Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(14.4299835020959630049341856446 \pm 6 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.67699455 \pm 6.9 \cdot 10^{-7} \) | \(a_{3}= -1.19532106 \pm 7.3 \cdot 10^{-7} \) |
\(a_{4}= -0.54167837 \pm 5.1 \cdot 10^{-7} \) | \(a_{5}= +1.40703518 \pm 5.4 \cdot 10^{-7} \) | \(a_{6}= -0.80922585 \pm 7.8 \cdot 10^{-7} \) |
\(a_{7}= +0.23829628 \pm 4.2 \cdot 10^{-7} \) | \(a_{8}= -1.04370786 \pm 6.9 \cdot 10^{-7} \) | \(a_{9}= +0.42879244 \pm 7.4 \cdot 10^{-7} \) |
\(a_{10}= +0.95255515 \pm 6.3 \cdot 10^{-7} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +0.64747957 \pm 4.8 \cdot 10^{-7} \) |
\(a_{13}= +0.48285625 \pm 6.1 \cdot 10^{-7} \) | \(a_{14}= +0.16132528 \pm 4.9 \cdot 10^{-7} \) | \(a_{15}= -1.68185878 \pm 6.0 \cdot 10^{-7} \) |
\(a_{16}= -0.16490617 \pm 7.2 \cdot 10^{-7} \) | \(a_{17}= -1.14464083 \pm 5.4 \cdot 10^{-7} \) | \(a_{18}= +0.29029015 \pm 7.6 \cdot 10^{-7} \) |
\(a_{19}= -1.14023863 \pm 5.7 \cdot 10^{-7} \) | \(a_{20}= -0.76216053 \pm 6.7 \cdot 10^{-7} \) | \(a_{21}= -0.28484056 \pm 5.9 \cdot 10^{-7} \) |
\(a_{22}= -0.20412154 \pm 7.0 \cdot 10^{-7} \) | \(a_{23}= +0.53931985 \pm 5.5 \cdot 10^{-7} \) | \(a_{24}= +1.24756599 \pm 7.3 \cdot 10^{-7} \) |
\(a_{25}= +0.97974799 \pm 4.8 \cdot 10^{-7} \) | \(a_{26}= +0.32689105 \pm 6.7 \cdot 10^{-7} \) | \(a_{27}= +0.68277643 \pm 4.7 \cdot 10^{-7} \) |
\(a_{28}= -0.12907994 \pm 3.4 \cdot 10^{-7} \) | \(a_{29}= -0.75389948 \pm 6.6 \cdot 10^{-7} \) | \(a_{30}= -1.13860924 \pm 6.4 \cdot 10^{-7} \) |
\(a_{31}= -0.28691113 \pm 5.1 \cdot 10^{-7} \) | \(a_{32}= +0.93206729 \pm 4.6 \cdot 10^{-7} \) | \(a_{33}= +0.36040286 \pm 7.4 \cdot 10^{-7} \) |
\(a_{34}= -0.77491561 \pm 5.2 \cdot 10^{-7} \) | \(a_{35}= +0.33529125 \pm 3.6 \cdot 10^{-7} \) | \(a_{36}= -0.23226759 \pm 3.5 \cdot 10^{-7} \) |
\(a_{37}= +1.16075973 \pm 5.4 \cdot 10^{-7} \) | \(a_{38}= -0.77193535 \pm 5.6 \cdot 10^{-7} \) | \(a_{39}= -0.57716825 \pm 5.4 \cdot 10^{-7} \) |
\(a_{40}= -1.46853368 \pm 7.2 \cdot 10^{-7} \) | \(a_{41}= +0.76632156 \pm 6.3 \cdot 10^{-7} \) | \(a_{42}= -0.19283551 \pm 6.6 \cdot 10^{-7} \) |
\(a_{43}= +1.81313126 \pm 5.3 \cdot 10^{-7} \) | \(a_{44}= +0.16332217 \pm 5.2 \cdot 10^{-7} \) | \(a_{45}= +0.60332605 \pm 5.5 \cdot 10^{-7} \) |
\(a_{46}= +0.36511660 \pm 6.2 \cdot 10^{-7} \) | \(a_{47}= +1.00597444 \pm 6.5 \cdot 10^{-7} \) | \(a_{48}= +0.19711581 \pm 8.3 \cdot 10^{-7} \) |
\(a_{49}= -0.94321488 \pm 4.4 \cdot 10^{-7} \) | \(a_{50}= +0.66328406 \pm 5.4 \cdot 10^{-7} \) | \(a_{51}= +1.36821330 \pm 6.1 \cdot 10^{-7} \) |
\(a_{52}= -0.26155279 \pm 3.0 \cdot 10^{-7} \) | \(a_{53}= +1.42510208 \pm 6.7 \cdot 10^{-7} \) | \(a_{54}= +0.46223592 \pm 5.6 \cdot 10^{-7} \) |
\(a_{55}= -0.42423707 \pm 5.5 \cdot 10^{-7} \) | \(a_{56}= -0.24871170 \pm 4.5 \cdot 10^{-7} \) | \(a_{57}= +1.36295125 \pm 7.4 \cdot 10^{-7} \) |
\(a_{58}= -0.51038584 \pm 6.9 \cdot 10^{-7} \) | \(a_{59}= +0.52172759 \pm 8.3 \cdot 10^{-7} \) | \(a_{60}= +0.91102653 \pm 6.2 \cdot 10^{-7} \) |
\(a_{61}= -1.48413351 \pm 4.9 \cdot 10^{-7} \) | \(a_{62}= -0.19423728 \pm 5.3 \cdot 10^{-7} \) | \(a_{63}= +0.10217964 \pm 5.6 \cdot 10^{-7} \) |
\(a_{64}= +0.79591064 \pm 4.7 \cdot 10^{-7} \) | \(a_{65}= +0.67939573 \pm 4.3 \cdot 10^{-7} \) | \(a_{66}= +0.24399077 \pm 1.4 \cdot 10^{-6} \) |
\(a_{67}= +0.89058399 \pm 6.2 \cdot 10^{-7} \) | \(a_{68}= +0.62002719 \pm 5.4 \cdot 10^{-7} \) | \(a_{69}= -0.64466038 \pm 2.8 \cdot 10^{-7} \) |
\(a_{70}= +0.22699035 \pm 4.2 \cdot 10^{-7} \) | \(a_{71}= +0.86878001 \pm 6.5 \cdot 10^{-7} \) | \(a_{72}= -0.44753404 \pm 6.4 \cdot 10^{-7} \) |
\(a_{73}= -0.72152261 \pm 5.6 \cdot 10^{-7} \) | \(a_{74}= +0.78582802 \pm 4.6 \cdot 10^{-7} \) | \(a_{75}= -1.17111341 \pm 5.8 \cdot 10^{-7} \) |
\(a_{76}= +0.61764261 \pm 2.7 \cdot 10^{-7} \) | \(a_{77}= -0.07184903 \pm 4.4 \cdot 10^{-7} \) | \(a_{78}= -0.39073976 \pm 5.6 \cdot 10^{-7} \) |
\(a_{79}= +0.66597816 \pm 6.7 \cdot 10^{-7} \) | \(a_{80}= -0.23202878 \pm 6.7 \cdot 10^{-7} \) | \(a_{81}= -1.24492948 \pm 4.2 \cdot 10^{-7} \) |
\(a_{82}= +0.51879552 \pm 7.1 \cdot 10^{-7} \) | \(a_{83}= +0.15458951 \pm 5.2 \cdot 10^{-7} \) | \(a_{84}= +0.15429197 \pm 3.8 \cdot 10^{-7} \) |
\(a_{85}= -1.61054992 \pm 5.3 \cdot 10^{-7} \) | \(a_{86}= +1.22747999 \pm 5.8 \cdot 10^{-7} \) | \(a_{87}= +0.90115193 \pm 4.0 \cdot 10^{-7} \) |
\(a_{88}= +0.31468976 \pm 7.0 \cdot 10^{-7} \) | \(a_{89}= +0.47045848 \pm 5.3 \cdot 10^{-7} \) | \(a_{90}= +0.40844845 \pm 5.3 \cdot 10^{-7} \) |
\(a_{91}= +0.11506285 \pm 3.6 \cdot 10^{-7} \) | \(a_{92}= -0.29213790 \pm 3.2 \cdot 10^{-7} \) | \(a_{93}= +0.34295092 \pm 4.8 \cdot 10^{-7} \) |
\(a_{94}= +0.68103922 \pm 7.3 \cdot 10^{-7} \) | \(a_{95}= -1.60435587 \pm 4.0 \cdot 10^{-7} \) | \(a_{96}= -1.11411966 \pm 4.3 \cdot 10^{-7} \) |
\(a_{97}= +1.95670244 \pm 8.0 \cdot 10^{-7} \) | \(a_{98}= -0.63855134 \pm 5.1 \cdot 10^{-7} \) | \(a_{99}= -0.12928579 \pm 7.5 \cdot 10^{-7} \) |
\(a_{100}= -0.53070830 \pm 5.4 \cdot 10^{-7} \) | \(a_{101}= -1.55983539 \pm 9.4 \cdot 10^{-7} \) | \(a_{102}= +0.92627295 \pm 5.4 \cdot 10^{-7} \) |
\(a_{103}= +1.39069312 \pm 5.6 \cdot 10^{-7} \) | \(a_{104}= -0.50396087 \pm 5.6 \cdot 10^{-7} \) | \(a_{105}= -0.40078069 \pm 4.6 \cdot 10^{-7} \) |
\(a_{106}= +0.96478635 \pm 6.3 \cdot 10^{-7} \) | \(a_{107}= -0.96186954 \pm 3.8 \cdot 10^{-7} \) | \(a_{108}= -0.36984522 \pm 5.3 \cdot 10^{-7} \) |
\(a_{109}= -0.52574574 \pm 4.0 \cdot 10^{-7} \) | \(a_{110}= -0.28720619 \pm 1.2 \cdot 10^{-6} \) | \(a_{111}= -1.38748055 \pm 5.5 \cdot 10^{-7} \) |
\(a_{112}= -0.03929653 \pm 4.9 \cdot 10^{-7} \) | \(a_{113}= +1.80640318 \pm 5.4 \cdot 10^{-7} \) | \(a_{114}= +0.92271058 \pm 7.5 \cdot 10^{-7} \) |
\(a_{115}= +0.75884200 \pm 4.0 \cdot 10^{-7} \) | \(a_{116}= +0.40837104 \pm 6.0 \cdot 10^{-7} \) | \(a_{117}= +0.20704511 \pm 6.7 \cdot 10^{-7} \) |
\(a_{118}= +0.35320674 \pm 8.9 \cdot 10^{-7} \) | \(a_{119}= -0.27276365 \pm 2.9 \cdot 10^{-7} \) | \(a_{120}= +1.75536924 \pm 6.7 \cdot 10^{-7} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= -1.00475030 \pm 6.3 \cdot 10^{-7} \) | \(a_{123}= -0.91600030 \pm 9.3 \cdot 10^{-7} \) |
\(a_{124}= +0.15541356 \pm 4.7 \cdot 10^{-7} \) | \(a_{125}= -0.02849529 \pm 5.9 \cdot 10^{-7} \) | \(a_{126}= +0.06917506 \pm 6.1 \cdot 10^{-7} \) |
\(a_{127}= -1.79135706 \pm 6.6 \cdot 10^{-7} \) | \(a_{128}= -0.39324011 \pm 6.7 \cdot 10^{-7} \) | \(a_{129}= -2.16727398 \pm 6.7 \cdot 10^{-7} \) |
\(a_{130}= +0.45994721 \pm 4.7 \cdot 10^{-7} \) | \(a_{131}= +0.66475886 \pm 4.6 \cdot 10^{-7} \) | \(a_{132}= -0.19522244 \pm 1.2 \cdot 10^{-6} \) |
\(a_{133}= -0.27171462 \pm 4.1 \cdot 10^{-7} \) | \(a_{134}= +0.60292051 \pm 7.1 \cdot 10^{-7} \) | \(a_{135}= +0.96069045 \pm 4.0 \cdot 10^{-7} \) |
\(a_{136}= +1.19467064 \pm 6.6 \cdot 10^{-7} \) | \(a_{137}= -0.07769019 \pm 4.2 \cdot 10^{-7} \) | \(a_{138}= -0.43643156 \pm 3.0 \cdot 10^{-7} \) |
\(a_{139}= +1.43617118 \pm 6.8 \cdot 10^{-7} \) | \(a_{140}= -0.18162002 \pm 3.7 \cdot 10^{-7} \) | \(a_{141}= -1.20246243 \pm 3.8 \cdot 10^{-7} \) |
\(a_{142}= +0.58815934 \pm 6.7 \cdot 10^{-7} \) | \(a_{143}= -0.14558664 \pm 6.2 \cdot 10^{-7} \) | \(a_{144}= -0.07071052 \pm 7.8 \cdot 10^{-7} \) |
\(a_{145}= -1.06076309 \pm 5.8 \cdot 10^{-7} \) | \(a_{146}= -0.48846688 \pm 6.1 \cdot 10^{-7} \) | \(a_{147}= +1.12744462 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= -0.62875844 \pm 4.1 \cdot 10^{-7} \) | \(a_{149}= +1.12436782 \pm 7.0 \cdot 10^{-7} \) | \(a_{150}= -0.79283740 \pm 5.5 \cdot 10^{-7} \) |
\(a_{151}= +0.84749951 \pm 3.9 \cdot 10^{-7} \) | \(a_{152}= +1.19007603 \pm 5.7 \cdot 10^{-7} \) | \(a_{153}= -0.49081334 \pm 5.5 \cdot 10^{-7} \) |
\(a_{154}= -0.04864140 \pm 1.1 \cdot 10^{-6} \) | \(a_{155}= -0.40369406 \pm 4.4 \cdot 10^{-7} \) | \(a_{156}= +0.31263956 \pm 2.8 \cdot 10^{-7} \) |
\(a_{157}= -0.98501107 \pm 4.3 \cdot 10^{-7} \) | \(a_{158}= +0.45086359 \pm 7.8 \cdot 10^{-7} \) | \(a_{159}= -1.70345453 \pm 8.0 \cdot 10^{-7} \) |
\(a_{160}= +1.31145146 \pm 4.8 \cdot 10^{-7} \) | \(a_{161}= +0.12851791 \pm 2.4 \cdot 10^{-7} \) | \(a_{162}= -0.84281048 \pm 4.4 \cdot 10^{-7} \) |
\(a_{163}= +1.40053072 \pm 5.5 \cdot 10^{-7} \) | \(a_{164}= -0.41509982 \pm 4.0 \cdot 10^{-7} \) | \(a_{165}= +0.50709950 \pm 1.2 \cdot 10^{-6} \) |
\(a_{166}= +0.10465626 \pm 6.3 \cdot 10^{-7} \) | \(a_{167}= +0.03521168 \pm 5.3 \cdot 10^{-7} \) | \(a_{168}= +0.29729033 \pm 5.6 \cdot 10^{-7} \) |
\(a_{169}= -0.76684984 \pm 5.5 \cdot 10^{-7} \) | \(a_{170}= -1.09033353 \pm 5.7 \cdot 10^{-7} \) | \(a_{171}= -0.48892571 \pm 7.1 \cdot 10^{-7} \) |
\(a_{172}= -0.98213399 \pm 4.6 \cdot 10^{-7} \) | \(a_{173}= -0.18633201 \pm 6.0 \cdot 10^{-7} \) | \(a_{174}= +0.61007495 \pm 4.8 \cdot 10^{-7} \) |
\(a_{175}= +0.23347030 \pm 3.3 \cdot 10^{-7} \) | \(a_{176}= +0.04972108 \pm 7.3 \cdot 10^{-7} \) | \(a_{177}= -0.62363198 \pm 1.2 \cdot 10^{-6} \) |
\(a_{178}= +0.31849783 \pm 5.4 \cdot 10^{-7} \) | \(a_{179}= -0.77667783 \pm 6.5 \cdot 10^{-7} \) | \(a_{180}= -0.32680867 \pm 3.6 \cdot 10^{-7} \) |
\(a_{181}= +1.68476239 \pm 8.1 \cdot 10^{-7} \) | \(a_{182}= +0.07789692 \pm 4.1 \cdot 10^{-7} \) | \(a_{183}= +1.77401604 \pm 5.5 \cdot 10^{-7} \) |
\(a_{184}= -0.56289237 \pm 5.1 \cdot 10^{-7} \) | \(a_{185}= +1.63322977 \pm 4.9 \cdot 10^{-7} \) | \(a_{186}= +0.23217591 \pm 5.0 \cdot 10^{-7} \) |
\(a_{187}= +0.34512220 \pm 5.5 \cdot 10^{-7} \) | \(a_{188}= -0.54491460 \pm 5.6 \cdot 10^{-7} \) | \(a_{189}= +0.16270308 \pm 3.5 \cdot 10^{-7} \) |
\(a_{190}= -1.08614019 \pm 4.0 \cdot 10^{-7} \) | \(a_{191}= -0.13410300 \pm 5.0 \cdot 10^{-7} \) | \(a_{192}= -0.95136876 \pm 5.9 \cdot 10^{-7} \) |
\(a_{193}= +1.21703615 \pm 5.1 \cdot 10^{-7} \) | \(a_{194}= +1.32467690 \pm 8.6 \cdot 10^{-7} \) | \(a_{195}= -0.81209603 \pm 3.9 \cdot 10^{-7} \) |
\(a_{196}= +0.51091910 \pm 4.8 \cdot 10^{-7} \) | \(a_{197}= -0.67662331 \pm 4.0 \cdot 10^{-7} \) | \(a_{198}= -0.08752577 \pm 1.4 \cdot 10^{-6} \) |
\(a_{199}= +0.03788703 \pm 6.9 \cdot 10^{-7} \) | \(a_{200}= -1.02257068 \pm 6.0 \cdot 10^{-7} \) | \(a_{201}= -1.06453380 \pm 8.1 \cdot 10^{-7} \) |
\(a_{202}= -1.05600006 \pm 9.9 \cdot 10^{-7} \) | \(a_{203}= -0.17965144 \pm 2.6 \cdot 10^{-7} \) | \(a_{204}= -0.74113155 \pm 5.0 \cdot 10^{-7} \) |
\(a_{205}= +1.07824139 \pm 5.1 \cdot 10^{-7} \) | \(a_{206}= +0.94149167 \pm 5.9 \cdot 10^{-7} \) | \(a_{207}= +0.23125627 \pm 5.3 \cdot 10^{-7} \) |
\(a_{208}= -0.07962597 \pm 7.1 \cdot 10^{-7} \) | \(a_{209}= +0.34379488 \pm 5.8 \cdot 10^{-7} \) | \(a_{210}= -0.27132634 \pm 4.9 \cdot 10^{-7} \) |
\(a_{211}= +0.13410434 \pm 5.3 \cdot 10^{-7} \) | \(a_{212}= -0.77194697 \pm 3.8 \cdot 10^{-7} \) | \(a_{213}= -1.03847104 \pm 8.4 \cdot 10^{-7} \) |
\(a_{214}= -0.65118044 \pm 3.8 \cdot 10^{-7} \) | \(a_{215}= +2.55113946 \pm 4.8 \cdot 10^{-7} \) | \(a_{216}= -0.71261913 \pm 6.0 \cdot 10^{-7} \) |
\(a_{217}= -0.06836986 \pm 2.8 \cdot 10^{-7} \) | \(a_{218}= -0.35592700 \pm 5.3 \cdot 10^{-7} \) | \(a_{219}= +0.86245117 \pm 5.8 \cdot 10^{-7} \) |
\(a_{220}= +0.22980005 \pm 1.0 \cdot 10^{-6} \) | \(a_{221}= -0.55269698 \pm 3.9 \cdot 10^{-7} \) | \(a_{222}= -0.93931678 \pm 5.7 \cdot 10^{-7} \) |
\(a_{223}= +1.06793462 \pm 5.4 \cdot 10^{-7} \) | \(a_{224}= +0.22210817 \pm 3.0 \cdot 10^{-7} \) | \(a_{225}= +0.42010853 \pm 5.2 \cdot 10^{-7} \) |
\(a_{226}= +1.22292512 \pm 6.5 \cdot 10^{-7} \) | \(a_{227}= +0.30743068 \pm 5.6 \cdot 10^{-7} \) | \(a_{228}= -0.73828122 \pm 2.5 \cdot 10^{-7} \) |
\(a_{229}= -0.64193751 \pm 5.0 \cdot 10^{-7} \) | \(a_{230}= +0.51373190 \pm 4.5 \cdot 10^{-7} \) | \(a_{231}= +0.08588266 \pm 1.1 \cdot 10^{-6} \) |
\(a_{232}= +0.78685081 \pm 7.6 \cdot 10^{-7} \) | \(a_{233}= +0.32737164 \pm 5.3 \cdot 10^{-7} \) | \(a_{234}= +0.14016841 \pm 7.0 \cdot 10^{-7} \) |
\(a_{235}= +1.41544142 \pm 5.6 \cdot 10^{-7} \) | \(a_{236}= -0.28260855 \pm 2.7 \cdot 10^{-7} \) | \(a_{237}= -0.79605772 \pm 5.7 \cdot 10^{-7} \) |
\(a_{238}= -0.18465951 \pm 2.7 \cdot 10^{-7} \) | \(a_{239}= -1.61612374 \pm 7.9 \cdot 10^{-7} \) | \(a_{240}= +0.27734888 \pm 7.0 \cdot 10^{-7} \) |
\(a_{241}= -1.32725494 \pm 3.6 \cdot 10^{-7} \) | \(a_{242}= +0.06154496 \pm 7.0 \cdot 10^{-7} \) | \(a_{243}= +0.80531401 \pm 6.5 \cdot 10^{-7} \) |
\(a_{244}= +0.80392302 \pm 6.3 \cdot 10^{-7} \) | \(a_{245}= -1.32713652 \pm 4.1 \cdot 10^{-7} \) | \(a_{246}= -0.62012722 \pm 1.0 \cdot 10^{-6} \) |
\(a_{247}= -0.55057135 \pm 5.2 \cdot 10^{-7} \) | \(a_{248}= +0.29945141 \pm 6.0 \cdot 10^{-7} \) | \(a_{249}= -0.18478410 \pm 5.3 \cdot 10^{-7} \) |
\(a_{250}= -0.01929115 \pm 5.9 \cdot 10^{-7} \) | \(a_{251}= +0.51305428 \pm 4.9 \cdot 10^{-7} \) | \(a_{252}= -0.05534850 \pm 2.8 \cdot 10^{-7} \) |
\(a_{253}= -0.16261105 \pm 5.6 \cdot 10^{-7} \) | \(a_{254}= -1.21273898 \pm 6.3 \cdot 10^{-7} \) | \(a_{255}= +1.92512424 \pm 5.7 \cdot 10^{-7} \) |
\(a_{256}= -1.06213206 \pm 5.0 \cdot 10^{-7} \) | \(a_{257}= +0.61370201 \pm 6.8 \cdot 10^{-7} \) | \(a_{258}= -1.46723268 \pm 7.3 \cdot 10^{-7} \) |
\(a_{259}= +0.27660472 \pm 3.1 \cdot 10^{-7} \) | \(a_{260}= -0.36801397 \pm 3.0 \cdot 10^{-7} \) | \(a_{261}= -0.32326640 \pm 5.8 \cdot 10^{-7} \) |
\(a_{262}= +0.45003813 \pm 4.7 \cdot 10^{-7} \) | \(a_{263}= +1.37488215 \pm 6.1 \cdot 10^{-7} \) | \(a_{264}= -0.37615530 \pm 1.4 \cdot 10^{-6} \) |
\(a_{265}= +2.00516875 \pm 5.6 \cdot 10^{-7} \) | \(a_{266}= -0.18394932 \pm 4.4 \cdot 10^{-7} \) | \(a_{267}= -0.56234893 \pm 7.7 \cdot 10^{-7} \) |
\(a_{268}= -0.48241009 \pm 4.4 \cdot 10^{-7} \) | \(a_{269}= +0.37939898 \pm 5.7 \cdot 10^{-7} \) | \(a_{270}= +0.65038220 \pm 5.9 \cdot 10^{-7} \) |
\(a_{271}= +0.44335871 \pm 5.5 \cdot 10^{-7} \) | \(a_{272}= +0.18875833 \pm 5.3 \cdot 10^{-7} \) | \(a_{273}= -0.13753705 \pm 4.3 \cdot 10^{-7} \) |
\(a_{274}= -0.05259583 \pm 4.6 \cdot 10^{-7} \) | \(a_{275}= -0.29540513 \pm 4.9 \cdot 10^{-7} \) | \(a_{276}= +0.34919858 \pm 3.0 \cdot 10^{-7} \) |
\(a_{277}= +0.11204850 \pm 3.4 \cdot 10^{-7} \) | \(a_{278}= +0.97228007 \pm 8.6 \cdot 10^{-7} \) | \(a_{279}= -0.12302533 \pm 5.2 \cdot 10^{-7} \) |
\(a_{280}= -0.34994611 \pm 3.8 \cdot 10^{-7} \) | \(a_{281}= -0.94623454 \pm 5.4 \cdot 10^{-7} \) | \(a_{282}= -0.81406052 \pm 4.4 \cdot 10^{-7} \) |
\(a_{283}= -0.57053131 \pm 7.3 \cdot 10^{-7} \) | \(a_{284}= -0.47059934 \pm 3.8 \cdot 10^{-7} \) | \(a_{285}= +1.91772036 \pm 4.3 \cdot 10^{-7} \) |
\(a_{286}= -0.09856136 \pm 1.3 \cdot 10^{-6} \) | \(a_{287}= +0.18261158 \pm 5.3 \cdot 10^{-7} \) | \(a_{288}= +0.39966341 \pm 4.2 \cdot 10^{-7} \) |
\(a_{289}= +0.31020264 \pm 5.8 \cdot 10^{-7} \) | \(a_{290}= -0.71813083 \pm 6.8 \cdot 10^{-7} \) | \(a_{291}= -2.33888764 \pm 9.4 \cdot 10^{-7} \) |
\(a_{292}= +0.39083319 \pm 3.2 \cdot 10^{-7} \) | \(a_{293}= -0.82762613 \pm 5.1 \cdot 10^{-7} \) | \(a_{294}= +0.76327387 \pm 4.3 \cdot 10^{-7} \) |
\(a_{295}= +0.73408908 \pm 5.9 \cdot 10^{-7} \) | \(a_{296}= -1.21149406 \pm 5.4 \cdot 10^{-7} \) | \(a_{297}= -0.20586484 \pm 4.8 \cdot 10^{-7} \) |
\(a_{298}= +0.76119089 \pm 7.6 \cdot 10^{-7} \) | \(a_{299}= +0.26041396 \pm 8.0 \cdot 10^{-7} \) | \(a_{300}= +0.63436681 \pm 5.5 \cdot 10^{-7} \) |
\(a_{301}= +0.43206243 \pm 4.2 \cdot 10^{-7} \) | \(a_{302}= +0.57375255 \pm 3.9 \cdot 10^{-7} \) | \(a_{303}= +1.86450409 \pm 1.0 \cdot 10^{-6} \) |
\(a_{304}= +0.18803238 \pm 5.5 \cdot 10^{-7} \) | \(a_{305}= -2.08822805 \pm 4.7 \cdot 10^{-7} \) | \(a_{306}= -0.33227796 \pm 4.2 \cdot 10^{-7} \) |
\(a_{307}= +0.96193971 \pm 7.8 \cdot 10^{-7} \) | \(a_{308}= +0.03891907 \pm 9.5 \cdot 10^{-7} \) | \(a_{309}= -1.66232478 \pm 7.7 \cdot 10^{-7} \) |
\(a_{310}= -0.27329868 \pm 5.4 \cdot 10^{-7} \) | \(a_{311}= -1.55494569 \pm 5.0 \cdot 10^{-7} \) | \(a_{312}= +0.60239504 \pm 5.2 \cdot 10^{-7} \) |
\(a_{313}= -0.35520479 \pm 7.1 \cdot 10^{-7} \) | \(a_{314}= -0.66684713 \pm 4.5 \cdot 10^{-7} \) | \(a_{315}= +0.14377035 \pm 4.1 \cdot 10^{-7} \) |
\(a_{316}= -0.36074596 \pm 6.5 \cdot 10^{-7} \) | \(a_{317}= -1.28306383 \pm 5.5 \cdot 10^{-7} \) | \(a_{318}= -1.15322944 \pm 8.5 \cdot 10^{-7} \) |
\(a_{319}= +0.22730925 \pm 6.7 \cdot 10^{-7} \) | \(a_{320}= +1.11987427 \pm 3.6 \cdot 10^{-7} \) | \(a_{321}= +1.14974293 \pm 4.2 \cdot 10^{-7} \) |
\(a_{322}= +0.08700593 \pm 2.9 \cdot 10^{-7} \) | \(a_{323}= +1.30516370 \pm 6.4 \cdot 10^{-7} \) | \(a_{324}= +0.67435138 \pm 3.8 \cdot 10^{-7} \) |
\(a_{325}= +0.47307744 \pm 4.3 \cdot 10^{-7} \) | \(a_{326}= +0.94815167 \pm 6.6 \cdot 10^{-7} \) | \(a_{327}= +0.62843496 \pm 5.0 \cdot 10^{-7} \) |
\(a_{328}= -0.79981584 \pm 6.2 \cdot 10^{-7} \) | \(a_{329}= +0.23971996 \pm 2.6 \cdot 10^{-7} \) | \(a_{330}= +0.34330360 \pm 1.9 \cdot 10^{-6} \) |
\(a_{331}= +0.97015739 \pm 8.2 \cdot 10^{-7} \) | \(a_{332}= -0.08373779 \pm 7.1 \cdot 10^{-7} \) | \(a_{333}= +0.49772500 \pm 5.9 \cdot 10^{-7} \) |
\(a_{334}= +0.02383811 \pm 6.4 \cdot 10^{-7} \) | \(a_{335}= +1.25308300 \pm 4.7 \cdot 10^{-7} \) | \(a_{336}= +0.04697196 \pm 6.6 \cdot 10^{-7} \) |
\(a_{337}= +0.35296359 \pm 8.0 \cdot 10^{-7} \) | \(a_{338}= -0.51915317 \pm 6.2 \cdot 10^{-7} \) | \(a_{339}= -2.15923177 \pm 6.8 \cdot 10^{-7} \) |
\(a_{340}= +0.87240006 \pm 7.5 \cdot 10^{-7} \) | \(a_{341}= +0.08650696 \pm 5.2 \cdot 10^{-7} \) | \(a_{342}= -0.33100004 \pm 7.1 \cdot 10^{-7} \) |
\(a_{343}= -0.46306087 \pm 5.4 \cdot 10^{-7} \) | \(a_{344}= -1.89237935 \pm 5.8 \cdot 10^{-7} \) | \(a_{345}= -0.90705983 \pm 3.1 \cdot 10^{-7} \) |
\(a_{346}= -0.12614575 \pm 6.0 \cdot 10^{-7} \) | \(a_{347}= +0.74585980 \pm 5.0 \cdot 10^{-7} \) | \(a_{348}= -0.48813451 \pm 4.7 \cdot 10^{-7} \) |
\(a_{349}= -0.16360861 \pm 7.5 \cdot 10^{-7} \) | \(a_{350}= +0.15805812 \pm 3.6 \cdot 10^{-7} \) | \(a_{351}= +0.32968287 \pm 3.7 \cdot 10^{-7} \) |
\(a_{352}= -0.28102886 \pm 4.7 \cdot 10^{-7} \) | \(a_{353}= -1.10344252 \pm 4.3 \cdot 10^{-7} \) | \(a_{354}= -0.42219546 \pm 1.3 \cdot 10^{-6} \) |
\(a_{355}= +1.22240404 \pm 4.6 \cdot 10^{-7} \) | \(a_{356}= -0.25483719 \pm 3.4 \cdot 10^{-7} \) | \(a_{357}= +0.32604014 \pm 4.0 \cdot 10^{-7} \) |
\(a_{358}= -0.52580666 \pm 6.7 \cdot 10^{-7} \) | \(a_{359}= -0.21925074 \pm 7.4 \cdot 10^{-7} \) | \(a_{360}= -0.62969614 \pm 4.8 \cdot 10^{-7} \) |
\(a_{361}= +0.30014414 \pm 5.8 \cdot 10^{-7} \) | \(a_{362}= +1.14057496 \pm 9.6 \cdot 10^{-7} \) | \(a_{363}= -0.10866555 \pm 7.4 \cdot 10^{-7} \) |
\(a_{364}= -0.06232706 \pm 2.7 \cdot 10^{-7} \) | \(a_{365}= -1.01520769 \pm 4.1 \cdot 10^{-7} \) | \(a_{366}= +1.20099920 \pm 6.5 \cdot 10^{-7} \) |
\(a_{367}= -1.54223611 \pm 6.9 \cdot 10^{-7} \) | \(a_{368}= -0.08893717 \pm 6.7 \cdot 10^{-7} \) | \(a_{369}= +0.32859289 \pm 8.6 \cdot 10^{-7} \) |
\(a_{370}= +1.10568766 \pm 4.2 \cdot 10^{-7} \) | \(a_{371}= +0.33959652 \pm 4.4 \cdot 10^{-7} \) | \(a_{372}= -0.18576910 \pm 4.2 \cdot 10^{-7} \) |
\(a_{373}= +0.35228325 \pm 7.2 \cdot 10^{-7} \) | \(a_{374}= +0.23364585 \pm 1.2 \cdot 10^{-6} \) | \(a_{375}= +0.03406102 \pm 7.0 \cdot 10^{-7} \) |
\(a_{376}= -1.04994343 \pm 7.2 \cdot 10^{-7} \) | \(a_{377}= -0.36402508 \pm 6.9 \cdot 10^{-7} \) | \(a_{378}= +0.11014910 \pm 4.6 \cdot 10^{-7} \) |
\(a_{379}= +0.16979150 \pm 6.8 \cdot 10^{-7} \) | \(a_{380}= +0.86904488 \pm 2.6 \cdot 10^{-7} \) | \(a_{381}= +2.14124682 \pm 7.1 \cdot 10^{-7} \) |
\(a_{382}= -0.09078700 \pm 5.3 \cdot 10^{-7} \) | \(a_{383}= +0.03890522 \pm 7.2 \cdot 10^{-7} \) | \(a_{384}= +0.47004819 \pm 7.9 \cdot 10^{-7} \) |
\(a_{385}= -0.10109411 \pm 9.8 \cdot 10^{-7} \) | \(a_{386}= +0.82392685 \pm 5.1 \cdot 10^{-7} \) | \(a_{387}= +0.77745698 \pm 6.2 \cdot 10^{-7} \) |
\(a_{388}= -1.05990340 \pm 4.7 \cdot 10^{-7} \) | \(a_{389}= -0.92431848 \pm 6.0 \cdot 10^{-7} \) | \(a_{390}= -0.54978459 \pm 3.9 \cdot 10^{-7} \) |
\(a_{391}= -0.61732752 \pm 2.8 \cdot 10^{-7} \) | \(a_{392}= +0.98444079 \pm 5.6 \cdot 10^{-7} \) | \(a_{393}= -0.79460027 \pm 3.5 \cdot 10^{-7} \) |
\(a_{394}= -0.45807029 \pm 5.8 \cdot 10^{-7} \) | \(a_{395}= +0.93705469 \pm 6.1 \cdot 10^{-7} \) | \(a_{396}= +0.07003131 \pm 1.2 \cdot 10^{-6} \) |
\(a_{397}= -0.85681895 \pm 8.0 \cdot 10^{-7} \) | \(a_{398}= +0.02564931 \pm 8.4 \cdot 10^{-7} \) | \(a_{399}= +0.32478621 \pm 5.7 \cdot 10^{-7} \) |
\(a_{400}= -0.16156649 \pm 5.9 \cdot 10^{-7} \) | \(a_{401}= +1.65092581 \pm 5.3 \cdot 10^{-7} \) | \(a_{402}= -0.72068359 \pm 9.0 \cdot 10^{-7} \) |
\(a_{403}= -0.13853684 \pm 4.2 \cdot 10^{-7} \) | \(a_{404}= +0.84492910 \pm 5.7 \cdot 10^{-7} \) | \(a_{405}= -1.75165958 \pm 3.7 \cdot 10^{-7} \) |
\(a_{406}= -0.12162305 \pm 3.0 \cdot 10^{-7} \) | \(a_{407}= -0.34998223 \pm 5.5 \cdot 10^{-7} \) | \(a_{408}= -1.42801498 \pm 6.7 \cdot 10^{-7} \) |
\(a_{409}= +1.36333362 \pm 5.6 \cdot 10^{-7} \) | \(a_{410}= +0.72996355 \pm 6.1 \cdot 10^{-7} \) | \(a_{411}= +0.09286472 \pm 5.1 \cdot 10^{-7} \) |
\(a_{412}= -0.75330839 \pm 2.3 \cdot 10^{-7} \) | \(a_{413}= +0.12432574 \pm 6.6 \cdot 10^{-7} \) | \(a_{414}= +0.15655924 \pm 5.9 \cdot 10^{-7} \) |
\(a_{415}= +0.21751288 \pm 6.5 \cdot 10^{-7} \) | \(a_{416}= +0.45005452 \pm 3.7 \cdot 10^{-7} \) | \(a_{417}= -1.71668566 \pm 9.1 \cdot 10^{-7} \) |
\(a_{418}= +0.23274726 \pm 1.2 \cdot 10^{-6} \) | \(a_{419}= +0.26231276 \pm 5.2 \cdot 10^{-7} \) | \(a_{420}= +0.21709423 \pm 4.0 \cdot 10^{-7} \) |
\(a_{421}= -1.13654775 \pm 5.8 \cdot 10^{-7} \) | \(a_{422}= +0.09078791 \pm 4.6 \cdot 10^{-7} \) | \(a_{423}= +0.43135423 \pm 6.0 \cdot 10^{-7} \) |
\(a_{424}= -1.48739024 \pm 6.1 \cdot 10^{-7} \) | \(a_{425}= -1.12145956 \pm 5.0 \cdot 10^{-7} \) | \(a_{426}= -0.70303924 \pm 8.9 \cdot 10^{-7} \) |
\(a_{427}= -0.35366349 \pm 3.1 \cdot 10^{-7} \) | \(a_{428}= +0.52102393 \pm 3.8 \cdot 10^{-7} \) | \(a_{429}= +0.17402277 \pm 1.3 \cdot 10^{-6} \) |
\(a_{430}= +1.72710752 \pm 5.6 \cdot 10^{-7} \) | \(a_{431}= +0.57793858 \pm 5.8 \cdot 10^{-7} \) | \(a_{432}= -0.11259404 \pm 5.9 \cdot 10^{-7} \) |
\(a_{433}= +0.34572932 \pm 4.9 \cdot 10^{-7} \) | \(a_{434}= -0.04628602 \pm 3.0 \cdot 10^{-7} \) | \(a_{435}= +1.26795246 \pm 3.8 \cdot 10^{-7} \) |
\(a_{436}= +0.28478510 \pm 5.6 \cdot 10^{-7} \) | \(a_{437}= -0.61495333 \pm 3.5 \cdot 10^{-7} \) | \(a_{438}= +0.58387475 \pm 6.3 \cdot 10^{-7} \) |
\(a_{439}= +0.03125944 \pm 3.7 \cdot 10^{-7} \) | \(a_{440}= +0.44277956 \pm 1.2 \cdot 10^{-6} \) | \(a_{441}= -0.40444341 \pm 4.3 \cdot 10^{-7} \) |
\(a_{442}= -0.37417285 \pm 3.6 \cdot 10^{-7} \) | \(a_{443}= +0.74083175 \pm 5.1 \cdot 10^{-7} \) | \(a_{444}= +0.75156821 \pm 3.6 \cdot 10^{-7} \) |
\(a_{445}= +0.66195164 \pm 4.8 \cdot 10^{-7} \) | \(a_{446}= +0.72298592 \pm 5.7 \cdot 10^{-7} \) | \(a_{447}= -1.34398054 \pm 5.6 \cdot 10^{-7} \) |
\(a_{448}= +0.18966254 \pm 3.8 \cdot 10^{-7} \) | \(a_{449}= +0.45166025 \pm 4.6 \cdot 10^{-7} \) | \(a_{450}= +0.28441119 \pm 4.8 \cdot 10^{-7} \) |
\(a_{451}= -0.23105464 \pm 6.4 \cdot 10^{-7} \) | \(a_{452}= -0.97848954 \pm 6.0 \cdot 10^{-7} \) | \(a_{453}= -1.01303401 \pm 4.6 \cdot 10^{-7} \) |
\(a_{454}= +0.20812889 \pm 5.5 \cdot 10^{-7} \) | \(a_{455}= +0.16189747 \pm 3.0 \cdot 10^{-7} \) | \(a_{456}= -1.42252294 \pm 7.4 \cdot 10^{-7} \) |
\(a_{457}= +1.50544939 \pm 5.8 \cdot 10^{-7} \) | \(a_{458}= -0.43458820 \pm 5.8 \cdot 10^{-7} \) | \(a_{459}= -0.78153378 \pm 4.1 \cdot 10^{-7} \) |
\(a_{460}= -0.41104830 \pm 3.9 \cdot 10^{-7} \) | \(a_{461}= +0.16149738 \pm 4.3 \cdot 10^{-7} \) | \(a_{462}= +0.05814209 \pm 1.8 \cdot 10^{-6} \) |
\(a_{463}= +0.58270504 \pm 6.8 \cdot 10^{-7} \) | \(a_{464}= +0.12432267 \pm 7.2 \cdot 10^{-7} \) | \(a_{465}= +0.48254401 \pm 3.9 \cdot 10^{-7} \) |
\(a_{466}= +0.22162881 \pm 6.3 \cdot 10^{-7} \) | \(a_{467}= +0.52223050 \pm 3.2 \cdot 10^{-7} \) | \(a_{468}= -0.11215186 \pm 2.4 \cdot 10^{-7} \) |
\(a_{469}= +0.21222285 \pm 4.6 \cdot 10^{-7} \) | \(a_{470}= +0.95824613 \pm 6.7 \cdot 10^{-7} \) | \(a_{471}= +1.17740447 \pm 3.7 \cdot 10^{-7} \) |
\(a_{472}= -0.54453119 \pm 7.3 \cdot 10^{-7} \) | \(a_{473}= -0.54667964 \pm 5.4 \cdot 10^{-7} \) | \(a_{474}= -0.53892674 \pm 6.5 \cdot 10^{-7} \) |
\(a_{475}= -1.11714651 \pm 4.0 \cdot 10^{-7} \) | \(a_{476}= +0.14775017 \pm 2.3 \cdot 10^{-7} \) | \(a_{477}= +0.61107300 \pm 8.1 \cdot 10^{-7} \) |
\(a_{478}= -1.09410697 \pm 8.7 \cdot 10^{-7} \) | \(a_{479}= -0.46509339 \pm 4.1 \cdot 10^{-7} \) | \(a_{480}= -1.56760555 \pm 4.5 \cdot 10^{-7} \) |
\(a_{481}= +0.56048009 \pm 3.3 \cdot 10^{-7} \) | \(a_{482}= -0.89854437 \pm 4.6 \cdot 10^{-7} \) | \(a_{483}= -0.15362017 \pm 2.2 \cdot 10^{-7} \) |
\(a_{484}= -0.04924349 \pm 5.2 \cdot 10^{-7} \) | \(a_{485}= +2.75314917 \pm 6.3 \cdot 10^{-7} \) | \(a_{486}= +0.54519320 \pm 6.4 \cdot 10^{-7} \) |
\(a_{487}= -1.65473039 \pm 8.1 \cdot 10^{-7} \) | \(a_{488}= +1.54900181 \pm 7.3 \cdot 10^{-7} \) | \(a_{489}= -1.67408387 \pm 7.4 \cdot 10^{-7} \) |
\(a_{490}= -0.89846420 \pm 5.5 \cdot 10^{-7} \) | \(a_{491}= -0.06354772 \pm 6.0 \cdot 10^{-7} \) | \(a_{492}= +0.49617755 \pm 4.4 \cdot 10^{-7} \) |
\(a_{493}= +0.86294413 \pm 6.1 \cdot 10^{-7} \) | \(a_{494}= -0.37273381 \pm 5.3 \cdot 10^{-7} \) | \(a_{495}= -0.18190965 \pm 1.3 \cdot 10^{-6} \) |
\(a_{496}= +0.04731342 \pm 5.3 \cdot 10^{-7} \) | \(a_{497}= +0.20702704 \pm 4.8 \cdot 10^{-7} \) | \(a_{498}= -0.12509783 \pm 5.4 \cdot 10^{-7} \) |
\(a_{499}= -1.75465358 \pm 8.0 \cdot 10^{-7} \) | \(a_{500}= +0.01543528 \pm 3.0 \cdot 10^{-7} \) | \(a_{501}= -0.04208926 \pm 6.8 \cdot 10^{-7} \) |
\(a_{502}= +0.34733495 \pm 5.3 \cdot 10^{-7} \) | \(a_{503}= +0.32421485 \pm 6.7 \cdot 10^{-7} \) | \(a_{504}= -0.10664570 \pm 4.7 \cdot 10^{-7} \) |
\(a_{505}= -2.19474326 \pm 7.4 \cdot 10^{-7} \) | \(a_{506}= -0.11008680 \pm 1.2 \cdot 10^{-6} \) | \(a_{507}= +0.91663177 \pm 3.9 \cdot 10^{-7} \) |
\(a_{508}= +0.97033938 \pm 4.8 \cdot 10^{-7} \) | \(a_{509}= +0.63035324 \pm 5.5 \cdot 10^{-7} \) | \(a_{510}= +1.30329863 \pm 5.0 \cdot 10^{-7} \) |
\(a_{511}= -0.17193615 \pm 3.7 \cdot 10^{-7} \) | \(a_{512}= -0.32581751 \pm 5.4 \cdot 10^{-7} \) | \(a_{513}= -0.77852806 \pm 3.6 \cdot 10^{-7} \) |
\(a_{514}= +0.41547292 \pm 8.5 \cdot 10^{-7} \) | \(a_{515}= +1.95675414 \pm 4.1 \cdot 10^{-7} \) | \(a_{516}= +1.17396544 \pm 4.3 \cdot 10^{-7} \) |
\(a_{517}= -0.30331271 \pm 6.7 \cdot 10^{-7} \) | \(a_{518}= +0.18725989 \pm 3.5 \cdot 10^{-7} \) | \(a_{519}= +0.22272657 \pm 8.2 \cdot 10^{-7} \) |
\(a_{520}= -0.70909067 \pm 4.1 \cdot 10^{-7} \) | \(a_{521}= +0.68596198 \pm 5.8 \cdot 10^{-7} \) | \(a_{522}= -0.21884959 \pm 5.6 \cdot 10^{-7} \) |
\(a_{523}= +0.29397858 \pm 6.2 \cdot 10^{-7} \) | \(a_{524}= -0.36008550 \pm 3.5 \cdot 10^{-7} \) | \(a_{525}= -0.27907197 \pm 4.4 \cdot 10^{-7} \) |
\(a_{526}= +0.93078773 \pm 7.0 \cdot 10^{-7} \) | \(a_{527}= +0.32841020 \pm 5.0 \cdot 10^{-7} \) | \(a_{528}= -0.05943265 \pm 1.4 \cdot 10^{-6} \) |
\(a_{529}= -0.70913410 \pm 7.5 \cdot 10^{-7} \) | \(a_{530}= +1.35748833 \pm 4.8 \cdot 10^{-7} \) | \(a_{531}= +0.22371285 \pm 1.1 \cdot 10^{-6} \) |
\(a_{532}= +0.14718193 \pm 2.5 \cdot 10^{-7} \) | \(a_{533}= +0.37002316 \pm 4.7 \cdot 10^{-7} \) | \(a_{534}= -0.38070717 \pm 7.7 \cdot 10^{-7} \) |
\(a_{535}= -1.35338429 \pm 4.0 \cdot 10^{-7} \) | \(a_{536}= -0.92950951 \pm 6.6 \cdot 10^{-7} \) | \(a_{537}= +0.92837936 \pm 7.6 \cdot 10^{-7} \) |
\(a_{538}= +0.25685104 \pm 6.0 \cdot 10^{-7} \) | \(a_{539}= +0.28438999 \pm 4.5 \cdot 10^{-7} \) | \(a_{540}= -0.52038524 \pm 6.7 \cdot 10^{-7} \) |
\(a_{541}= +1.37814318 \pm 5.9 \cdot 10^{-7} \) | \(a_{542}= +0.30015144 \pm 4.8 \cdot 10^{-7} \) | \(a_{543}= -2.01383197 \pm 1.1 \cdot 10^{-6} \) |
\(a_{544}= -1.06688228 \pm 4.5 \cdot 10^{-7} \) | \(a_{545}= -0.73974275 \pm 4.2 \cdot 10^{-7} \) | \(a_{546}= -0.09311183 \pm 4.7 \cdot 10^{-7} \) |
\(a_{547}= -1.53856357 \pm 7.8 \cdot 10^{-7} \) | \(a_{548}= +0.04208309 \pm 4.1 \cdot 10^{-7} \) | \(a_{549}= -0.63638523 \pm 5.1 \cdot 10^{-7} \) |
\(a_{550}= -0.19998767 \pm 1.1 \cdot 10^{-6} \) | \(a_{551}= +0.85962531 \pm 5.1 \cdot 10^{-7} \) | \(a_{552}= +0.67283710 \pm 3.1 \cdot 10^{-7} \) |
\(a_{553}= +0.15870012 \pm 3.8 \cdot 10^{-7} \) | \(a_{554}= +0.07585623 \pm 3.5 \cdot 10^{-7} \) | \(a_{555}= -1.95223395 \pm 4.5 \cdot 10^{-7} \) |
\(a_{556}= -0.77794287 \pm 7.2 \cdot 10^{-7} \) | \(a_{557}= -1.71826621 \pm 5.2 \cdot 10^{-7} \) | \(a_{558}= -0.08328748 \pm 4.6 \cdot 10^{-7} \) |
\(a_{559}= +0.87548176 \pm 3.9 \cdot 10^{-7} \) | \(a_{560}= -0.05529159 \pm 3.7 \cdot 10^{-7} \) | \(a_{561}= -0.41253183 \pm 1.2 \cdot 10^{-6} \) |
\(a_{562}= -0.64059563 \pm 6.2 \cdot 10^{-7} \) | \(a_{563}= +0.81277356 \pm 4.0 \cdot 10^{-7} \) | \(a_{564}= +0.65134789 \pm 4.7 \cdot 10^{-7} \) |
\(a_{565}= +2.54167282 \pm 4.1 \cdot 10^{-7} \) | \(a_{566}= -0.38624659 \pm 7.4 \cdot 10^{-7} \) | \(a_{567}= -0.29666206 \pm 2.7 \cdot 10^{-7} \) |
\(a_{568}= -0.90675253 \pm 6.5 \cdot 10^{-7} \) | \(a_{569}= +1.37185663 \pm 5.8 \cdot 10^{-7} \) | \(a_{570}= +1.29828624 \pm 4.7 \cdot 10^{-7} \) |
\(a_{571}= +0.44757450 \pm 7.1 \cdot 10^{-7} \) | \(a_{572}= +0.07886113 \pm 1.1 \cdot 10^{-6} \) | \(a_{573}= +0.16029614 \pm 4.6 \cdot 10^{-7} \) |
\(a_{574}= +0.12362704 \pm 6.3 \cdot 10^{-7} \) | \(a_{575}= +0.52839754 \pm 4.1 \cdot 10^{-7} \) | \(a_{576}= +0.34128047 \pm 5.6 \cdot 10^{-7} \) |
\(a_{577}= +1.26000223 \pm 7.3 \cdot 10^{-7} \) | \(a_{578}= +0.21000550 \pm 6.0 \cdot 10^{-7} \) | \(a_{579}= -1.45474894 \pm 4.6 \cdot 10^{-7} \) |
\(a_{580}= +0.57459242 \pm 7.8 \cdot 10^{-7} \) | \(a_{581}= +0.03683810 \pm 3.5 \cdot 10^{-7} \) | \(a_{582}= -1.58341420 \pm 1.0 \cdot 10^{-6} \) |
\(a_{583}= -0.42968444 \pm 6.8 \cdot 10^{-7} \) | \(a_{584}= +0.75305882 \pm 5.4 \cdot 10^{-7} \) | \(a_{585}= +0.29131975 \pm 4.5 \cdot 10^{-7} \) |
\(a_{586}= -0.56029839 \pm 5.6 \cdot 10^{-7} \) | \(a_{587}= -0.30485564 \pm 3.7 \cdot 10^{-7} \) | \(a_{588}= -0.61071237 \pm 4.2 \cdot 10^{-7} \) |
\(a_{589}= +0.32714716 \pm 3.7 \cdot 10^{-7} \) | \(a_{590}= +0.49697431 \pm 6.2 \cdot 10^{-7} \) | \(a_{591}= +0.80878209 \pm 4.9 \cdot 10^{-7} \) |
\(a_{592}= -0.19141644 \pm 4.0 \cdot 10^{-7} \) | \(a_{593}= +0.10839449 \pm 5.0 \cdot 10^{-7} \) | \(a_{594}= -0.13936937 \pm 1.1 \cdot 10^{-6} \) |
\(a_{595}= -0.38378805 \pm 2.7 \cdot 10^{-7} \) | \(a_{596}= -0.60904573 \pm 5.8 \cdot 10^{-7} \) | \(a_{597}= -0.04528716 \pm 8.3 \cdot 10^{-7} \) |
\(a_{598}= +0.17629883 \pm 9.1 \cdot 10^{-7} \) | \(a_{599}= -1.86565184 \pm 7.5 \cdot 10^{-7} \) | \(a_{600}= +1.22230028 \pm 6.0 \cdot 10^{-7} \) |
\(a_{601}= -0.12788010 \pm 4.4 \cdot 10^{-7} \) | \(a_{602}= +0.29250391 \pm 5.4 \cdot 10^{-7} \) | \(a_{603}= +0.38187568 \pm 7.9 \cdot 10^{-7} \) |
\(a_{604}= -0.45907215 \pm 2.6 \cdot 10^{-7} \) | \(a_{605}= +0.12791229 \pm 5.5 \cdot 10^{-7} \) | \(a_{606}= +1.26225912 \pm 1.1 \cdot 10^{-6} \) |
\(a_{607}= +1.87991278 \pm 7.0 \cdot 10^{-7} \) | \(a_{608}= -1.06277913 \pm 3.5 \cdot 10^{-7} \) | \(a_{609}= +0.21474115 \pm 2.6 \cdot 10^{-7} \) |
\(a_{610}= -1.41371902 \pm 7.0 \cdot 10^{-7} \) | \(a_{611}= +0.48574105 \pm 8.3 \cdot 10^{-7} \) | \(a_{612}= +0.26586297 \pm 3.5 \cdot 10^{-7} \) |
\(a_{613}= +0.95170869 \pm 9.2 \cdot 10^{-7} \) | \(a_{614}= +0.65122794 \pm 8.2 \cdot 10^{-7} \) | \(a_{615}= -1.28884465 \pm 7.0 \cdot 10^{-7} \) |
\(a_{616}= +0.07498940 \pm 1.1 \cdot 10^{-6} \) | \(a_{617}= +1.37238026 \pm 6.0 \cdot 10^{-7} \) | \(a_{618}= -1.12538482 \pm 8.5 \cdot 10^{-7} \) |
\(a_{619}= -0.33299620 \pm 5.3 \cdot 10^{-7} \) | \(a_{620}= +0.21867234 \pm 6.3 \cdot 10^{-7} \) | \(a_{621}= +0.36823488 \pm 2.9 \cdot 10^{-7} \) |
\(a_{622}= -1.05268977 \pm 6.7 \cdot 10^{-7} \) | \(a_{623}= +0.11210851 \pm 4.1 \cdot 10^{-7} \) | \(a_{624}= +0.09517860 \pm 6.0 \cdot 10^{-7} \) |
\(a_{625}= -1.01984186 \pm 3.2 \cdot 10^{-7} \) | \(a_{626}= -0.24047171 \pm 6.7 \cdot 10^{-7} \) | \(a_{627}= -0.41094527 \pm 1.3 \cdot 10^{-6} \) |
\(a_{628}= +0.53355919 \pm 5.1 \cdot 10^{-7} \) | \(a_{629}= -1.32865299 \pm 6.1 \cdot 10^{-7} \) | \(a_{630}= +0.09733175 \pm 4.1 \cdot 10^{-7} \) |
\(a_{631}= +1.26794084 \pm 4.3 \cdot 10^{-7} \) | \(a_{632}= -0.69508664 \pm 8.0 \cdot 10^{-7} \) | \(a_{633}= -0.16029774 \pm 4.9 \cdot 10^{-7} \) |
\(a_{634}= -0.86862722 \pm 7.2 \cdot 10^{-7} \) | \(a_{635}= -2.52050240 \pm 5.7 \cdot 10^{-7} \) | \(a_{636}= +0.92272448 \pm 3.6 \cdot 10^{-7} \) |
\(a_{637}= -0.45543720 \pm 4.6 \cdot 10^{-7} \) | \(a_{638}= +0.15388712 \pm 1.3 \cdot 10^{-6} \) | \(a_{639}= +0.37252630 \pm 8.3 \cdot 10^{-7} \) |
\(a_{640}= -0.55330267 \pm 5.5 \cdot 10^{-7} \) | \(a_{641}= +0.91170409 \pm 4.6 \cdot 10^{-7} \) | \(a_{642}= +0.77836970 \pm 3.3 \cdot 10^{-7} \) |
\(a_{643}= -0.19201498 \pm 6.3 \cdot 10^{-7} \) | \(a_{644}= -0.06961537 \pm 2.2 \cdot 10^{-7} \) | \(a_{645}= -3.04943073 \pm 5.5 \cdot 10^{-7} \) |
\(a_{646}= +0.88358872 \pm 5.4 \cdot 10^{-7} \) | \(a_{647}= +1.98089744 \pm 6.4 \cdot 10^{-7} \) | \(a_{648}= +1.29934269 \pm 4.4 \cdot 10^{-7} \) |
\(a_{649}= -0.15730679 \pm 8.4 \cdot 10^{-7} \) | \(a_{650}= +0.32027085 \pm 4.6 \cdot 10^{-7} \) | \(a_{651}= +0.08172393 \pm 3.4 \cdot 10^{-7} \) |
\(a_{652}= -0.75863720 \pm 5.7 \cdot 10^{-7} \) | \(a_{653}= +1.30390161 \pm 6.1 \cdot 10^{-7} \) | \(a_{654}= +0.42544704 \pm 5.7 \cdot 10^{-7} \) |
\(a_{655}= +0.93533910 \pm 4.4 \cdot 10^{-7} \) | \(a_{656}= -0.12637115 \pm 7.2 \cdot 10^{-7} \) | \(a_{657}= -0.30938344 \pm 6.7 \cdot 10^{-7} \) |
\(a_{658}= +0.16228911 \pm 2.9 \cdot 10^{-7} \) | \(a_{659}= -0.86066381 \pm 5.6 \cdot 10^{-7} \) | \(a_{660}= -0.27468483 \pm 1.8 \cdot 10^{-6} \) |
\(a_{661}= -0.27257691 \pm 5.9 \cdot 10^{-7} \) | \(a_{662}= +0.65679127 \pm 8.3 \cdot 10^{-7} \) | \(a_{663}= +0.66065034 \pm 4.8 \cdot 10^{-7} \) |
\(a_{664}= -0.16134629 \pm 7.4 \cdot 10^{-7} \) | \(a_{665}= -0.38231203 \pm 3.1 \cdot 10^{-7} \) | \(a_{666}= +0.33695711 \pm 5.5 \cdot 10^{-7} \) |
\(a_{667}= -0.40659295 \pm 7.1 \cdot 10^{-7} \) | \(a_{668}= -0.01907340 \pm 5.5 \cdot 10^{-7} \) | \(a_{669}= -1.27652474 \pm 7.1 \cdot 10^{-7} \) |
\(a_{670}= +0.84833037 \pm 6.0 \cdot 10^{-7} \) | \(a_{671}= +0.44748309 \pm 5.0 \cdot 10^{-7} \) | \(a_{672}= -0.26549057 \pm 3.8 \cdot 10^{-7} \) |
\(a_{673}= +0.30359704 \pm 5.5 \cdot 10^{-7} \) | \(a_{674}= +0.23895443 \pm 9.3 \cdot 10^{-7} \) | \(a_{675}= +0.66894883 \pm 3.6 \cdot 10^{-7} \) |
\(a_{676}= +0.41538597 \pm 4.2 \cdot 10^{-7} \) | \(a_{677}= -1.36906239 \pm 5.8 \cdot 10^{-7} \) | \(a_{678}= -1.46178815 \pm 7.4 \cdot 10^{-7} \) |
\(a_{679}= +0.46627491 \pm 5.5 \cdot 10^{-7} \) | \(a_{680}= +1.68094362 \pm 7.6 \cdot 10^{-7} \) | \(a_{681}= -0.36747836 \pm 7.1 \cdot 10^{-7} \) |
\(a_{682}= +0.05856474 \pm 1.2 \cdot 10^{-6} \) | \(a_{683}= +0.80529317 \pm 8.1 \cdot 10^{-7} \) | \(a_{684}= +0.26484048 \pm 2.3 \cdot 10^{-7} \) |
\(a_{685}= -0.10931282 \pm 4.0 \cdot 10^{-7} \) | \(a_{686}= -0.31348969 \pm 5.5 \cdot 10^{-7} \) | \(a_{687}= +0.76732143 \pm 4.8 \cdot 10^{-7} \) |
\(a_{688}= -0.29899653 \pm 5.7 \cdot 10^{-7} \) | \(a_{689}= +0.68811945 \pm 4.9 \cdot 10^{-7} \) | \(a_{690}= -0.61407456 \pm 2.8 \cdot 10^{-7} \) |
\(a_{691}= +0.11931415 \pm 4.7 \cdot 10^{-7} \) | \(a_{692}= +0.10093202 \pm 2.9 \cdot 10^{-7} \) | \(a_{693}= -0.03080832 \pm 1.1 \cdot 10^{-6} \) |
\(a_{694}= +0.50494302 \pm 5.4 \cdot 10^{-7} \) | \(a_{695}= +2.02074337 \pm 6.3 \cdot 10^{-7} \) | \(a_{696}= -0.94053935 \pm 5.5 \cdot 10^{-7} \) |
\(a_{697}= -0.87716295 \pm 3.5 \cdot 10^{-7} \) | \(a_{698}= -0.11076214 \pm 8.1 \cdot 10^{-7} \) | \(a_{699}= -0.39131421 \pm 3.1 \cdot 10^{-7} \) |
\(a_{700}= -0.12646581 \pm 3.2 \cdot 10^{-7} \) | \(a_{701}= +0.34010819 \pm 7.8 \cdot 10^{-7} \) | \(a_{702}= +0.22319350 \pm 4.0 \cdot 10^{-7} \) |
\(a_{703}= -1.32354309 \pm 5.5 \cdot 10^{-7} \) | \(a_{704}= -0.23997609 \pm 4.8 \cdot 10^{-7} \) | \(a_{705}= -1.69190694 \pm 4.5 \cdot 10^{-7} \) |
\(a_{706}= -0.74702458 \pm 4.9 \cdot 10^{-7} \) | \(a_{707}= -0.37170297 \pm 5.9 \cdot 10^{-7} \) | \(a_{708}= +0.33780796 \pm 3.3 \cdot 10^{-7} \) |
\(a_{709}= -1.25571096 \pm 8.8 \cdot 10^{-7} \) | \(a_{710}= +0.82756088 \pm 5.0 \cdot 10^{-7} \) | \(a_{711}= +0.28556640 \pm 6.3 \cdot 10^{-7} \) |
\(a_{712}= -0.49102122 \pm 5.0 \cdot 10^{-7} \) | \(a_{713}= -0.15473687 \pm 3.5 \cdot 10^{-7} \) | \(a_{714}= +0.22072740 \pm 3.4 \cdot 10^{-7} \) |
\(a_{715}= -0.20484552 \pm 1.1 \cdot 10^{-6} \) | \(a_{716}= +0.42070958 \pm 5.1 \cdot 10^{-7} \) | \(a_{717}= +1.93178675 \pm 1.1 \cdot 10^{-6} \) |
\(a_{718}= -0.14843156 \pm 8.1 \cdot 10^{-7} \) | \(a_{719}= -0.37926082 \pm 6.8 \cdot 10^{-7} \) | \(a_{720}= -0.09949219 \pm 5.6 \cdot 10^{-7} \) |
\(a_{721}= +0.33139699 \pm 4.2 \cdot 10^{-7} \) | \(a_{722}= +0.20319595 \pm 5.9 \cdot 10^{-7} \) | \(a_{723}= +1.58649579 \pm 4.6 \cdot 10^{-7} \) |
\(a_{724}= -0.91259935 \pm 7.3 \cdot 10^{-7} \) | \(a_{725}= -0.73863150 \pm 4.2 \cdot 10^{-7} \) | \(a_{726}= -0.07356599 \pm 1.4 \cdot 10^{-6} \) |
\(a_{727}= -0.47351534 \pm 6.1 \cdot 10^{-7} \) | \(a_{728}= -0.12009200 \pm 4.0 \cdot 10^{-7} \) | \(a_{729}= +0.28232069 \pm 7.6 \cdot 10^{-7} \) |
\(a_{730}= -0.68729008 \pm 4.6 \cdot 10^{-7} \) | \(a_{731}= -2.07538408 \pm 4.2 \cdot 10^{-7} \) | \(a_{732}= -0.96094612 \pm 5.5 \cdot 10^{-7} \) |
\(a_{733}= -0.25812659 \pm 8.5 \cdot 10^{-7} \) | \(a_{734}= -1.04408545 \pm 6.5 \cdot 10^{-7} \) | \(a_{735}= +1.58635424 \pm 3.3 \cdot 10^{-7} \) |
\(a_{736}= +0.50268239 \pm 3.6 \cdot 10^{-7} \) | \(a_{737}= -0.26852118 \pm 6.3 \cdot 10^{-7} \) | \(a_{738}= +0.22245560 \pm 9.1 \cdot 10^{-7} \) |
\(a_{739}= +0.55067437 \pm 7.8 \cdot 10^{-7} \) | \(a_{740}= -0.88468525 \pm 4.9 \cdot 10^{-7} \) | \(a_{741}= +0.65810953 \pm 6.0 \cdot 10^{-7} \) |
\(a_{742}= +0.22990500 \pm 4.8 \cdot 10^{-7} \) | \(a_{743}= +0.52874739 \pm 5.2 \cdot 10^{-7} \) | \(a_{744}= -0.35794057 \pm 5.0 \cdot 10^{-7} \) |
\(a_{745}= +1.58202508 \pm 6.5 \cdot 10^{-7} \) | \(a_{746}= +0.23849384 \pm 7.4 \cdot 10^{-7} \) | \(a_{747}= +0.06628681 \pm 4.7 \cdot 10^{-7} \) |
\(a_{748}= -0.18694523 \pm 1.0 \cdot 10^{-6} \) | \(a_{749}= -0.22920993 \pm 2.5 \cdot 10^{-7} \) | \(a_{750}= +0.02305912 \pm 7.2 \cdot 10^{-7} \) |
\(a_{751}= +1.83252401 \pm 8.1 \cdot 10^{-7} \) | \(a_{752}= -0.16589139 \pm 7.8 \cdot 10^{-7} \) | \(a_{753}= -0.61326459 \pm 5.2 \cdot 10^{-7} \) |
\(a_{754}= -0.24644299 \pm 7.7 \cdot 10^{-7} \) | \(a_{755}= +1.19246162 \pm 3.3 \cdot 10^{-7} \) | \(a_{756}= -0.08813274 \pm 3.9 \cdot 10^{-7} \) |
\(a_{757}= -0.07579400 \pm 7.5 \cdot 10^{-7} \) | \(a_{758}= +0.11494792 \pm 7.3 \cdot 10^{-7} \) | \(a_{759}= +0.19437242 \pm 1.2 \cdot 10^{-6} \) |
\(a_{760}= +1.67447884 \pm 4.0 \cdot 10^{-7} \) | \(a_{761}= +0.25760940 \pm 4.5 \cdot 10^{-7} \) | \(a_{762}= +1.44961244 \pm 7.5 \cdot 10^{-7} \) |
\(a_{763}= -0.12528325 \pm 2.8 \cdot 10^{-7} \) | \(a_{764}= +0.07264069 \pm 5.7 \cdot 10^{-7} \) | \(a_{765}= -0.69059163 \pm 4.6 \cdot 10^{-7} \) |
\(a_{766}= +0.02633862 \pm 7.6 \cdot 10^{-7} \) | \(a_{767}= +0.25191943 \pm 6.4 \cdot 10^{-7} \) | \(a_{768}= +1.26958882 \pm 4.9 \cdot 10^{-7} \) |
\(a_{769}= -0.29445585 \pm 7.1 \cdot 10^{-7} \) | \(a_{770}= -0.06844016 \pm 1.6 \cdot 10^{-6} \) | \(a_{771}= -0.73357094 \pm 5.5 \cdot 10^{-7} \) |
\(a_{772}= -0.65924216 \pm 3.7 \cdot 10^{-7} \) | \(a_{773}= +1.25964410 \pm 5.3 \cdot 10^{-7} \) | \(a_{774}= +0.52633414 \pm 6.3 \cdot 10^{-7} \) |
\(a_{775}= -0.28110061 \pm 3.7 \cdot 10^{-7} \) | \(a_{776}= -2.04222573 \pm 7.8 \cdot 10^{-7} \) | \(a_{777}= -0.33063145 \pm 4.5 \cdot 10^{-7} \) |
\(a_{778}= -0.62575857 \pm 6.6 \cdot 10^{-7} \) | \(a_{779}= -0.87378945 \pm 5.2 \cdot 10^{-7} \) | \(a_{780}= +0.43989486 \pm 2.8 \cdot 10^{-7} \) |
\(a_{781}= -0.26194703 \pm 6.6 \cdot 10^{-7} \) | \(a_{782}= -0.41792737 \pm 3.0 \cdot 10^{-7} \) | \(a_{783}= -0.51474479 \pm 4.7 \cdot 10^{-7} \) |
\(a_{784}= +0.15554195 \pm 5.2 \cdot 10^{-7} \) | \(a_{785}= -1.38594522 \pm 4.7 \cdot 10^{-7} \) | \(a_{786}= -0.53794005 \pm 3.1 \cdot 10^{-7} \) |
\(a_{787}= +1.28649314 \pm 4.6 \cdot 10^{-7} \) | \(a_{788}= +0.36651221 \pm 6.7 \cdot 10^{-7} \) | \(a_{789}= -1.64342560 \pm 7.5 \cdot 10^{-7} \) |
\(a_{790}= +0.63438092 \pm 7.9 \cdot 10^{-7} \) | \(a_{791}= +0.43045915 \pm 3.8 \cdot 10^{-7} \) | \(a_{792}= +0.13493659 \pm 1.4 \cdot 10^{-6} \) |
\(a_{793}= -0.71662314 \pm 4.3 \cdot 10^{-7} \) | \(a_{794}= -0.58006177 \pm 9.0 \cdot 10^{-7} \) | \(a_{795}= -2.39682044 \pm 6.3 \cdot 10^{-7} \) |
\(a_{796}= -0.02052258 \pm 7.0 \cdot 10^{-7} \) | \(a_{797}= +0.14157402 \pm 4.8 \cdot 10^{-7} \) | \(a_{798}= +0.21987850 \pm 6.0 \cdot 10^{-7} \) |
\(a_{799}= -1.15147942 \pm 4.8 \cdot 10^{-7} \) | \(a_{800}= +0.91319105 \pm 3.8 \cdot 10^{-7} \) | \(a_{801}= +0.20172904 \pm 7.0 \cdot 10^{-7} \) |
\(a_{802}= +1.11766778 \pm 5.8 \cdot 10^{-7} \) | \(a_{803}= +0.21754725 \pm 5.7 \cdot 10^{-7} \) | \(a_{804}= +0.57663494 \pm 4.5 \cdot 10^{-7} \) |
\(a_{805}= +0.18082922 \pm 2.1 \cdot 10^{-7} \) | \(a_{806}= -0.09378868 \pm 4.3 \cdot 10^{-7} \) | \(a_{807}= -0.45350359 \pm 3.8 \cdot 10^{-7} \) |
\(a_{808}= +1.62801246 \pm 9.2 \cdot 10^{-7} \) | \(a_{809}= +1.80404149 \pm 8.8 \cdot 10^{-7} \) | \(a_{810}= -1.18586400 \pm 3.9 \cdot 10^{-7} \) |
\(a_{811}= -0.45605671 \pm 5.5 \cdot 10^{-7} \) | \(a_{812}= +0.09731330 \pm 2.5 \cdot 10^{-7} \) | \(a_{813}= -0.52995601 \pm 5.3 \cdot 10^{-7} \) |
\(a_{814}= -0.23693606 \pm 1.2 \cdot 10^{-6} \) | \(a_{815}= +1.97059599 \pm 5.0 \cdot 10^{-7} \) | \(a_{816}= -0.22562681 \pm 5.7 \cdot 10^{-7} \) |
\(a_{817}= -2.06740231 \pm 4.6 \cdot 10^{-7} \) | \(a_{818}= +0.92296944 \pm 4.9 \cdot 10^{-7} \) | \(a_{819}= +0.04933808 \pm 4.3 \cdot 10^{-7} \) |
\(a_{820}= -0.58406004 \pm 5.4 \cdot 10^{-7} \) | \(a_{821}= -1.37037482 \pm 5.3 \cdot 10^{-7} \) | \(a_{822}= +0.06286891 \pm 5.6 \cdot 10^{-7} \) |
\(a_{823}= +0.87832283 \pm 4.0 \cdot 10^{-7} \) | \(a_{824}= -1.45147734 \pm 5.1 \cdot 10^{-7} \) | \(a_{825}= +0.35310398 \pm 1.2 \cdot 10^{-6} \) |
\(a_{826}= +0.08416785 \pm 7.3 \cdot 10^{-7} \) | \(a_{827}= +0.77069219 \pm 4.9 \cdot 10^{-7} \) | \(a_{828}= -0.12526652 \pm 2.4 \cdot 10^{-7} \) |
\(a_{829}= +1.75144671 \pm 4.7 \cdot 10^{-7} \) | \(a_{830}= +0.14725503 \pm 7.7 \cdot 10^{-7} \) | \(a_{831}= -0.13393394 \pm 3.6 \cdot 10^{-7} \) |
\(a_{832}= +0.38431043 \pm 4.4 \cdot 10^{-7} \) | \(a_{833}= +1.07964227 \pm 4.1 \cdot 10^{-7} \) | \(a_{834}= -1.16218684 \pm 1.0 \cdot 10^{-6} \) |
\(a_{835}= +0.04954407 \pm 4.5 \cdot 10^{-7} \) | \(a_{836}= -0.18622625 \pm 1.1 \cdot 10^{-6} \) | \(a_{837}= -0.19589616 \pm 4.5 \cdot 10^{-7} \) |
\(a_{838}= +0.17758431 \pm 5.8 \cdot 10^{-7} \) | \(a_{839}= +0.83465666 \pm 7.2 \cdot 10^{-7} \) | \(a_{840}= +0.41829796 \pm 4.3 \cdot 10^{-7} \) |
\(a_{841}= -0.43163558 \pm 7.0 \cdot 10^{-7} \) | \(a_{842}= -0.76943664 \pm 5.7 \cdot 10^{-7} \) | \(a_{843}= +1.13105408 \pm 5.4 \cdot 10^{-7} \) |
\(a_{844}= -0.07264142 \pm 5.0 \cdot 10^{-7} \) | \(a_{845}= -1.07898470 \pm 4.5 \cdot 10^{-7} \) | \(a_{846}= +0.29202447 \pm 6.3 \cdot 10^{-7} \) |
\(a_{847}= +0.02166330 \pm 4.4 \cdot 10^{-7} \) | \(a_{848}= -0.23500812 \pm 6.3 \cdot 10^{-7} \) | \(a_{849}= +0.68196809 \pm 9.5 \cdot 10^{-7} \) |
\(a_{850}= -0.75922201 \pm 5.0 \cdot 10^{-7} \) | \(a_{851}= +0.62602076 \pm 2.0 \cdot 10^{-7} \) | \(a_{852}= +0.56251731 \pm 4.0 \cdot 10^{-7} \) |
\(a_{853}= +0.26893098 \pm 5.8 \cdot 10^{-7} \) | \(a_{854}= -0.23942826 \pm 3.8 \cdot 10^{-7} \) | \(a_{855}= -0.68793567 \pm 4.5 \cdot 10^{-7} \) |
\(a_{856}= +1.00391081 \pm 4.5 \cdot 10^{-7} \) | \(a_{857}= -1.60641546 \pm 6.8 \cdot 10^{-7} \) | \(a_{858}= +0.11781247 \pm 2.0 \cdot 10^{-6} \) |
\(a_{859}= -0.02455155 \pm 5.2 \cdot 10^{-7} \) | \(a_{860}= -1.38189707 \pm 5.8 \cdot 10^{-7} \) | \(a_{861}= -0.21827946 \pm 7.8 \cdot 10^{-7} \) |
\(a_{862}= +0.39126127 \pm 5.7 \cdot 10^{-7} \) | \(a_{863}= +1.10253843 \pm 5.0 \cdot 10^{-7} \) | \(a_{864}= +0.63639357 \pm 4.0 \cdot 10^{-7} \) |
\(a_{865}= -0.26217569 \pm 4.9 \cdot 10^{-7} \) | \(a_{866}= +0.23405687 \pm 4.4 \cdot 10^{-7} \) | \(a_{867}= -0.37079175 \pm 7.7 \cdot 10^{-7} \) |
\(a_{868}= +0.03703447 \pm 2.0 \cdot 10^{-7} \) | \(a_{869}= -0.20079997 \pm 6.8 \cdot 10^{-7} \) | \(a_{870}= +0.85839691 \pm 5.2 \cdot 10^{-7} \) |
\(a_{871}= +0.43002405 \pm 6.0 \cdot 10^{-7} \) | \(a_{872}= +0.54872496 \pm 6.4 \cdot 10^{-7} \) | \(a_{873}= +0.83901922 \pm 9.8 \cdot 10^{-7} \) |
\(a_{874}= -0.41632005 \pm 3.8 \cdot 10^{-7} \) | \(a_{875}= -0.00679032 \pm 3.9 \cdot 10^{-7} \) | \(a_{876}= -0.46717115 \pm 3.3 \cdot 10^{-7} \) |
\(a_{877}= -1.09001066 \pm 6.2 \cdot 10^{-7} \) | \(a_{878}= +0.02116247 \pm 4.7 \cdot 10^{-7} \) | \(a_{879}= +0.98927895 \pm 7.4 \cdot 10^{-7} \) |
\(a_{880}= +0.06995931 \pm 1.2 \cdot 10^{-6} \) | \(a_{881}= -0.91411714 \pm 5.6 \cdot 10^{-7} \) | \(a_{882}= -0.27380599 \pm 4.4 \cdot 10^{-7} \) |
\(a_{883}= +0.62419270 \pm 6.6 \cdot 10^{-7} \) | \(a_{884}= +0.29938400 \pm 2.5 \cdot 10^{-7} \) | \(a_{885}= -0.87747214 \pm 8.4 \cdot 10^{-7} \) |
\(a_{886}= +0.50153906 \pm 6.8 \cdot 10^{-7} \) | \(a_{887}= +0.25926102 \pm 7.2 \cdot 10^{-7} \) | \(a_{888}= +1.44812436 \pm 5.1 \cdot 10^{-7} \) |
\(a_{889}= -0.42687372 \pm 4.4 \cdot 10^{-7} \) | \(a_{890}= +0.44813765 \pm 4.5 \cdot 10^{-7} \) | \(a_{891}= +0.37536036 \pm 4.3 \cdot 10^{-7} \) |
\(a_{892}= -0.57847709 \pm 4.1 \cdot 10^{-7} \) | \(a_{893}= -1.14705092 \pm 4.4 \cdot 10^{-7} \) | \(a_{894}= -0.90986751 \pm 4.9 \cdot 10^{-7} \) |
\(a_{895}= -1.09281302 \pm 6.4 \cdot 10^{-7} \) | \(a_{896}= -0.09370766 \pm 4.9 \cdot 10^{-7} \) | \(a_{897}= -0.31127829 \pm 2.4 \cdot 10^{-7} \) |
\(a_{898}= +0.30577153 \pm 5.2 \cdot 10^{-7} \) | \(a_{899}= +0.21630216 \pm 6.2 \cdot 10^{-7} \) | \(a_{900}= -0.22756371 \pm 3.4 \cdot 10^{-7} \) |
\(a_{901}= -1.63123003 \pm 5.6 \cdot 10^{-7} \) | \(a_{902}= -0.15642274 \pm 1.3 \cdot 10^{-6} \) | \(a_{903}= -0.51645332 \pm 5.6 \cdot 10^{-7} \) |
\(a_{904}= -1.88535720 \pm 7.7 \cdot 10^{-7} \) | \(a_{905}= +2.37051995 \pm 7.1 \cdot 10^{-7} \) | \(a_{906}= -0.68581851 \pm 4.1 \cdot 10^{-7} \) |
\(a_{907}= -1.39849836 \pm 6.5 \cdot 10^{-7} \) | \(a_{908}= -0.16652855 \pm 3.9 \cdot 10^{-7} \) | \(a_{909}= -0.66884562 \pm 1.1 \cdot 10^{-6} \) |
\(a_{910}= +0.10960371 \pm 3.4 \cdot 10^{-7} \) | \(a_{911}= -0.51471501 \pm 7.5 \cdot 10^{-7} \) | \(a_{912}= -0.22475907 \pm 7.4 \cdot 10^{-7} \) |
\(a_{913}= -0.04661049 \pm 5.3 \cdot 10^{-7} \) | \(a_{914}= +1.01918104 \pm 5.5 \cdot 10^{-7} \) | \(a_{915}= +2.49610297 \pm 4.8 \cdot 10^{-7} \) |
\(a_{916}= +0.34772367 \pm 6.0 \cdot 10^{-7} \) | \(a_{917}= +0.15840956 \pm 2.4 \cdot 10^{-7} \) | \(a_{918}= -0.52909411 \pm 4.5 \cdot 10^{-7} \) |
\(a_{919}= +1.46548752 \pm 6.8 \cdot 10^{-7} \) | \(a_{920}= -0.79200936 \pm 4.5 \cdot 10^{-7} \) | \(a_{921}= -1.14982679 \pm 1.0 \cdot 10^{-6} \) |
\(a_{922}= +0.10933285 \pm 4.2 \cdot 10^{-7} \) | \(a_{923}= +0.41949586 \pm 5.7 \cdot 10^{-7} \) | \(a_{924}= -0.04652078 \pm 1.6 \cdot 10^{-6} \) |
\(a_{925}= +1.13725202 \pm 3.4 \cdot 10^{-7} \) | \(a_{926}= +0.39448814 \pm 7.5 \cdot 10^{-7} \) | \(a_{927}= +0.59631870 \pm 7.5 \cdot 10^{-7} \) |
\(a_{928}= -0.70268504 \pm 5.8 \cdot 10^{-7} \) | \(a_{929}= -0.93170045 \pm 4.6 \cdot 10^{-7} \) | \(a_{930}= +0.32667967 \pm 4.9 \cdot 10^{-7} \) |
\(a_{931}= +1.07549005 \pm 3.5 \cdot 10^{-7} \) | \(a_{932}= -0.17733013 \pm 4.8 \cdot 10^{-7} \) | \(a_{933}= +1.85865934 \pm 5.2 \cdot 10^{-7} \) |
\(a_{934}= +0.35354720 \pm 3.3 \cdot 10^{-7} \) | \(a_{935}= +0.48559907 \pm 1.1 \cdot 10^{-6} \) | \(a_{936}= -0.21609461 \pm 5.7 \cdot 10^{-7} \) |
\(a_{937}= -0.14970727 \pm 6.8 \cdot 10^{-7} \) | \(a_{938}= +0.14367371 \pm 5.2 \cdot 10^{-7} \) | \(a_{939}= +0.42458377 \pm 8.5 \cdot 10^{-7} \) |
\(a_{940}= -0.76671401 \pm 7.5 \cdot 10^{-7} \) | \(a_{941}= -0.88614893 \pm 6.2 \cdot 10^{-7} \) | \(a_{942}= +0.79709642 \pm 3.9 \cdot 10^{-7} \) |
\(a_{943}= +0.41329243 \pm 2.1 \cdot 10^{-7} \) | \(a_{944}= -0.08603610 \pm 9.2 \cdot 10^{-7} \) | \(a_{945}= +0.22892896 \pm 2.7 \cdot 10^{-7} \) |
\(a_{946}= -0.37009914 \pm 1.2 \cdot 10^{-6} \) | \(a_{947}= -0.25607166 \pm 4.8 \cdot 10^{-7} \) | \(a_{948}= +0.43120725 \pm 5.7 \cdot 10^{-7} \) |
\(a_{949}= -0.34839170 \pm 6.6 \cdot 10^{-7} \) | \(a_{950}= -0.75630211 \pm 4.0 \cdot 10^{-7} \) | \(a_{951}= +1.53367322 \pm 6.2 \cdot 10^{-7} \) |
\(a_{952}= +0.28468557 \pm 3.1 \cdot 10^{-7} \) | \(a_{953}= -1.02344483 \pm 4.6 \cdot 10^{-7} \) | \(a_{954}= +0.41369309 \pm 8.2 \cdot 10^{-7} \) |
\(a_{955}= -0.18868763 \pm 4.8 \cdot 10^{-7} \) | \(a_{956}= +0.87541928 \pm 5.2 \cdot 10^{-7} \) | \(a_{957}= -0.27170753 \pm 1.4 \cdot 10^{-6} \) |
\(a_{958}= -0.31486569 \pm 4.4 \cdot 10^{-7} \) | \(a_{959}= -0.01851328 \pm 2.8 \cdot 10^{-7} \) | \(a_{960}= -1.33860931 \pm 4.1 \cdot 10^{-7} \) |
\(a_{961}= -0.91768200 \pm 5.0 \cdot 10^{-7} \) | \(a_{962}= +0.37944197 \pm 3.1 \cdot 10^{-7} \) | \(a_{963}= -0.41244239 \pm 3.9 \cdot 10^{-7} \) |
\(a_{964}= +0.71894530 \pm 4.9 \cdot 10^{-7} \) | \(a_{965}= +1.71241268 \pm 5.1 \cdot 10^{-7} \) | \(a_{966}= -0.10400002 \pm 2.6 \cdot 10^{-7} \) |
\(a_{967}= +0.13444070 \pm 6.5 \cdot 10^{-7} \) | \(a_{968}= -0.09488253 \pm 7.0 \cdot 10^{-7} \) | \(a_{969}= -1.56008966 \pm 8.7 \cdot 10^{-7} \) |
\(a_{970}= +1.86386700 \pm 7.1 \cdot 10^{-7} \) | \(a_{971}= +0.08619441 \pm 5.4 \cdot 10^{-7} \) | \(a_{972}= -0.43622118 \pm 3.7 \cdot 10^{-7} \) |
\(a_{973}= +0.34223425 \pm 5.0 \cdot 10^{-7} \) | \(a_{974}= -1.12024346 \pm 8.9 \cdot 10^{-7} \) | \(a_{975}= -0.56547943 \pm 4.0 \cdot 10^{-7} \) |
\(a_{976}= +0.24474277 \pm 7.1 \cdot 10^{-7} \) | \(a_{977}= -0.36653086 \pm 8.5 \cdot 10^{-7} \) | \(a_{978}= -1.13334566 \pm 8.4 \cdot 10^{-7} \) |
\(a_{979}= -0.14184857 \pm 5.4 \cdot 10^{-7} \) | \(a_{980}= +0.71888115 \pm 6.3 \cdot 10^{-7} \) | \(a_{981}= -0.22543580 \pm 4.3 \cdot 10^{-7} \) |
\(a_{982}= -0.04302146 \pm 5.4 \cdot 10^{-7} \) | \(a_{983}= +1.00564458 \pm 7.5 \cdot 10^{-7} \) | \(a_{984}= +0.95603672 \pm 8.2 \cdot 10^{-7} \) |
\(a_{985}= -0.95203280 \pm 4.3 \cdot 10^{-7} \) | \(a_{986}= +0.58420848 \pm 5.7 \cdot 10^{-7} \) | \(a_{987}= -0.28654232 \pm 2.5 \cdot 10^{-7} \) |
\(a_{988}= +0.29823259 \pm 2.1 \cdot 10^{-7} \) | \(a_{989}= +0.97785768 \pm 2.1 \cdot 10^{-7} \) | \(a_{990}= -0.12315184 \pm 1.9 \cdot 10^{-6} \) |
\(a_{991}= -1.12258930 \pm 6.2 \cdot 10^{-7} \) | \(a_{992}= -0.26742048 \pm 4.1 \cdot 10^{-7} \) | \(a_{993}= -1.15964956 \pm 9.5 \cdot 10^{-7} \) |
\(a_{994}= +0.14015618 \pm 5.4 \cdot 10^{-7} \) | \(a_{995}= +0.05330838 \pm 6.1 \cdot 10^{-7} \) | \(a_{996}= +0.10009355 \pm 6.8 \cdot 10^{-7} \) |
\(a_{997}= +0.48321295 \pm 6.5 \cdot 10^{-7} \) | \(a_{998}= -1.18789092 \pm 9.2 \cdot 10^{-7} \) | \(a_{999}= +0.79253938 \pm 4.2 \cdot 10^{-7} \) |
\(a_{1000}= +0.02974076 \pm 5.3 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000