1 \cdot 10^{-5} \) |
\(a_{907}= +0.73009171 \pm 3.4 \cdot 10^{-5} \) | \(a_{908}= +0.16130291 \pm 4.3 \cdot 10^{-5} \) | \(a_{909}= +2.18599088 \pm 1.9 \cdot 10^{-5} \) |
\(a_{910}= -0.50072822 \pm 1.8 \cdot 10^{-5} \) | \(a_{911}= -1.36772358 \pm 2.4 \cdot 10^{-5} \) | \(a_{912}= +1.03895447 \pm 1.9 \cdot 10^{-5} \) |
\(a_{913}= +0.05729009 \pm 2.7 \cdot 10^{-5} \) | \(a_{914}= +0.30049221 \pm 3.3 \cdot 10^{-5} \) | \(a_{915}= +2.50846198 \pm 1.1 \cdot 10^{-5} \) |
\(a_{916}= +0.19157327 \pm 3.6 \cdot 10^{-5} \) | \(a_{917}= +0.47414878 \pm 2.5 \cdot 10^{-5} \) | \(a_{918}= -0.00061086 \pm 2.2 \cdot 10^{-5} \) |
\(a_{919}= +0.78429099 \pm 2.6 \cdot 10^{-5} \) | \(a_{920}= -1.08090365 \pm 1.5 \cdot 10^{-5} \) | \(a_{921}= +1.42472375 \pm 2.8 \cdot 10^{-5} \) |
\(a_{922}= +0.38887544 \pm 2.7 \cdot 10^{-5} \) | \(a_{923}= -0.44185597 \pm 1.1 \cdot 10^{-5} \) | \(a_{924}= -0.37152018 \pm 9.6 \cdot 10^{-5} \) |
\(a_{925}= +0.23996057 \pm 2.3 \cdot 10^{-5} \) | \(a_{926}= +0.23959954 \pm 2.6 \cdot 10^{-5} \) | \(a_{927}= -1.80544049 \pm 3.7 \cdot 10^{-5} \) |
\(a_{928}= +0.88862558 \pm 1.9 \cdot 10^{-5} \) | \(a_{929}= +1.44649889 \pm 2.8 \cdot 10^{-5} \) | \(a_{930}= +0.91991185 \pm 2.1 \cdot 10^{-5} \) |
\(a_{931}= +0.37927393 \pm 1.5 \cdot 10^{-5} \) | \(a_{932}= +0.20825699 \pm 3.0 \cdot 10^{-5} \) | \(a_{933}= +1.96153697 \pm 1.5 \cdot 10^{-5} \) |
\(a_{934}= -0.26137354 \pm 3.2 \cdot 10^{-5} \) | \(a_{935}= +0.00026348 \pm 5.7 \cdot 10^{-5} \) | \(a_{936}= -1.84034826 \pm 1.0 \cdot 10^{-5} \) |
\(a_{937}= -0.79783329 \pm 2.6 \cdot 10^{-5} \) | \(a_{938}= -0.01502110 \pm 2.6 \cdot 10^{-5} \) | \(a_{939}= -2.94441627 \pm 2.8 \cdot 10^{-5} \) |
\(a_{940}= +1.61896928 \pm 1.5 \cdot 10^{-5} \) | \(a_{941}= -1.68794609 \pm 2.7 \cdot 10^{-5} \) | \(a_{942}= -0.22878873 \pm 2.2 \cdot 10^{-5} \) |
\(a_{943}= -0.68120655 \pm 1.8 \cdot 10^{-5} \) | \(a_{944}= -0.81738298 \pm 2.9 \cdot 10^{-5} \) | \(a_{945}= +3.05470110 \pm 2.2 \cdot 10^{-5} \) |
\(a_{946}= -0.08104479 \pm 6.1 \cdot 10^{-5} \) | \(a_{947}= +0.60733480 \pm 3.5 \cdot 10^{-5} \) | \(a_{948}= +1.52856744 \pm 2.8 \cdot 10^{-5} \) |
\(a_{949}= +0.72156236 \pm 1.8 \cdot 10^{-5} \) | \(a_{950}= -0.52444626 \pm 3.1 \cdot 10^{-5} \) | \(a_{951}= -1.74147358 \pm 3.2 \cdot 10^{-5} \) |
\(a_{952}= -0.00035098 \pm 1.8 \cdot 10^{-5} \) | \(a_{953}= +0.90148835 \pm 2.6 \cdot 10^{-5} \) | \(a_{954}= -1.17506091 \pm 2.5 \cdot 10^{-5} \) |
\(a_{955}= +2.45699412 \pm 2.4 \cdot 10^{-5} \) | \(a_{956}= -0.55909779 \pm 3.8 \cdot 10^{-5} \) | \(a_{957}= +0.51288759 \pm 5.4 \cdot 10^{-5} \) |
\(a_{958}= +0.32314838 \pm 3.8 \cdot 10^{-5} \) | \(a_{959}= +0.61251000 \pm 2.6 \cdot 10^{-5} \) | \(a_{960}= -0.38557373 \pm 2.2 \cdot 10^{-5} \) |
\(a_{961}= -0.31814198 \pm 3.5 \cdot 10^{-5} \) | \(a_{962}= +0.08282783 \pm 1.5 \cdot 10^{-5} \) | \(a_{963}= -3.16240950 \pm 3.6 \cdot 10^{-5} \) |
\(a_{964}= -1.10354464 \pm 4.6 \cdot 10^{-5} \) | \(a_{965}= +0.62954337 \pm 3.3 \cdot 10^{-5} \) | \(a_{966}= +0.58418539 \pm 2.4 \cdot 10^{-5} \) |
\(a_{967}= -0.85292091 \pm 3.2 \cdot 10^{-5} \) | \(a_{968}= -0.06779806 \pm 3.3 \cdot 10^{-5} \) | \(a_{969}= +0.00114725 \pm 1.7 \cdot 10^{-5} \) |
\(a_{970}= -0.62269630 \pm 4.8 \cdot 10^{-5} \) | \(a_{971}= +1.53703200 \pm 3.5 \cdot 10^{-5} \) | \(a_{972}= +1.43399713 \pm 3.2 \cdot 10^{-5} \) |
\(a_{973}= +0.45098846 \pm 2.4 \cdot 10^{-5} \) | \(a_{974}= -0.38739468 \pm 2.2 \cdot 10^{-5} \) | \(a_{975}= -2.31090431 \pm 8.3 \cdot 10^{-6} \) |
\(a_{976}= +0.48658604 \pm 1.5 \cdot 10^{-5} \) | \(a_{977}= -0.79916808 \pm 2.5 \cdot 10^{-5} \) | \(a_{978}= +1.24201661 \pm 2.8 \cdot 10^{-5} \) |
\(a_{979}= +0.02645520 \pm 2.8 \cdot 10^{-5} \) | \(a_{980}= -0.44405030 \pm 2.8 \cdot 10^{-5} \) | \(a_{981}= -2.07082330 \pm 2.0 \cdot 10^{-5} \) |
\(a_{982}= -0.34139715 \pm 3.5 \cdot 10^{-5} \) | \(a_{983}= +1.32925341 \pm 2.5 \cdot 10^{-5} \) | \(a_{984}= +0.96069645 \pm 2.1 \cdot 10^{-5} \) |
\(a_{985}= +0.40388515 \pm 1.4 \cdot 10^{-5} \) | \(a_{986}= +0.00022045 \pm 2.8 \cdot 10^{-5} \) | \(a_{987}= -1.92314869 \pm 1.4 \cdot 10^{-5} \) |
\(a_{988}= +0.91466591 \pm 1.0 \cdot 10^{-5} \) | \(a_{989}= -0.64390012 \pm 2.7 \cdot 10^{-5} \) | \(a_{990}= +0.43605026 \pm 9.3 \cdot 10^{-5} \) |
\(a_{991}= +0.01038245 \pm 2.4 \cdot 10^{-5} \) | \(a_{992}= +0.79426694 \pm 2.5 \cdot 10^{-5} \) | \(a_{993}= -1.62157304 \pm 2.2 \cdot 10^{-5} \) |
\(a_{994}= -0.13946114 \pm 1.4 \cdot 10^{-5} \) | \(a_{995}= +2.36785152 \pm 3.4 \cdot 10^{-5} \) | \(a_{996}= -0.29205841 \pm 3.0 \cdot 10^{-5} \) |
\(a_{997}= -0.10428117 \pm 2.6 \cdot 10^{-5} \) | \(a_{998}= -0.14950803 \pm 3.8 \cdot 10^{-5} \) | \(a_{999}= -0.50529260 \pm 1.2 \cdot 10^{-5} \) |
\(a_{1000}= +0.23944756 \pm 2.1 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000