Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(14.6195267863392865081993436122 \pm 4 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.92269644 \pm 8.7 \cdot 10^{-7} \) | \(a_{3}= +1.51571954 \pm 9.3 \cdot 10^{-7} \) |
\(a_{4}= +2.69676159 \pm 6.5 \cdot 10^{-7} \) | \(a_{5}= -0.56817807 \pm 6.9 \cdot 10^{-7} \) | \(a_{6}= +2.91426856 \pm 9.9 \cdot 10^{-7} \) |
\(a_{7}= +0.87209295 \pm 5.4 \cdot 10^{-7} \) | \(a_{8}= +3.26235745 \pm 8.8 \cdot 10^{-7} \) | \(a_{9}= +1.29740572 \pm 9.3 \cdot 10^{-7} \) |
\(a_{10}= -1.09243395 \pm 8.0 \cdot 10^{-7} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +4.08753423 \pm 6.1 \cdot 10^{-7} \) |
\(a_{13}= +0.12065055 \pm 7.7 \cdot 10^{-7} \) | \(a_{14}= +1.67677000 \pm 6.2 \cdot 10^{-7} \) | \(a_{15}= -0.86119860 \pm 7.6 \cdot 10^{-7} \) |
\(a_{16}= +3.57576146 \pm 9.1 \cdot 10^{-7} \) | \(a_{17}= -1.83239465 \pm 6.8 \cdot 10^{-7} \) | \(a_{18}= +2.49451736 \pm 9.6 \cdot 10^{-7} \) |
\(a_{19}= -0.28643798 \pm 7.3 \cdot 10^{-7} \) | \(a_{20}= -1.53224079 \pm 8.5 \cdot 10^{-7} \) | \(a_{21}= +1.32184832 \pm 7.5 \cdot 10^{-7} \) |
\(a_{22}= -0.57971479 \pm 8.9 \cdot 10^{-7} \) | \(a_{23}= +1.46712420 \pm 6.9 \cdot 10^{-7} \) | \(a_{24}= +4.94481894 \pm 9.2 \cdot 10^{-7} \) |
\(a_{25}= -0.67717368 \pm 6.1 \cdot 10^{-7} \) | \(a_{26}= +0.23197438 \pm 8.4 \cdot 10^{-7} \) | \(a_{27}= +0.45078367 \pm 6.0 \cdot 10^{-7} \) |
\(a_{28}= +2.35182676 \pm 4.3 \cdot 10^{-7} \) | \(a_{29}= +0.72900718 \pm 8.3 \cdot 10^{-7} \) | \(a_{30}= -1.65582348 \pm 8.0 \cdot 10^{-7} \) |
\(a_{31}= -0.49381992 \pm 6.5 \cdot 10^{-7} \) | \(a_{32}= +3.61274637 \pm 5.8 \cdot 10^{-7} \) | \(a_{33}= -0.45700664 \pm 9.4 \cdot 10^{-7} \) |
\(a_{34}= -3.52313867 \pm 6.5 \cdot 10^{-7} \) | \(a_{35}= -0.49550409 \pm 4.6 \cdot 10^{-7} \) | \(a_{36}= +3.49879392 \pm 4.4 \cdot 10^{-7} \) |
\(a_{37}= +0.80736911 \pm 6.9 \cdot 10^{-7} \) | \(a_{38}= -0.55073328 \pm 7.1 \cdot 10^{-7} \) | \(a_{39}= +0.18287239 \pm 6.8 \cdot 10^{-7} \) |
\(a_{40}= -1.85359996 \pm 9.1 \cdot 10^{-7} \) | \(a_{41}= -1.26331962 \pm 8.0 \cdot 10^{-7} \) | \(a_{42}= +2.54151305 \pm 8.3 \cdot 10^{-7} \) |
\(a_{43}= -0.76037262 \pm 6.7 \cdot 10^{-7} \) | \(a_{44}= -0.81310421 \pm 6.6 \cdot 10^{-7} \) | \(a_{45}= -0.73715748 \pm 7.0 \cdot 10^{-7} \) |
\(a_{46}= +2.82083448 \pm 7.9 \cdot 10^{-7} \) | \(a_{47}= -0.28942525 \pm 8.3 \cdot 10^{-7} \) | \(a_{48}= +5.41985152 \pm 1.0 \cdot 10^{-6} \) |
\(a_{49}= -0.23945389 \pm 5.6 \cdot 10^{-7} \) | \(a_{50}= -1.30199943 \pm 6.8 \cdot 10^{-7} \) | \(a_{51}= -2.77739638 \pm 7.7 \cdot 10^{-7} \) |
\(a_{52}= +0.32536576 \pm 3.8 \cdot 10^{-7} \) | \(a_{53}= +0.58139249 \pm 8.5 \cdot 10^{-7} \) | \(a_{54}= +0.86672015 \pm 7.1 \cdot 10^{-7} \) |
\(a_{55}= +0.17131213 \pm 7.0 \cdot 10^{-7} \) | \(a_{56}= +2.84507893 \pm 5.7 \cdot 10^{-7} \) | \(a_{57}= -0.43415964 \pm 9.4 \cdot 10^{-7} \) |
\(a_{58}= +1.40165950 \pm 8.7 \cdot 10^{-7} \) | \(a_{59}= +0.29069674 \pm 1.0 \cdot 10^{-6} \) | \(a_{60}= -2.32244730 \pm 7.9 \cdot 10^{-7} \) |
\(a_{61}= +0.12652847 \pm 6.2 \cdot 10^{-7} \) | \(a_{62}= -0.94946580 \pm 6.6 \cdot 10^{-7} \) | \(a_{63}= +1.13145838 \pm 7.0 \cdot 10^{-7} \) |
\(a_{64}= +3.37045311 \pm 5.9 \cdot 10^{-7} \) | \(a_{65}= -0.06855099 \pm 5.4 \cdot 10^{-7} \) | \(a_{66}= -0.87868503 \pm 1.8 \cdot 10^{-6} \) |
\(a_{67}= +1.41419060 \pm 7.8 \cdot 10^{-7} \) | \(a_{68}= -4.94153152 \pm 6.9 \cdot 10^{-7} \) | \(a_{69}= +2.22374882 \pm 3.6 \cdot 10^{-7} \) |
\(a_{70}= -0.95270394 \pm 5.3 \cdot 10^{-7} \) | \(a_{71}= -0.05795119 \pm 8.2 \cdot 10^{-7} \) | \(a_{72}= +4.23260123 \pm 8.1 \cdot 10^{-7} \) |
\(a_{73}= -0.53190022 \pm 7.1 \cdot 10^{-7} \) | \(a_{74}= +1.55232571 \pm 5.8 \cdot 10^{-7} \) | \(a_{75}= -1.02640538 \pm 7.3 \cdot 10^{-7} \) |
\(a_{76}= -0.77245494 \pm 3.5 \cdot 10^{-7} \) | \(a_{77}= -0.26294592 \pm 5.5 \cdot 10^{-7} \) | \(a_{78}= +0.35160810 \pm 7.1 \cdot 10^{-7} \) |
\(a_{79}= +1.11192063 \pm 8.5 \cdot 10^{-7} \) | \(a_{80}= -2.03166924 \pm 8.5 \cdot 10^{-7} \) | \(a_{81}= -0.61414411 \pm 5.3 \cdot 10^{-7} \) |
\(a_{82}= -2.42898014 \pm 8.9 \cdot 10^{-7} \) | \(a_{83}= -0.26171965 \pm 6.6 \cdot 10^{-7} \) | \(a_{84}= +3.56470977 \pm 4.8 \cdot 10^{-7} \) |
\(a_{85}= +1.04112646 \pm 6.7 \cdot 10^{-7} \) | \(a_{86}= -1.46196573 \pm 7.3 \cdot 10^{-7} \) | \(a_{87}= +1.10497043 \pm 5.1 \cdot 10^{-7} \) |
\(a_{88}= -0.98363778 \pm 8.9 \cdot 10^{-7} \) | \(a_{89}= -0.92247924 \pm 6.7 \cdot 10^{-7} \) | \(a_{90}= -1.41733006 \pm 6.7 \cdot 10^{-7} \) |
\(a_{91}= +0.10521849 \pm 4.5 \cdot 10^{-7} \) | \(a_{92}= +3.95648419 \pm 4.1 \cdot 10^{-7} \) | \(a_{93}= -0.74849250 \pm 6.0 \cdot 10^{-7} \) |
\(a_{94}= -0.55647690 \pm 9.3 \cdot 10^{-7} \) | \(a_{95}= +0.16274778 \pm 5.1 \cdot 10^{-7} \) | \(a_{96}= +5.47591027 \pm 5.5 \cdot 10^{-7} \) |
\(a_{97}= -0.79676291 \pm 1.0 \cdot 10^{-6} \) | \(a_{98}= -0.46039715 \pm 6.5 \cdot 10^{-7} \) | \(a_{99}= -0.39118254 \pm 9.5 \cdot 10^{-7} \) |
\(a_{100}= -1.82617597 \pm 6.8 \cdot 10^{-7} \) | \(a_{101}= -0.65175989 \pm 1.1 \cdot 10^{-6} \) | \(a_{102}= -5.34009013 \pm 6.8 \cdot 10^{-7} \) |
\(a_{103}= +0.07949559 \pm 7.1 \cdot 10^{-7} \) | \(a_{104}= +0.39360521 \pm 7.1 \cdot 10^{-7} \) | \(a_{105}= -0.75104522 \pm 5.8 \cdot 10^{-7} \) |
\(a_{106}= +1.11784126 \pm 8.0 \cdot 10^{-7} \) | \(a_{107}= +0.74443796 \pm 4.8 \cdot 10^{-7} \) | \(a_{108}= +1.21565608 \pm 6.7 \cdot 10^{-7} \) |
\(a_{109}= -1.79349711 \pm 5.1 \cdot 10^{-7} \) | \(a_{110}= +0.32938123 \pm 1.5 \cdot 10^{-6} \) | \(a_{111}= +1.22374513 \pm 6.9 \cdot 10^{-7} \) |
\(a_{112}= +3.11839635 \pm 6.2 \cdot 10^{-7} \) | \(a_{113}= +1.09886633 \pm 6.9 \cdot 10^{-7} \) | \(a_{114}= -0.83475719 \pm 9.5 \cdot 10^{-7} \) |
\(a_{115}= -0.83358780 \pm 5.0 \cdot 10^{-7} \) | \(a_{116}= +1.96595855 \pm 7.6 \cdot 10^{-7} \) | \(a_{117}= +0.15653271 \pm 8.4 \cdot 10^{-7} \) |
\(a_{118}= +0.55892159 \pm 1.1 \cdot 10^{-6} \) | \(a_{119}= -1.59801845 \pm 3.7 \cdot 10^{-7} \) | \(a_{120}= -2.80953767 \pm 8.5 \cdot 10^{-7} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +0.24327584 \pm 7.9 \cdot 10^{-7} \) | \(a_{123}= -1.91483824 \pm 1.1 \cdot 10^{-6} \) |
\(a_{124}= -1.33171460 \pm 6.0 \cdot 10^{-7} \) | \(a_{125}= +0.95293330 \pm 7.5 \cdot 10^{-7} \) | \(a_{126}= +2.17545100 \pm 7.8 \cdot 10^{-7} \) |
\(a_{127}= +0.00681056 \pm 8.3 \cdot 10^{-7} \) | \(a_{128}= +2.86761181 \pm 8.5 \cdot 10^{-7} \) | \(a_{129}= -1.15251164 \pm 8.4 \cdot 10^{-7} \) |
\(a_{130}= -0.13180275 \pm 5.9 \cdot 10^{-7} \) | \(a_{131}= -0.44676692 \pm 5.9 \cdot 10^{-7} \) | \(a_{132}= -1.23243794 \pm 1.5 \cdot 10^{-6} \) |
\(a_{133}= -0.24980054 \pm 5.2 \cdot 10^{-7} \) | \(a_{134}= +2.71905923 \pm 9.0 \cdot 10^{-7} \) | \(a_{135}= -0.25612539 \pm 5.1 \cdot 10^{-7} \) |
\(a_{136}= -5.97792636 \pm 8.4 \cdot 10^{-7} \) | \(a_{137}= +0.37442665 \pm 5.3 \cdot 10^{-7} \) | \(a_{138}= +4.27559394 \pm 3.8 \cdot 10^{-7} \) |
\(a_{139}= -0.98715203 \pm 8.6 \cdot 10^{-7} \) | \(a_{140}= -1.33625638 \pm 4.7 \cdot 10^{-7} \) | \(a_{141}= -0.43868751 \pm 4.8 \cdot 10^{-7} \) |
\(a_{142}= -0.11142255 \pm 8.4 \cdot 10^{-7} \) | \(a_{143}= -0.03637751 \pm 7.8 \cdot 10^{-7} \) | \(a_{144}= +4.63921339 \pm 9.9 \cdot 10^{-7} \) |
\(a_{145}= -0.41420589 \pm 7.3 \cdot 10^{-7} \) | \(a_{146}= -1.02268265 \pm 7.8 \cdot 10^{-7} \) | \(a_{147}= -0.36294494 \pm 4.4 \cdot 10^{-7} \) |
\(a_{148}= +2.17728200 \pm 5.2 \cdot 10^{-7} \) | \(a_{149}= +0.94475298 \pm 8.8 \cdot 10^{-7} \) | \(a_{150}= -1.97346597 \pm 7.0 \cdot 10^{-7} \) |
\(a_{151}= -0.00285638 \pm 4.9 \cdot 10^{-7} \) | \(a_{152}= -0.93446307 \pm 7.3 \cdot 10^{-7} \) | \(a_{153}= -2.37735931 \pm 7.0 \cdot 10^{-7} \) |
\(a_{154}= -0.50556518 \pm 1.4 \cdot 10^{-6} \) | \(a_{155}= +0.28057765 \pm 5.6 \cdot 10^{-7} \) | \(a_{156}= +0.49316324 \pm 3.5 \cdot 10^{-7} \) |
\(a_{157}= +1.67857804 \pm 5.5 \cdot 10^{-7} \) | \(a_{158}= +2.13788584 \pm 9.8 \cdot 10^{-7} \) | \(a_{159}= +0.88122795 \pm 1.0 \cdot 10^{-6} \) |
\(a_{160}= -2.05268325 \pm 6.1 \cdot 10^{-7} \) | \(a_{161}= +1.27946867 \pm 3.1 \cdot 10^{-7} \) | \(a_{162}= -1.18081270 \pm 5.6 \cdot 10^{-7} \) |
\(a_{163}= -1.57922965 \pm 7.0 \cdot 10^{-7} \) | \(a_{164}= -3.40687183 \pm 5.1 \cdot 10^{-7} \) | \(a_{165}= +0.25966115 \pm 1.6 \cdot 10^{-6} \) |
\(a_{166}= -0.50320744 \pm 7.9 \cdot 10^{-7} \) | \(a_{167}= +1.47533432 \pm 6.7 \cdot 10^{-7} \) | \(a_{168}= +4.31234172 \pm 7.1 \cdot 10^{-7} \) |
\(a_{169}= -0.98544345 \pm 6.9 \cdot 10^{-7} \) | \(a_{170}= +2.00177012 \pm 7.2 \cdot 10^{-7} \) | \(a_{171}= -0.37162627 \pm 9.0 \cdot 10^{-7} \) |
\(a_{172}= -2.05054367 \pm 5.8 \cdot 10^{-7} \) | \(a_{173}= -0.00259013 \pm 7.6 \cdot 10^{-7} \) | \(a_{174}= +2.12452270 \pm 6.1 \cdot 10^{-7} \) |
\(a_{175}= -0.59055839 \pm 4.2 \cdot 10^{-7} \) | \(a_{176}= -1.07813265 \pm 9.3 \cdot 10^{-7} \) | \(a_{177}= +0.44061473 \pm 1.5 \cdot 10^{-6} \) |
\(a_{178}= -1.77364755 \pm 6.9 \cdot 10^{-7} \) | \(a_{179}= -1.09474411 \pm 8.3 \cdot 10^{-7} \) | \(a_{180}= -1.98793797 \pm 4.6 \cdot 10^{-7} \) |
\(a_{181}= -1.39413745 \pm 1.0 \cdot 10^{-6} \) | \(a_{182}= +0.20230322 \pm 5.2 \cdot 10^{-7} \) | \(a_{183}= +0.19178167 \pm 7.0 \cdot 10^{-7} \) |
\(a_{184}= +4.78628358 \pm 6.5 \cdot 10^{-7} \) | \(a_{185}= -0.45872942 \pm 6.2 \cdot 10^{-7} \) | \(a_{186}= -1.43912387 \pm 6.4 \cdot 10^{-7} \) |
\(a_{187}= +0.55248778 \pm 6.9 \cdot 10^{-7} \) | \(a_{188}= -0.78051090 \pm 7.1 \cdot 10^{-7} \) | \(a_{189}= +0.39312526 \pm 4.5 \cdot 10^{-7} \) |
\(a_{190}= +0.31291457 \pm 5.0 \cdot 10^{-7} \) | \(a_{191}= +0.66642758 \pm 6.3 \cdot 10^{-7} \) | \(a_{192}= +5.10866163 \pm 7.4 \cdot 10^{-7} \) |
\(a_{193}= +1.26622964 \pm 6.4 \cdot 10^{-7} \) | \(a_{194}= -1.53193320 \pm 1.0 \cdot 10^{-6} \) | \(a_{195}= -0.10390408 \pm 4.9 \cdot 10^{-7} \) |
\(a_{196}= -0.64575006 \pm 6.1 \cdot 10^{-7} \) | \(a_{197}= -0.11740443 \pm 5.1 \cdot 10^{-7} \) | \(a_{198}= -0.75212528 \pm 1.8 \cdot 10^{-6} \) |
\(a_{199}= +0.92004358 \pm 8.7 \cdot 10^{-7} \) | \(a_{200}= -2.20918261 \pm 7.6 \cdot 10^{-7} \) | \(a_{201}= +2.14351633 \pm 1.0 \cdot 10^{-6} \) |
\(a_{202}= -1.25313643 \pm 1.2 \cdot 10^{-6} \) | \(a_{203}= +0.63576202 \pm 3.3 \cdot 10^{-7} \) | \(a_{204}= -7.48997587 \pm 6.4 \cdot 10^{-7} \) |
\(a_{205}= +0.71779050 \pm 6.5 \cdot 10^{-7} \) | \(a_{206}= +0.15284588 \pm 7.4 \cdot 10^{-7} \) | \(a_{207}= +1.90345534 \pm 6.7 \cdot 10^{-7} \) |
\(a_{208}= +0.43141758 \pm 8.9 \cdot 10^{-7} \) | \(a_{209}= +0.08636430 \pm 7.4 \cdot 10^{-7} \) | \(a_{210}= -1.44403198 \pm 6.2 \cdot 10^{-7} \) |
\(a_{211}= -1.26426981 \pm 6.7 \cdot 10^{-7} \) | \(a_{212}= +1.56787692 \pm 4.9 \cdot 10^{-7} \) | \(a_{213}= -0.08783776 \pm 1.0 \cdot 10^{-6} \) |
\(a_{214}= +1.43132821 \pm 4.9 \cdot 10^{-7} \) | \(a_{215}= +0.43202705 \pm 6.1 \cdot 10^{-7} \) | \(a_{216}= +1.47061745 \pm 7.5 \cdot 10^{-7} \) |
\(a_{217}= -0.43065687 \pm 3.5 \cdot 10^{-7} \) | \(a_{218}= -3.44835051 \pm 6.7 \cdot 10^{-7} \) | \(a_{219}= -0.80621155 \pm 7.4 \cdot 10^{-7} \) |
\(a_{220}= +0.46198798 \pm 1.3 \cdot 10^{-6} \) | \(a_{221}= -0.22107942 \pm 4.9 \cdot 10^{-7} \) | \(a_{222}= +2.35289041 \pm 7.2 \cdot 10^{-7} \) |
\(a_{223}= -0.23870723 \pm 6.8 \cdot 10^{-7} \) | \(a_{224}= +3.15065063 \pm 3.8 \cdot 10^{-7} \) | \(a_{225}= -0.87856901 \pm 6.5 \cdot 10^{-7} \) |
\(a_{226}= +2.11278638 \pm 8.3 \cdot 10^{-7} \) | \(a_{227}= +0.55402699 \pm 7.1 \cdot 10^{-7} \) | \(a_{228}= -1.17082504 \pm 3.2 \cdot 10^{-7} \) |
\(a_{229}= +0.26394014 \pm 6.4 \cdot 10^{-7} \) | \(a_{230}= -1.60273628 \pm 5.7 \cdot 10^{-7} \) | \(a_{231}= -0.39855226 \pm 1.4 \cdot 10^{-6} \) |
\(a_{232}= +2.37828200 \pm 9.6 \cdot 10^{-7} \) | \(a_{233}= -0.64898720 \pm 6.7 \cdot 10^{-7} \) | \(a_{234}= +0.30096488 \pm 8.9 \cdot 10^{-7} \) |
\(a_{235}= +0.16444508 \pm 7.0 \cdot 10^{-7} \) | \(a_{236}= +0.78393981 \pm 3.4 \cdot 10^{-7} \) | \(a_{237}= +1.68535983 \pm 7.2 \cdot 10^{-7} \) |
\(a_{238}= -3.07250439 \pm 3.4 \cdot 10^{-7} \) | \(a_{239}= +0.65474677 \pm 1.0 \cdot 10^{-6} \) | \(a_{240}= -3.07944077 \pm 8.8 \cdot 10^{-7} \) |
\(a_{241}= +1.12784326 \pm 4.5 \cdot 10^{-7} \) | \(a_{242}= +0.17479059 \pm 8.9 \cdot 10^{-7} \) | \(a_{243}= -1.38165390 \pm 8.2 \cdot 10^{-7} \) |
\(a_{244}= +0.34121712 \pm 7.9 \cdot 10^{-7} \) | \(a_{245}= +0.13605245 \pm 5.2 \cdot 10^{-7} \) | \(a_{246}= -3.68165266 \pm 1.2 \cdot 10^{-6} \) |
\(a_{247}= -0.03455890 \pm 6.6 \cdot 10^{-7} \) | \(a_{248}= -1.61101710 \pm 7.5 \cdot 10^{-7} \) | \(a_{249}= -0.39669359 \pm 6.7 \cdot 10^{-7} \) |
\(a_{250}= +1.83220147 \pm 7.4 \cdot 10^{-7} \) | \(a_{251}= -1.08643294 \pm 6.2 \cdot 10^{-7} \) | \(a_{252}= +3.05127350 \pm 3.5 \cdot 10^{-7} \) |
\(a_{253}= -0.44235459 \pm 7.0 \cdot 10^{-7} \) | \(a_{254}= +0.01309464 \pm 8.0 \cdot 10^{-7} \) | \(a_{255}= +1.57805571 \pm 7.2 \cdot 10^{-7} \) |
\(a_{256}= +2.14309389 \pm 6.3 \cdot 10^{-7} \) | \(a_{257}= +1.28122790 \pm 8.7 \cdot 10^{-7} \) | \(a_{258}= -2.21593002 \pm 9.2 \cdot 10^{-7} \) |
\(a_{259}= +0.70410091 \pm 3.9 \cdot 10^{-7} \) | \(a_{260}= -0.18486569 \pm 3.8 \cdot 10^{-7} \) | \(a_{261}= +0.94581809 \pm 7.4 \cdot 10^{-7} \) |
\(a_{262}= -0.85899717 \pm 6.0 \cdot 10^{-7} \) | \(a_{263}= +0.54092882 \pm 7.8 \cdot 10^{-7} \) | \(a_{264}= -1.49091901 \pm 1.8 \cdot 10^{-6} \) |
\(a_{265}= -0.33033446 \pm 7.1 \cdot 10^{-7} \) | \(a_{266}= -0.48029061 \pm 5.6 \cdot 10^{-7} \) | \(a_{267}= -1.39821981 \pm 9.7 \cdot 10^{-7} \) |
\(a_{268}= +3.81373489 \pm 5.5 \cdot 10^{-7} \) | \(a_{269}= +1.00899935 \pm 7.2 \cdot 10^{-7} \) | \(a_{270}= -0.49245138 \pm 7.5 \cdot 10^{-7} \) |
\(a_{271}= +0.66917908 \pm 7.0 \cdot 10^{-7} \) | \(a_{272}= -6.55220619 \pm 6.8 \cdot 10^{-7} \) | \(a_{273}= +0.15948172 \pm 5.4 \cdot 10^{-7} \) |
\(a_{274}= +0.71990878 \pm 5.8 \cdot 10^{-7} \) | \(a_{275}= +0.20417555 \pm 6.2 \cdot 10^{-7} \) | \(a_{276}= +5.99692040 \pm 3.8 \cdot 10^{-7} \) |
\(a_{277}= -0.73376575 \pm 4.3 \cdot 10^{-7} \) | \(a_{278}= -1.89799369 \pm 1.0 \cdot 10^{-6} \) | \(a_{279}= -0.64068479 \pm 6.6 \cdot 10^{-7} \) |
\(a_{280}= -1.61651145 \pm 4.8 \cdot 10^{-7} \) | \(a_{281}= +1.20050157 \pm 6.9 \cdot 10^{-7} \) | \(a_{282}= -0.84346291 \pm 5.6 \cdot 10^{-7} \) |
\(a_{283}= -0.87436532 \pm 9.3 \cdot 10^{-7} \) | \(a_{284}= -0.15628055 \pm 4.9 \cdot 10^{-7} \) | \(a_{285}= +0.24667999 \pm 5.4 \cdot 10^{-7} \) |
\(a_{286}= -0.06994291 \pm 1.6 \cdot 10^{-6} \) | \(a_{287}= -1.10173213 \pm 6.8 \cdot 10^{-7} \) | \(a_{288}= +4.68719782 \pm 5.4 \cdot 10^{-7} \) |
\(a_{289}= +2.35767017 \pm 7.4 \cdot 10^{-7} \) | \(a_{290}= -0.79639219 \pm 8.5 \cdot 10^{-7} \) | \(a_{291}= -1.20766911 \pm 1.1 \cdot 10^{-6} \) |
\(a_{292}= -1.43440807 \pm 4.0 \cdot 10^{-7} \) | \(a_{293}= +0.87701305 \pm 6.5 \cdot 10^{-7} \) | \(a_{294}= -0.69783295 \pm 5.4 \cdot 10^{-7} \) |
\(a_{295}= -0.16516751 \pm 7.4 \cdot 10^{-7} \) | \(a_{296}= +2.63392663 \pm 6.8 \cdot 10^{-7} \) | \(a_{297}= -0.13591639 \pm 6.1 \cdot 10^{-7} \) |
\(a_{298}= +1.81647319 \pm 9.6 \cdot 10^{-7} \) | \(a_{299}= +0.17700934 \pm 1.0 \cdot 10^{-6} \) | \(a_{300}= -2.76797061 \pm 6.9 \cdot 10^{-7} \) |
\(a_{301}= -0.66311560 \pm 5.4 \cdot 10^{-7} \) | \(a_{302}= -0.00549196 \pm 5.0 \cdot 10^{-7} \) | \(a_{303}= -0.98788521 \pm 1.3 \cdot 10^{-6} \) |
\(a_{304}= -1.02423388 \pm 6.9 \cdot 10^{-7} \) | \(a_{305}= -0.07189070 \pm 6.0 \cdot 10^{-7} \) | \(a_{306}= -4.57094028 \pm 5.3 \cdot 10^{-7} \) |
\(a_{307}= -0.85401121 \pm 9.8 \cdot 10^{-7} \) | \(a_{308}= -0.70910245 \pm 1.2 \cdot 10^{-6} \) | \(a_{309}= +0.12049301 \pm 9.8 \cdot 10^{-7} \) |
\(a_{310}= +0.53946565 \pm 6.9 \cdot 10^{-7} \) | \(a_{311}= +0.19009558 \pm 6.4 \cdot 10^{-7} \) | \(a_{312}= +0.59659511 \pm 6.5 \cdot 10^{-7} \) |
\(a_{313}= +0.77964329 \pm 9.0 \cdot 10^{-7} \) | \(a_{314}= +3.22739601 \pm 5.7 \cdot 10^{-7} \) | \(a_{315}= -0.64286984 \pm 5.2 \cdot 10^{-7} \) |
\(a_{316}= +2.99858485 \pm 8.2 \cdot 10^{-7} \) | \(a_{317}= +0.60491902 \pm 7.0 \cdot 10^{-7} \) | \(a_{318}= +1.69433384 \pm 1.0 \cdot 10^{-6} \) |
\(a_{319}= -0.21980393 \pm 8.4 \cdot 10^{-7} \) | \(a_{320}= -1.91501753 \pm 4.5 \cdot 10^{-7} \) | \(a_{321}= +1.12835916 \pm 5.3 \cdot 10^{-7} \) |
\(a_{322}= +2.46002985 \pm 3.7 \cdot 10^{-7} \) | \(a_{323}= +0.52486742 \pm 8.1 \cdot 10^{-7} \) | \(a_{324}= -1.65620025 \pm 4.8 \cdot 10^{-7} \) |
\(a_{325}= -0.08170138 \pm 5.5 \cdot 10^{-7} \) | \(a_{326}= -3.03637922 \pm 8.4 \cdot 10^{-7} \) | \(a_{327}= -2.71843862 \pm 6.3 \cdot 10^{-7} \) |
\(a_{328}= -4.12140019 \pm 7.8 \cdot 10^{-7} \) | \(a_{329}= -0.25240572 \pm 3.3 \cdot 10^{-7} \) | \(a_{330}= +0.49924956 \pm 2.5 \cdot 10^{-6} \) |
\(a_{331}= +0.96456780 \pm 1.0 \cdot 10^{-6} \) | \(a_{332}= -0.70579550 \pm 9.0 \cdot 10^{-7} \) | \(a_{333}= +1.04748530 \pm 7.4 \cdot 10^{-7} \) |
\(a_{334}= +2.83662004 \pm 8.1 \cdot 10^{-7} \) | \(a_{335}= -0.80351208 \pm 6.0 \cdot 10^{-7} \) | \(a_{336}= +4.72661428 \pm 8.4 \cdot 10^{-7} \) |
\(a_{337}= +1.48324244 \pm 1.0 \cdot 10^{-6} \) | \(a_{338}= -1.89470860 \pm 7.8 \cdot 10^{-7} \) | \(a_{339}= +1.66557317 \pm 8.6 \cdot 10^{-7} \) |
\(a_{340}= +2.80766983 \pm 9.5 \cdot 10^{-7} \) | \(a_{341}= +0.14889231 \pm 6.6 \cdot 10^{-7} \) | \(a_{342}= -0.71452451 \pm 8.9 \cdot 10^{-7} \) |
\(a_{343}= -1.08091900 \pm 6.9 \cdot 10^{-7} \) | \(a_{344}= -2.48060729 \pm 7.4 \cdot 10^{-7} \) | \(a_{345}= -1.26348531 \pm 4.0 \cdot 10^{-7} \) |
\(a_{346}= -0.00498003 \pm 7.6 \cdot 10^{-7} \) | \(a_{347}= -0.20349466 \pm 6.4 \cdot 10^{-7} \) | \(a_{348}= +2.97984180 \pm 6.0 \cdot 10^{-7} \) |
\(a_{349}= +0.03977639 \pm 9.5 \cdot 10^{-7} \) | \(a_{350}= -1.13546452 \pm 4.5 \cdot 10^{-7} \) | \(a_{351}= +0.05438730 \pm 4.7 \cdot 10^{-7} \) |
\(a_{352}= -1.08928402 \pm 5.9 \cdot 10^{-7} \) | \(a_{353}= +1.46812284 \pm 5.4 \cdot 10^{-7} \) | \(a_{354}= +0.84716838 \pm 1.6 \cdot 10^{-6} \) |
\(a_{355}= +0.03292660 \pm 5.8 \cdot 10^{-7} \) | \(a_{356}= -2.48770659 \pm 4.3 \cdot 10^{-7} \) | \(a_{357}= -2.42214780 \pm 5.1 \cdot 10^{-7} \) |
\(a_{358}= -2.10486060 \pm 8.5 \cdot 10^{-7} \) | \(a_{359}= +1.74248083 \pm 9.4 \cdot 10^{-7} \) | \(a_{360}= -2.40487119 \pm 6.1 \cdot 10^{-7} \) |
\(a_{361}= -0.91795328 \pm 7.4 \cdot 10^{-7} \) | \(a_{362}= -2.68050311 \pm 1.2 \cdot 10^{-6} \) | \(a_{363}= +0.13779269 \pm 9.4 \cdot 10^{-7} \) |
\(a_{364}= +0.28374919 \pm 3.4 \cdot 10^{-7} \) | \(a_{365}= +0.30221404 \pm 5.2 \cdot 10^{-7} \) | \(a_{366}= +0.36873794 \pm 8.3 \cdot 10^{-7} \) |
\(a_{367}= +0.71571424 \pm 8.7 \cdot 10^{-7} \) | \(a_{368}= +5.24608619 \pm 8.5 \cdot 10^{-7} \) | \(a_{369}= -1.63903811 \pm 1.0 \cdot 10^{-6} \) |
\(a_{370}= -0.88199742 \pm 5.3 \cdot 10^{-7} \) | \(a_{371}= +0.50702829 \pm 5.6 \cdot 10^{-7} \) | \(a_{372}= -2.01850583 \pm 5.3 \cdot 10^{-7} \) |
\(a_{373}= +1.62282434 \pm 9.1 \cdot 10^{-7} \) | \(a_{374}= +1.06226628 \pm 1.5 \cdot 10^{-6} \) | \(a_{375}= +1.44437963 \pm 8.9 \cdot 10^{-7} \) |
\(a_{376}= -0.94420863 \pm 9.1 \cdot 10^{-7} \) | \(a_{377}= +0.08795511 \pm 8.7 \cdot 10^{-7} \) | \(a_{378}= +0.75586053 \pm 5.9 \cdot 10^{-7} \) |
\(a_{379}= +0.43331558 \pm 8.6 \cdot 10^{-7} \) | \(a_{380}= +0.43889195 \pm 3.3 \cdot 10^{-7} \) | \(a_{381}= +0.01032290 \pm 9.0 \cdot 10^{-7} \) |
\(a_{382}= +1.28133793 \pm 6.7 \cdot 10^{-7} \) | \(a_{383}= -0.63359102 \pm 9.1 \cdot 10^{-7} \) | \(a_{384}= +4.34649525 \pm 9.9 \cdot 10^{-7} \) |
\(a_{385}= +0.14940010 \pm 1.2 \cdot 10^{-6} \) | \(a_{386}= +2.43457521 \pm 6.4 \cdot 10^{-7} \) | \(a_{387}= -0.98651179 \pm 7.9 \cdot 10^{-7} \) |
\(a_{388}= -2.14867960 \pm 6.0 \cdot 10^{-7} \) | \(a_{389}= +0.18665536 \pm 7.6 \cdot 10^{-7} \) | \(a_{390}= -0.19977601 \pm 4.9 \cdot 10^{-7} \) |
\(a_{391}= -2.68835055 \pm 3.6 \cdot 10^{-7} \) | \(a_{392}= -0.78118419 \pm 7.0 \cdot 10^{-7} \) | \(a_{393}= -0.67717335 \pm 4.4 \cdot 10^{-7} \) |
\(a_{394}= -0.22573309 \pm 7.3 \cdot 10^{-7} \) | \(a_{395}= -0.63176892 \pm 7.7 \cdot 10^{-7} \) | \(a_{396}= -1.05492606 \pm 1.6 \cdot 10^{-6} \) |
\(a_{397}= +0.80908444 \pm 1.0 \cdot 10^{-6} \) | \(a_{398}= +1.76896451 \pm 1.0 \cdot 10^{-6} \) | \(a_{399}= -0.37862756 \pm 7.2 \cdot 10^{-7} \) |
\(a_{400}= -2.42141156 \pm 7.5 \cdot 10^{-7} \) | \(a_{401}= -0.76757356 \pm 6.8 \cdot 10^{-7} \) | \(a_{402}= +4.12133120 \pm 1.1 \cdot 10^{-6} \) |
\(a_{403}= -0.05957964 \pm 5.4 \cdot 10^{-7} \) | \(a_{404}= -1.75764105 \pm 7.2 \cdot 10^{-7} \) | \(a_{405}= +0.34894322 \pm 4.6 \cdot 10^{-7} \) |
\(a_{406}= +1.22237737 \pm 3.9 \cdot 10^{-7} \) | \(a_{407}= -0.24343095 \pm 7.0 \cdot 10^{-7} \) | \(a_{408}= -9.06085979 \pm 8.5 \cdot 10^{-7} \) |
\(a_{409}= +1.72715185 \pm 7.1 \cdot 10^{-7} \) | \(a_{410}= +1.38009324 \pm 7.7 \cdot 10^{-7} \) | \(a_{411}= +0.56752578 \pm 6.5 \cdot 10^{-7} \) |
\(a_{412}= +0.21438064 \pm 3.0 \cdot 10^{-7} \) | \(a_{413}= +0.25351458 \pm 8.4 \cdot 10^{-7} \) | \(a_{414}= +3.65976680 \pm 7.4 \cdot 10^{-7} \) |
\(a_{415}= +0.14870337 \pm 8.2 \cdot 10^{-7} \) | \(a_{416}= +0.43587983 \pm 4.7 \cdot 10^{-7} \) | \(a_{417}= -1.49624562 \pm 1.1 \cdot 10^{-6} \) |
\(a_{418}= +0.16605233 \pm 1.6 \cdot 10^{-6} \) | \(a_{419}= +1.79237229 \pm 6.5 \cdot 10^{-7} \) | \(a_{420}= -2.02538991 \pm 5.0 \cdot 10^{-7} \) |
\(a_{421}= +0.02925925 \pm 7.3 \cdot 10^{-7} \) | \(a_{422}= -2.43080706 \pm 5.8 \cdot 10^{-7} \) | \(a_{423}= -0.37550198 \pm 7.6 \cdot 10^{-7} \) |
\(a_{424}= +1.89671011 \pm 7.7 \cdot 10^{-7} \) | \(a_{425}= +1.24084944 \pm 6.4 \cdot 10^{-7} \) | \(a_{426}= -0.16888534 \pm 1.1 \cdot 10^{-6} \) |
\(a_{427}= +0.11034459 \pm 3.9 \cdot 10^{-7} \) | \(a_{428}= +2.00757169 \pm 4.9 \cdot 10^{-7} \) | \(a_{429}= -0.05513810 \pm 1.7 \cdot 10^{-6} \) |
\(a_{430}= +0.83065686 \pm 7.1 \cdot 10^{-7} \) | \(a_{431}= +0.45570789 \pm 7.4 \cdot 10^{-7} \) | \(a_{432}= +1.61189486 \pm 7.5 \cdot 10^{-7} \) |
\(a_{433}= +0.56802191 \pm 6.2 \cdot 10^{-7} \) | \(a_{434}= -0.82802243 \pm 3.8 \cdot 10^{-7} \) | \(a_{435}= -0.62781996 \pm 4.8 \cdot 10^{-7} \) |
\(a_{436}= -4.83663412 \pm 7.1 \cdot 10^{-7} \) | \(a_{437}= -0.42024009 \pm 4.4 \cdot 10^{-7} \) | \(a_{438}= -1.55010008 \pm 8.0 \cdot 10^{-7} \) |
\(a_{439}= -1.62242380 \pm 4.7 \cdot 10^{-7} \) | \(a_{440}= +0.55888141 \pm 1.5 \cdot 10^{-6} \) | \(a_{441}= -0.31066885 \pm 5.4 \cdot 10^{-7} \) |
\(a_{442}= -0.42506861 \pm 4.5 \cdot 10^{-7} \) | \(a_{443}= +0.23458353 \pm 6.5 \cdot 10^{-7} \) | \(a_{444}= +3.30014887 \pm 4.5 \cdot 10^{-7} \) |
\(a_{445}= +0.52413247 \pm 6.0 \cdot 10^{-7} \) | \(a_{446}= -0.45896154 \pm 7.3 \cdot 10^{-7} \) | \(a_{447}= +1.43198055 \pm 7.1 \cdot 10^{-7} \) |
\(a_{448}= +2.93934838 \pm 4.9 \cdot 10^{-7} \) | \(a_{449}= -1.71246112 \pm 5.9 \cdot 10^{-7} \) | \(a_{450}= -1.68922151 \pm 6.0 \cdot 10^{-7} \) |
\(a_{451}= +0.38090520 \pm 8.1 \cdot 10^{-7} \) | \(a_{452}= +2.96338051 \pm 7.5 \cdot 10^{-7} \) | \(a_{453}= -0.00432948 \pm 5.8 \cdot 10^{-7} \) |
\(a_{454}= +1.06522571 \pm 7.0 \cdot 10^{-7} \) | \(a_{455}= -0.05978284 \pm 3.9 \cdot 10^{-7} \) | \(a_{456}= -1.41638394 \pm 9.4 \cdot 10^{-7} \) |
\(a_{457}= -1.08604527 \pm 7.3 \cdot 10^{-7} \) | \(a_{458}= +0.50747677 \pm 7.3 \cdot 10^{-7} \) | \(a_{459}= -0.82601358 \pm 5.1 \cdot 10^{-7} \) |
\(a_{460}= -2.24798755 \pm 5.0 \cdot 10^{-7} \) | \(a_{461}= -1.05187271 \pm 5.4 \cdot 10^{-7} \) | \(a_{462}= -0.76629502 \pm 2.3 \cdot 10^{-6} \) |
\(a_{463}= -1.06598286 \pm 8.6 \cdot 10^{-7} \) | \(a_{464}= +2.60675578 \pm 9.1 \cdot 10^{-7} \) | \(a_{465}= +0.42527703 \pm 5.0 \cdot 10^{-7} \) |
\(a_{466}= -1.24780538 \pm 8.0 \cdot 10^{-7} \) | \(a_{467}= -0.24534385 \pm 4.0 \cdot 10^{-7} \) | \(a_{468}= +0.42213140 \pm 3.1 \cdot 10^{-7} \) |
\(a_{469}= +1.23330565 \pm 5.8 \cdot 10^{-7} \) | \(a_{470}= +0.31617797 \pm 8.5 \cdot 10^{-7} \) | \(a_{471}= +2.54425353 \pm 4.6 \cdot 10^{-7} \) |
\(a_{472}= +0.94835669 \pm 9.2 \cdot 10^{-7} \) | \(a_{473}= +0.22926097 \pm 6.8 \cdot 10^{-7} \) | \(a_{474}= +3.24043534 \pm 8.2 \cdot 10^{-7} \) |
\(a_{475}= +0.19396826 \pm 5.0 \cdot 10^{-7} \) | \(a_{476}= -4.30947478 \pm 2.9 \cdot 10^{-7} \) | \(a_{477}= +0.75430194 \pm 1.0 \cdot 10^{-6} \) |
\(a_{478}= +1.25887929 \pm 1.1 \cdot 10^{-6} \) | \(a_{479}= -1.62500125 \pm 5.2 \cdot 10^{-7} \) | \(a_{480}= -3.11129212 \pm 5.7 \cdot 10^{-7} \) |
\(a_{481}= +0.09740952 \pm 4.2 \cdot 10^{-7} \) | \(a_{482}= +2.16850023 \pm 5.8 \cdot 10^{-7} \) | \(a_{483}= +1.93931566 \pm 2.8 \cdot 10^{-7} \) |
\(a_{484}= +0.24516014 \pm 6.6 \cdot 10^{-7} \) | \(a_{485}= +0.45270321 \pm 8.0 \cdot 10^{-7} \) | \(a_{486}= -2.65650102 \pm 8.1 \cdot 10^{-7} \) |
\(a_{487}= +0.27999128 \pm 1.0 \cdot 10^{-6} \) | \(a_{488}= +0.41278110 \pm 9.3 \cdot 10^{-7} \) | \(a_{489}= -2.39366924 \pm 9.4 \cdot 10^{-7} \) |
\(a_{490}= +0.26158756 \pm 6.9 \cdot 10^{-7} \) | \(a_{491}= +0.50325896 \pm 7.5 \cdot 10^{-7} \) | \(a_{492}= -5.16386221 \pm 5.5 \cdot 10^{-7} \) |
\(a_{493}= -1.33582886 \pm 7.7 \cdot 10^{-7} \) | \(a_{494}= -0.06644627 \pm 6.8 \cdot 10^{-7} \) | \(a_{495}= +0.22226134 \pm 1.6 \cdot 10^{-6} \) |
\(a_{496}= -1.76578225 \pm 6.7 \cdot 10^{-7} \) | \(a_{497}= -0.05053883 \pm 6.0 \cdot 10^{-7} \) | \(a_{498}= -0.76272135 \pm 6.8 \cdot 10^{-7} \) |
\(a_{499}= -0.10737344 \pm 1.0 \cdot 10^{-6} \) | \(a_{500}= +2.56983393 \pm 3.8 \cdot 10^{-7} \) | \(a_{501}= +2.23619306 \pm 8.6 \cdot 10^{-7} \) |
\(a_{502}= -2.08888073 \pm 6.7 \cdot 10^{-7} \) | \(a_{503}= +0.67869729 \pm 8.4 \cdot 10^{-7} \) | \(a_{504}= +3.69122168 \pm 5.9 \cdot 10^{-7} \) |
\(a_{505}= +0.37031568 \pm 9.4 \cdot 10^{-7} \) | \(a_{506}= -0.85051360 \pm 1.5 \cdot 10^{-6} \) | \(a_{507}= -1.49365589 \pm 4.9 \cdot 10^{-7} \) |
\(a_{508}= +0.01836645 \pm 6.1 \cdot 10^{-7} \) | \(a_{509}= +0.71144877 \pm 7.0 \cdot 10^{-7} \) | \(a_{510}= +3.03412209 \pm 6.3 \cdot 10^{-7} \) |
\(a_{511}= -0.46386643 \pm 4.6 \cdot 10^{-7} \) | \(a_{512}= +1.25290718 \pm 6.8 \cdot 10^{-7} \) | \(a_{513}= -0.12912156 \pm 4.6 \cdot 10^{-7} \) |
\(a_{514}= +2.46341233 \pm 1.0 \cdot 10^{-6} \) | \(a_{515}= -0.04516765 \pm 5.2 \cdot 10^{-7} \) | \(a_{516}= -3.10804911 \pm 5.4 \cdot 10^{-7} \) |
\(a_{517}= +0.08726500 \pm 8.4 \cdot 10^{-7} \) | \(a_{518}= +1.35377230 \pm 4.5 \cdot 10^{-7} \) | \(a_{519}= -0.00392590 \pm 1.0 \cdot 10^{-6} \) |
\(a_{520}= -0.22363785 \pm 5.2 \cdot 10^{-7} \) | \(a_{521}= +0.39128240 \pm 7.3 \cdot 10^{-7} \) | \(a_{522}= +1.81852106 \pm 7.1 \cdot 10^{-7} \) |
\(a_{523}= -0.71763492 \pm 7.9 \cdot 10^{-7} \) | \(a_{524}= -1.20482387 \pm 4.4 \cdot 10^{-7} \) | \(a_{525}= -0.89512090 \pm 5.5 \cdot 10^{-7} \) |
\(a_{526}= +1.04004191 \pm 8.9 \cdot 10^{-7} \) | \(a_{527}= +0.90487299 \pm 6.3 \cdot 10^{-7} \) | \(a_{528}= -1.63414672 \pm 1.8 \cdot 10^{-6} \) |
\(a_{529}= +1.15245343 \pm 9.5 \cdot 10^{-7} \) | \(a_{530}= -0.63513289 \pm 6.1 \cdot 10^{-7} \) | \(a_{531}= +0.37715162 \pm 1.4 \cdot 10^{-6} \) |
\(a_{532}= -0.67365250 \pm 3.2 \cdot 10^{-7} \) | \(a_{533}= -0.15242020 \pm 6.0 \cdot 10^{-7} \) | \(a_{534}= -2.68835225 \pm 9.8 \cdot 10^{-7} \) |
\(a_{535}= -0.42297332 \pm 5.0 \cdot 10^{-7} \) | \(a_{536}= +4.61359525 \pm 8.4 \cdot 10^{-7} \) | \(a_{537}= -1.65932504 \pm 9.6 \cdot 10^{-7} \) |
\(a_{538}= +1.93999945 \pm 7.6 \cdot 10^{-7} \) | \(a_{539}= +0.07219806 \pm 5.7 \cdot 10^{-7} \) | \(a_{540}= -0.69070912 \pm 8.5 \cdot 10^{-7} \) |
\(a_{541}= +0.63143927 \pm 7.5 \cdot 10^{-7} \) | \(a_{542}= +1.28662823 \pm 6.0 \cdot 10^{-7} \) | \(a_{543}= -2.11312138 \pm 1.3 \cdot 10^{-6} \) |
\(a_{544}= -6.61997714 \pm 5.7 \cdot 10^{-7} \) | \(a_{545}= +1.01902573 \pm 5.3 \cdot 10^{-7} \) | \(a_{546}= +0.30663494 \pm 5.9 \cdot 10^{-7} \) |
\(a_{547}= -1.48300158 \pm 9.9 \cdot 10^{-7} \) | \(a_{548}= +1.00973939 \pm 5.2 \cdot 10^{-7} \) | \(a_{549}= +0.16415876 \pm 6.5 \cdot 10^{-7} \) |
\(a_{550}= +0.39256760 \pm 1.5 \cdot 10^{-6} \) | \(a_{551}= -0.20881534 \pm 6.5 \cdot 10^{-7} \) | \(a_{552}= +7.25466355 \pm 3.9 \cdot 10^{-7} \) |
\(a_{553}= +0.96969814 \pm 4.9 \cdot 10^{-7} \) | \(a_{554}= -1.41080880 \pm 4.4 \cdot 10^{-7} \) | \(a_{555}= -0.69530515 \pm 5.7 \cdot 10^{-7} \) |
\(a_{556}= -2.66211367 \pm 9.1 \cdot 10^{-7} \) | \(a_{557}= -1.24445906 \pm 6.5 \cdot 10^{-7} \) | \(a_{558}= -1.23184237 \pm 5.8 \cdot 10^{-7} \) |
\(a_{559}= -0.09173937 \pm 4.9 \cdot 10^{-7} \) | \(a_{560}= -1.77180442 \pm 4.6 \cdot 10^{-7} \) | \(a_{561}= +0.83741652 \pm 1.6 \cdot 10^{-6} \) |
\(a_{562}= +2.30820009 \pm 7.8 \cdot 10^{-7} \) | \(a_{563}= -0.84626662 \pm 5.1 \cdot 10^{-7} \) | \(a_{564}= -1.18303562 \pm 5.9 \cdot 10^{-7} \) |
\(a_{565}= -0.62435175 \pm 5.3 \cdot 10^{-7} \) | \(a_{566}= -1.68113909 \pm 9.4 \cdot 10^{-7} \) | \(a_{567}= -0.53559075 \pm 3.5 \cdot 10^{-7} \) |
\(a_{568}= -0.18905751 \pm 8.3 \cdot 10^{-7} \) | \(a_{569}= +1.45534704 \pm 7.4 \cdot 10^{-7} \) | \(a_{570}= +0.47429073 \pm 5.9 \cdot 10^{-7} \) |
\(a_{571}= -1.79848186 \pm 9.0 \cdot 10^{-7} \) | \(a_{572}= -0.09810147 \pm 1.4 \cdot 10^{-6} \) | \(a_{573}= +1.01011731 \pm 5.9 \cdot 10^{-7} \) |
\(a_{574}= -2.11829645 \pm 8.0 \cdot 10^{-7} \) | \(a_{575}= -0.99349790 \pm 5.1 \cdot 10^{-7} \) | \(a_{576}= +4.37284515 \pm 7.1 \cdot 10^{-7} \) |
\(a_{577}= +1.64230548 \pm 9.3 \cdot 10^{-7} \) | \(a_{578}= +4.53308404 \pm 7.7 \cdot 10^{-7} \) | \(a_{579}= +1.91924900 \pm 5.8 \cdot 10^{-7} \) |
\(a_{580}= -1.11701453 \pm 9.9 \cdot 10^{-7} \) | \(a_{581}= -0.22824386 \pm 4.4 \cdot 10^{-7} \) | \(a_{582}= -2.32198109 \pm 1.3 \cdot 10^{-6} \) |
\(a_{583}= -0.17529643 \pm 8.6 \cdot 10^{-7} \) | \(a_{584}= -1.73524864 \pm 6.8 \cdot 10^{-7} \) | \(a_{585}= -0.08893845 \pm 5.7 \cdot 10^{-7} \) |
\(a_{586}= +1.68622986 \pm 7.0 \cdot 10^{-7} \) | \(a_{587}= -0.10119841 \pm 4.7 \cdot 10^{-7} \) | \(a_{588}= -0.97877598 \pm 5.4 \cdot 10^{-7} \) |
\(a_{589}= +0.14144878 \pm 4.6 \cdot 10^{-7} \) | \(a_{590}= -0.31756699 \pm 7.8 \cdot 10^{-7} \) | \(a_{591}= -0.17795219 \pm 6.2 \cdot 10^{-7} \) |
\(a_{592}= +2.88695935 \pm 5.1 \cdot 10^{-7} \) | \(a_{593}= +0.78993030 \pm 6.4 \cdot 10^{-7} \) | \(a_{594}= -0.26132596 \pm 1.4 \cdot 10^{-6} \) |
\(a_{595}= +0.90795904 \pm 3.5 \cdot 10^{-7} \) | \(a_{596}= +2.54777355 \pm 7.3 \cdot 10^{-7} \) | \(a_{597}= +1.39452803 \pm 1.0 \cdot 10^{-6} \) |
\(a_{598}= +0.34033522 \pm 1.1 \cdot 10^{-6} \) | \(a_{599}= -0.89674639 \pm 9.5 \cdot 10^{-7} \) | \(a_{600}= -3.34850125 \pm 7.6 \cdot 10^{-7} \) |
\(a_{601}= -0.36285723 \pm 5.6 \cdot 10^{-7} \) | \(a_{602}= -1.27497000 \pm 6.8 \cdot 10^{-7} \) | \(a_{603}= +1.83477898 \pm 1.0 \cdot 10^{-6} \) |
\(a_{604}= -0.00770298 \pm 3.2 \cdot 10^{-7} \) | \(a_{605}= -0.05165255 \pm 7.0 \cdot 10^{-7} \) | \(a_{606}= -1.89940337 \pm 1.4 \cdot 10^{-6} \) |
\(a_{607}= +0.91643111 \pm 8.9 \cdot 10^{-7} \) | \(a_{608}= -1.03482777 \pm 4.4 \cdot 10^{-7} \) | \(a_{609}= +0.96363691 \pm 3.3 \cdot 10^{-7} \) |
\(a_{610}= -0.13822400 \pm 8.8 \cdot 10^{-7} \) | \(a_{611}= -0.03491932 \pm 1.0 \cdot 10^{-6} \) | \(a_{612}= -6.41117127 \pm 4.5 \cdot 10^{-7} \) |
\(a_{613}= -0.10359862 \pm 1.1 \cdot 10^{-6} \) | \(a_{614}= -1.64200430 \pm 1.0 \cdot 10^{-6} \) | \(a_{615}= +1.08796909 \pm 8.9 \cdot 10^{-7} \) |
\(a_{616}= -0.85782357 \pm 1.4 \cdot 10^{-6} \) | \(a_{617}= -1.74023017 \pm 7.6 \cdot 10^{-7} \) | \(a_{618}= +0.23167149 \pm 1.0 \cdot 10^{-6} \) |
\(a_{619}= +1.20363299 \pm 6.7 \cdot 10^{-7} \) | \(a_{620}= +0.75665103 \pm 8.0 \cdot 10^{-7} \) | \(a_{621}= +0.66135563 \pm 3.7 \cdot 10^{-7} \) |
\(a_{622}= +0.36549609 \pm 8.5 \cdot 10^{-7} \) | \(a_{623}= -0.80448764 \pm 5.2 \cdot 10^{-7} \) | \(a_{624}= +0.65390805 \pm 7.6 \cdot 10^{-7} \) |
\(a_{625}= +0.13573788 \pm 4.1 \cdot 10^{-7} \) | \(a_{626}= +1.49901738 \pm 8.5 \cdot 10^{-7} \) | \(a_{627}= +0.13090406 \pm 1.6 \cdot 10^{-6} \) |
\(a_{628}= +4.52672477 \pm 6.5 \cdot 10^{-7} \) | \(a_{629}= -1.47941884 \pm 7.7 \cdot 10^{-7} \) | \(a_{630}= -1.23604354 \pm 5.2 \cdot 10^{-7} \) |
\(a_{631}= -1.51796465 \pm 5.5 \cdot 10^{-7} \) | \(a_{632}= +3.62748257 \pm 1.0 \cdot 10^{-6} \) | \(a_{633}= -1.91627846 \pm 6.2 \cdot 10^{-7} \) |
\(a_{634}= +1.16307564 \pm 9.1 \cdot 10^{-7} \) | \(a_{635}= -0.00386961 \pm 7.3 \cdot 10^{-7} \) | \(a_{636}= +2.37646168 \pm 4.6 \cdot 10^{-7} \) |
\(a_{637}= -0.02889024 \pm 5.9 \cdot 10^{-7} \) | \(a_{638}= -0.42261624 \pm 1.7 \cdot 10^{-6} \) | \(a_{639}= -0.07518621 \pm 1.0 \cdot 10^{-6} \) |
\(a_{640}= -1.62931414 \pm 7.0 \cdot 10^{-7} \) | \(a_{641}= -1.68110127 \pm 5.9 \cdot 10^{-7} \) | \(a_{642}= +2.16949213 \pm 4.2 \cdot 10^{-7} \) |
\(a_{643}= +1.09729124 \pm 7.9 \cdot 10^{-7} \) | \(a_{644}= +3.45042196 \pm 2.7 \cdot 10^{-7} \) | \(a_{645}= +0.65483184 \pm 7.0 \cdot 10^{-7} \) |
\(a_{646}= +1.00916072 \pm 6.9 \cdot 10^{-7} \) | \(a_{647}= -1.35684388 \pm 8.1 \cdot 10^{-7} \) | \(a_{648}= -2.00355762 \pm 5.6 \cdot 10^{-7} \) |
\(a_{649}= -0.08764837 \pm 1.0 \cdot 10^{-6} \) | \(a_{650}= -0.15708694 \pm 5.9 \cdot 10^{-7} \) | \(a_{651}= -0.65275503 \pm 4.3 \cdot 10^{-7} \) |
\(a_{652}= -4.25880586 \pm 7.2 \cdot 10^{-7} \) | \(a_{653}= +1.58132555 \pm 7.7 \cdot 10^{-7} \) | \(a_{654}= -5.22673225 \pm 7.2 \cdot 10^{-7} \) |
\(a_{655}= +0.25384317 \pm 5.5 \cdot 10^{-7} \) | \(a_{656}= -4.51732963 \pm 9.2 \cdot 10^{-7} \) | \(a_{657}= -0.69009039 \pm 8.5 \cdot 10^{-7} \) |
\(a_{658}= -0.48529958 \pm 3.7 \cdot 10^{-7} \) | \(a_{659}= +0.64130063 \pm 7.1 \cdot 10^{-7} \) | \(a_{660}= +0.70024421 \pm 2.2 \cdot 10^{-6} \) |
\(a_{661}= +0.48305777 \pm 7.5 \cdot 10^{-7} \) | \(a_{662}= +1.85457107 \pm 1.0 \cdot 10^{-6} \) | \(a_{663}= -0.33509439 \pm 6.1 \cdot 10^{-7} \) |
\(a_{664}= -0.85382305 \pm 9.4 \cdot 10^{-7} \) | \(a_{665}= +0.14193119 \pm 4.0 \cdot 10^{-7} \) | \(a_{666}= +2.01399626 \pm 7.0 \cdot 10^{-7} \) |
\(a_{667}= +1.06954408 \pm 9.0 \cdot 10^{-7} \) | \(a_{668}= +3.97862493 \pm 7.0 \cdot 10^{-7} \) | \(a_{669}= -0.36181321 \pm 9.0 \cdot 10^{-7} \) |
\(a_{670}= -1.54490982 \pm 7.6 \cdot 10^{-7} \) | \(a_{671}= -0.03814977 \pm 6.3 \cdot 10^{-7} \) | \(a_{672}= +4.77550272 \pm 4.8 \cdot 10^{-7} \) |
\(a_{673}= -1.75304086 \pm 7.0 \cdot 10^{-7} \) | \(a_{674}= +2.85182495 \pm 1.1 \cdot 10^{-6} \) | \(a_{675}= -0.30525884 \pm 4.5 \cdot 10^{-7} \) |
\(a_{676}= -2.65750603 \pm 5.3 \cdot 10^{-7} \) | \(a_{677}= -1.23041981 \pm 7.3 \cdot 10^{-7} \) | \(a_{678}= +3.20239160 \pm 9.4 \cdot 10^{-7} \) |
\(a_{679}= -0.69485131 \pm 6.9 \cdot 10^{-7} \) | \(a_{680}= +3.39652665 \pm 9.6 \cdot 10^{-7} \) | \(a_{681}= +0.83974953 \pm 9.0 \cdot 10^{-7} \) |
\(a_{682}= +0.28627471 \pm 1.5 \cdot 10^{-6} \) | \(a_{683}= -1.08228057 \pm 1.0 \cdot 10^{-6} \) | \(a_{684}= -1.00218745 \pm 2.9 \cdot 10^{-7} \) |
\(a_{685}= -0.21274101 \pm 5.1 \cdot 10^{-7} \) | \(a_{686}= -2.07827910 \pm 7.0 \cdot 10^{-7} \) | \(a_{687}= +0.40005923 \pm 6.0 \cdot 10^{-7} \) |
\(a_{688}= -2.71891111 \pm 7.2 \cdot 10^{-7} \) | \(a_{689}= +0.07014532 \pm 6.3 \cdot 10^{-7} \) | \(a_{690}= -2.42929870 \pm 3.5 \cdot 10^{-7} \) |
\(a_{691}= +1.03449171 \pm 5.9 \cdot 10^{-7} \) | \(a_{692}= -0.00698495 \pm 3.7 \cdot 10^{-7} \) | \(a_{693}= -0.34114754 \pm 1.4 \cdot 10^{-6} \) |
\(a_{694}= -0.39125846 \pm 6.9 \cdot 10^{-7} \) | \(a_{695}= +0.56087813 \pm 8.0 \cdot 10^{-7} \) | \(a_{696}= +3.60480850 \pm 7.0 \cdot 10^{-7} \) |
\(a_{697}= +2.31490013 \pm 4.5 \cdot 10^{-7} \) | \(a_{698}= +0.07647791 \pm 1.0 \cdot 10^{-6} \) | \(a_{699}= -0.98368258 \pm 4.0 \cdot 10^{-7} \) |
\(a_{700}= -1.59259519 \pm 4.1 \cdot 10^{-7} \) | \(a_{701}= +0.29621559 \pm 9.8 \cdot 10^{-7} \) | \(a_{702}= +0.10457026 \pm 5.0 \cdot 10^{-7} \) |
\(a_{703}= -0.23126118 \pm 7.0 \cdot 10^{-7} \) | \(a_{704}= -1.01622985 \pm 6.0 \cdot 10^{-7} \) | \(a_{705}= +0.24925262 \pm 5.6 \cdot 10^{-7} \) |
\(a_{706}= +2.82275455 \pm 6.1 \cdot 10^{-7} \) | \(a_{707}= -0.56839521 \pm 7.5 \cdot 10^{-7} \) | \(a_{708}= +1.18823289 \pm 4.2 \cdot 10^{-7} \) |
\(a_{709}= +0.06128061 \pm 1.1 \cdot 10^{-6} \) | \(a_{710}= +0.06330785 \pm 6.3 \cdot 10^{-7} \) | \(a_{711}= +1.44261219 \pm 8.0 \cdot 10^{-7} \) |
\(a_{712}= -3.00945704 \pm 6.4 \cdot 10^{-7} \) | \(a_{713}= -0.72449516 \pm 4.5 \cdot 10^{-7} \) | \(a_{714}= -4.65705494 \pm 4.3 \cdot 10^{-7} \) |
\(a_{715}= +0.02066890 \pm 1.4 \cdot 10^{-6} \) | \(a_{716}= -2.95226386 \pm 6.4 \cdot 10^{-7} \) | \(a_{717}= +0.99241248 \pm 1.4 \cdot 10^{-6} \) |
\(a_{718}= +3.35026168 \pm 1.0 \cdot 10^{-6} \) | \(a_{719}= -0.05069747 \pm 8.6 \cdot 10^{-7} \) | \(a_{720}= -2.63589930 \pm 7.1 \cdot 10^{-7} \) |
\(a_{721}= +0.06932754 \pm 5.3 \cdot 10^{-7} \) | \(a_{722}= -1.76494551 \pm 7.5 \cdot 10^{-7} \) | \(a_{723}= +1.70949407 \pm 5.8 \cdot 10^{-7} \) |
\(a_{724}= -3.75965633 \pm 9.3 \cdot 10^{-7} \) | \(a_{725}= -0.49366448 \pm 5.3 \cdot 10^{-7} \) | \(a_{726}= +0.26493351 \pm 1.8 \cdot 10^{-6} \) |
\(a_{727}= +1.31227175 \pm 7.7 \cdot 10^{-7} \) | \(a_{728}= +0.34326033 \pm 5.1 \cdot 10^{-7} \) | \(a_{729}= -1.48005570 \pm 9.7 \cdot 10^{-7} \) |
\(a_{730}= +0.58106585 \pm 5.8 \cdot 10^{-7} \) | \(a_{731}= +1.39330273 \pm 5.4 \cdot 10^{-7} \) | \(a_{732}= +0.51718945 \pm 6.9 \cdot 10^{-7} \) |
\(a_{733}= +0.08646210 \pm 1.0 \cdot 10^{-6} \) | \(a_{734}= +1.37610122 \pm 8.2 \cdot 10^{-7} \) | \(a_{735}= +0.20621736 \pm 4.2 \cdot 10^{-7} \) |
\(a_{736}= +5.30034764 \pm 4.5 \cdot 10^{-7} \) | \(a_{737}= -0.42639451 \pm 7.9 \cdot 10^{-7} \) | \(a_{738}= -3.15137274 \pm 1.1 \cdot 10^{-6} \) |
\(a_{739}= -0.79946713 \pm 9.9 \cdot 10^{-7} \) | \(a_{740}= -1.23708388 \pm 6.2 \cdot 10^{-7} \) | \(a_{741}= -0.05238160 \pm 7.7 \cdot 10^{-7} \) |
\(a_{742}= +0.97486148 \pm 6.1 \cdot 10^{-7} \) | \(a_{743}= +1.81935728 \pm 6.6 \cdot 10^{-7} \) | \(a_{744}= -2.44185010 \pm 6.4 \cdot 10^{-7} \) |
\(a_{745}= -0.53678792 \pm 8.3 \cdot 10^{-7} \) | \(a_{746}= +3.12019858 \pm 9.4 \cdot 10^{-7} \) | \(a_{747}= -0.33955657 \pm 6.0 \cdot 10^{-7} \) |
\(a_{748}= +1.48992781 \pm 1.3 \cdot 10^{-6} \) | \(a_{749}= +0.64921909 \pm 3.2 \cdot 10^{-7} \) | \(a_{750}= +2.77710356 \pm 9.2 \cdot 10^{-7} \) |
\(a_{751}= -1.00251073 \pm 1.0 \cdot 10^{-6} \) | \(a_{752}= -1.03491566 \pm 9.9 \cdot 10^{-7} \) | \(a_{753}= -1.64672763 \pm 6.6 \cdot 10^{-7} \) |
\(a_{754}= +0.16911099 \pm 9.7 \cdot 10^{-7} \) | \(a_{755}= +0.00162293 \pm 4.2 \cdot 10^{-7} \) | \(a_{756}= +1.06016509 \pm 4.9 \cdot 10^{-7} \) |
\(a_{757}= -0.51456893 \pm 9.5 \cdot 10^{-7} \) | \(a_{758}= +0.83313432 \pm 9.2 \cdot 10^{-7} \) | \(a_{759}= -0.67048550 \pm 1.6 \cdot 10^{-6} \) |
\(a_{760}= +0.53094142 \pm 5.1 \cdot 10^{-7} \) | \(a_{761}= -0.95210506 \pm 5.7 \cdot 10^{-7} \) | \(a_{762}= +0.01984780 \pm 9.5 \cdot 10^{-7} \) |
\(a_{763}= -1.56409618 \pm 3.5 \cdot 10^{-7} \) | \(a_{764}= +1.79719630 \pm 7.3 \cdot 10^{-7} \) | \(a_{765}= +1.35076342 \pm 5.9 \cdot 10^{-7} \) |
\(a_{766}= -1.21820319 \pm 9.7 \cdot 10^{-7} \) | \(a_{767}= +0.03507272 \pm 8.1 \cdot 10^{-7} \) | \(a_{768}= +3.24832929 \pm 6.2 \cdot 10^{-7} \) |
\(a_{769}= -1.53611835 \pm 9.0 \cdot 10^{-7} \) | \(a_{770}= +0.28725105 \pm 2.1 \cdot 10^{-6} \) | \(a_{771}= +1.94198217 \pm 6.9 \cdot 10^{-7} \) |
\(a_{772}= +3.41471945 \pm 4.7 \cdot 10^{-7} \) | \(a_{773}= -1.23193167 \pm 6.7 \cdot 10^{-7} \) | \(a_{774}= -1.89676270 \pm 8.0 \cdot 10^{-7} \) |
\(a_{775}= +0.33440186 \pm 4.7 \cdot 10^{-7} \) | \(a_{776}= -2.59932541 \pm 9.9 \cdot 10^{-7} \) | \(a_{777}= +1.06721950 \pm 5.7 \cdot 10^{-7} \) |
\(a_{778}= +0.35888159 \pm 8.4 \cdot 10^{-7} \) | \(a_{779}= +0.36186272 \pm 6.6 \cdot 10^{-7} \) | \(a_{780}= -0.28020454 \pm 3.6 \cdot 10^{-7} \) |
\(a_{781}= +0.01747294 \pm 8.3 \cdot 10^{-7} \) | \(a_{782}= -5.16888202 \pm 3.8 \cdot 10^{-7} \) | \(a_{783}= +0.32862453 \pm 6.0 \cdot 10^{-7} \) |
\(a_{784}= -0.85623000 \pm 6.6 \cdot 10^{-7} \) | \(a_{785}= -0.95373123 \pm 6.0 \cdot 10^{-7} \) | \(a_{786}= -1.30199879 \pm 3.9 \cdot 10^{-7} \) |
\(a_{787}= -1.15092269 \pm 5.8 \cdot 10^{-7} \) | \(a_{788}= -0.31661177 \pm 8.4 \cdot 10^{-7} \) | \(a_{789}= +0.81989638 \pm 9.5 \cdot 10^{-7} \) |
\(a_{790}= -1.21469985 \pm 1.0 \cdot 10^{-6} \) | \(a_{791}= +0.95831358 \pm 4.9 \cdot 10^{-7} \) | \(a_{792}= -1.27617729 \pm 1.8 \cdot 10^{-6} \) |
\(a_{793}= +0.01526573 \pm 5.4 \cdot 10^{-7} \) | \(a_{794}= +1.55562377 \pm 1.1 \cdot 10^{-6} \) | \(a_{795}= -0.50069439 \pm 8.0 \cdot 10^{-7} \) |
\(a_{796}= +2.48113817 \pm 8.8 \cdot 10^{-7} \) | \(a_{797}= +1.87677040 \pm 6.1 \cdot 10^{-7} \) | \(a_{798}= -0.72798586 \pm 7.6 \cdot 10^{-7} \) |
\(a_{799}= +0.53034128 \pm 6.1 \cdot 10^{-7} \) | \(a_{800}= -2.44645676 \pm 4.9 \cdot 10^{-7} \) | \(a_{801}= -1.19682985 \pm 8.8 \cdot 10^{-7} \) |
\(a_{802}= -1.47581094 \pm 7.4 \cdot 10^{-7} \) | \(a_{803}= +0.16037395 \pm 7.2 \cdot 10^{-7} \) | \(a_{804}= +5.78055249 \pm 5.7 \cdot 10^{-7} \) |
\(a_{805}= -0.72696604 \pm 2.6 \cdot 10^{-7} \) | \(a_{806}= -0.11455357 \pm 5.5 \cdot 10^{-7} \) | \(a_{807}= +1.52936003 \pm 4.8 \cdot 10^{-7} \) |
\(a_{808}= -2.12627375 \pm 1.1 \cdot 10^{-6} \) | \(a_{809}= -0.71093509 \pm 1.1 \cdot 10^{-6} \) | \(a_{810}= +0.67091188 \pm 5.0 \cdot 10^{-7} \) |
\(a_{811}= -0.08806162 \pm 6.9 \cdot 10^{-7} \) | \(a_{812}= +1.71449859 \pm 3.2 \cdot 10^{-7} \) | \(a_{813}= +1.01428780 \pm 6.7 \cdot 10^{-7} \) |
\(a_{814}= -0.46804381 \pm 1.5 \cdot 10^{-6} \) | \(a_{815}= +0.89728365 \pm 6.3 \cdot 10^{-7} \) | \(a_{816}= -9.93130696 \pm 7.3 \cdot 10^{-7} \) |
\(a_{817}= +0.21779960 \pm 5.9 \cdot 10^{-7} \) | \(a_{818}= +3.32078871 \pm 6.2 \cdot 10^{-7} \) | \(a_{819}= +0.13651107 \pm 5.4 \cdot 10^{-7} \) |
\(a_{820}= +1.93570986 \pm 6.8 \cdot 10^{-7} \) | \(a_{821}= -0.65652745 \pm 6.7 \cdot 10^{-7} \) | \(a_{822}= +1.09117980 \pm 7.1 \cdot 10^{-7} \) |
\(a_{823}= -0.15707675 \pm 5.1 \cdot 10^{-7} \) | \(a_{824}= +0.25934302 \pm 6.4 \cdot 10^{-7} \) | \(a_{825}= +0.30947287 \pm 1.5 \cdot 10^{-6} \) |
\(a_{826}= +0.48743158 \pm 9.3 \cdot 10^{-7} \) | \(a_{827}= -0.32872379 \pm 6.2 \cdot 10^{-7} \) | \(a_{828}= +5.13316524 \pm 3.1 \cdot 10^{-7} \) |
\(a_{829}= -1.03650350 \pm 6.0 \cdot 10^{-7} \) | \(a_{830}= +0.28591143 \pm 9.7 \cdot 10^{-7} \) | \(a_{831}= -1.11218309 \pm 4.6 \cdot 10^{-7} \) |
\(a_{832}= +0.40664701 \pm 5.6 \cdot 10^{-7} \) | \(a_{833}= +0.43877403 \pm 5.2 \cdot 10^{-7} \) | \(a_{834}= -2.87682612 \pm 1.3 \cdot 10^{-6} \) |
\(a_{835}= -0.83825261 \pm 5.7 \cdot 10^{-7} \) | \(a_{836}= +0.23290393 \pm 1.3 \cdot 10^{-6} \) | \(a_{837}= -0.22260595 \pm 5.7 \cdot 10^{-7} \) |
\(a_{838}= +3.44618782 \pm 7.3 \cdot 10^{-7} \) | \(a_{839}= -1.83987120 \pm 9.1 \cdot 10^{-7} \) | \(a_{840}= -2.45017799 \pm 5.4 \cdot 10^{-7} \) |
\(a_{841}= -0.46854853 \pm 8.9 \cdot 10^{-7} \) | \(a_{842}= +0.05625665 \pm 7.3 \cdot 10^{-7} \) | \(a_{843}= +1.81962369 \pm 6.8 \cdot 10^{-7} \) |
\(a_{844}= -3.40943426 \pm 6.3 \cdot 10^{-7} \) | \(a_{845}= +0.55990735 \pm 5.7 \cdot 10^{-7} \) | \(a_{846}= -0.72197632 \pm 7.9 \cdot 10^{-7} \) |
\(a_{847}= +0.07928118 \pm 5.5 \cdot 10^{-7} \) | \(a_{848}= +2.07892084 \pm 7.9 \cdot 10^{-7} \) | \(a_{849}= -1.32529260 \pm 1.2 \cdot 10^{-6} \) |
\(a_{850}= +2.38577679 \pm 6.3 \cdot 10^{-7} \) | \(a_{851}= +1.18451076 \pm 2.6 \cdot 10^{-7} \) | \(a_{852}= -0.23687749 \pm 5.1 \cdot 10^{-7} \) |
\(a_{853}= -0.57019539 \pm 7.3 \cdot 10^{-7} \) | \(a_{854}= +0.21215914 \pm 4.8 \cdot 10^{-7} \) | \(a_{855}= +0.21114990 \pm 5.7 \cdot 10^{-7} \) |
\(a_{856}= +2.42862272 \pm 5.7 \cdot 10^{-7} \) | \(a_{857}= +0.61149320 \pm 8.6 \cdot 10^{-7} \) | \(a_{858}= -0.10601383 \pm 2.5 \cdot 10^{-6} \) |
\(a_{859}= -1.02283051 \pm 6.6 \cdot 10^{-7} \) | \(a_{860}= +1.16507394 \pm 7.4 \cdot 10^{-7} \) | \(a_{861}= -1.66991692 \pm 9.8 \cdot 10^{-7} \) |
\(a_{862}= +0.87618793 \pm 7.3 \cdot 10^{-7} \) | \(a_{863}= -1.24382708 \pm 6.3 \cdot 10^{-7} \) | \(a_{864}= +1.62856706 \pm 5.1 \cdot 10^{-7} \) |
\(a_{865}= +0.00147165 \pm 6.2 \cdot 10^{-7} \) | \(a_{866}= +1.09213370 \pm 5.6 \cdot 10^{-7} \) | \(a_{867}= +3.57356675 \pm 9.8 \cdot 10^{-7} \) |
\(a_{868}= -1.16137891 \pm 2.5 \cdot 10^{-7} \) | \(a_{869}= -0.33525669 \pm 8.6 \cdot 10^{-7} \) | \(a_{870}= -1.20710720 \pm 6.6 \cdot 10^{-7} \) |
\(a_{871}= +0.17062287 \pm 7.6 \cdot 10^{-7} \) | \(a_{872}= -5.85102868 \pm 8.1 \cdot 10^{-7} \) | \(a_{873}= -1.03372476 \pm 1.2 \cdot 10^{-6} \) |
\(a_{874}= -0.80799412 \pm 4.9 \cdot 10^{-7} \) | \(a_{875}= +0.83104641 \pm 5.0 \cdot 10^{-7} \) | \(a_{876}= -2.17416035 \pm 4.2 \cdot 10^{-7} \) |
\(a_{877}= +0.70144286 \pm 7.8 \cdot 10^{-7} \) | \(a_{878}= -3.11942845 \pm 5.9 \cdot 10^{-7} \) | \(a_{879}= +1.32930581 \pm 9.4 \cdot 10^{-7} \) |
\(a_{880}= +0.61257132 \pm 1.6 \cdot 10^{-6} \) | \(a_{881}= +0.85171599 \pm 7.0 \cdot 10^{-7} \) | \(a_{882}= -0.59732189 \pm 5.6 \cdot 10^{-7} \) |
\(a_{883}= -0.64117409 \pm 8.3 \cdot 10^{-7} \) | \(a_{884}= -0.59619848 \pm 3.2 \cdot 10^{-7} \) | \(a_{885}= -0.25034763 \pm 1.0 \cdot 10^{-6} \) |
\(a_{886}= +0.45103292 \pm 8.6 \cdot 10^{-7} \) | \(a_{887}= +0.26807175 \pm 9.1 \cdot 10^{-7} \) | \(a_{888}= +3.99229406 \pm 6.5 \cdot 10^{-7} \) |
\(a_{889}= +0.00593944 \pm 5.5 \cdot 10^{-7} \) | \(a_{890}= +1.00774764 \pm 5.7 \cdot 10^{-7} \) | \(a_{891}= +0.18517142 \pm 5.4 \cdot 10^{-7} \) |
\(a_{892}= -0.64373649 \pm 5.2 \cdot 10^{-7} \) | \(a_{893}= +0.08290238 \pm 5.6 \cdot 10^{-7} \) | \(a_{894}= +2.75326391 \pm 6.2 \cdot 10^{-7} \) |
\(a_{895}= +0.62200959 \pm 8.2 \cdot 10^{-7} \) | \(a_{896}= +2.50082403 \pm 6.3 \cdot 10^{-7} \) | \(a_{897}= +0.26829651 \pm 3.1 \cdot 10^{-7} \) |
\(a_{898}= -3.29254289 \pm 6.5 \cdot 10^{-7} \) | \(a_{899}= -0.35999827 \pm 7.9 \cdot 10^{-7} \) | \(a_{900}= -2.36929116 \pm 4.4 \cdot 10^{-7} \) |
\(a_{901}= -1.06534048 \pm 7.1 \cdot 10^{-7} \) | \(a_{902}= +0.73236507 \pm 1.6 \cdot 10^{-6} \) | \(a_{903}= -1.00509727 \pm 7.1 \cdot 10^{-7} \) |
\(a_{904}= +3.58489477 \pm 9.7 \cdot 10^{-7} \) | \(a_{905}= +0.79211832 \pm 9.0 \cdot 10^{-7} \) | \(a_{906}= -0.00832427 \pm 5.3 \cdot 10^{-7} \) |
\(a_{907}= +1.38500809 \pm 8.2 \cdot 10^{-7} \) | \(a_{908}= +1.49407870 \pm 4.9 \cdot 10^{-7} \) | \(a_{909}= -0.84559702 \pm 1.4 \cdot 10^{-6} \) |
\(a_{910}= -0.11494425 \pm 4.3 \cdot 10^{-7} \) | \(a_{911}= -0.22290492 \pm 9.4 \cdot 10^{-7} \) | \(a_{912}= -1.55245131 \pm 9.3 \cdot 10^{-7} \) |
\(a_{913}= +0.07891144 \pm 6.7 \cdot 10^{-7} \) | \(a_{914}= -2.08813538 \pm 7.0 \cdot 10^{-7} \) | \(a_{915}= -0.10896614 \pm 6.1 \cdot 10^{-7} \) |
\(a_{916}= +0.71178363 \pm 7.6 \cdot 10^{-7} \) | \(a_{917}= -0.38962228 \pm 3.1 \cdot 10^{-7} \) | \(a_{918}= -1.58817337 \pm 5.8 \cdot 10^{-7} \) |
\(a_{919}= -0.23565725 \pm 8.6 \cdot 10^{-7} \) | \(a_{920}= -2.71946136 \pm 5.7 \cdot 10^{-7} \) | \(a_{921}= -1.29444147 \pm 1.3 \cdot 10^{-6} \) |
\(a_{922}= -2.02243191 \pm 5.4 \cdot 10^{-7} \) | \(a_{923}= -0.00699184 \pm 7.2 \cdot 10^{-7} \) | \(a_{924}= -1.07480044 \pm 2.1 \cdot 10^{-6} \) |
\(a_{925}= -0.54672911 \pm 4.3 \cdot 10^{-7} \) | \(a_{926}= -2.04956144 \pm 9.4 \cdot 10^{-7} \) | \(a_{927}= +0.10313803 \pm 9.5 \cdot 10^{-7} \) |
\(a_{928}= +2.63371804 \pm 7.4 \cdot 10^{-7} \) | \(a_{929}= +0.95246132 \pm 5.8 \cdot 10^{-7} \) | \(a_{930}= +0.81767862 \pm 6.2 \cdot 10^{-7} \) |
\(a_{931}= +0.06858869 \pm 4.4 \cdot 10^{-7} \) | \(a_{932}= -1.75016375 \pm 6.1 \cdot 10^{-7} \) | \(a_{933}= +0.28813158 \pm 6.6 \cdot 10^{-7} \) |
\(a_{934}= -0.47172174 \pm 4.1 \cdot 10^{-7} \) | \(a_{935}= -0.31391144 \pm 1.3 \cdot 10^{-6} \) | \(a_{936}= +0.51066565 \pm 7.2 \cdot 10^{-7} \) |
\(a_{937}= -0.16351599 \pm 8.7 \cdot 10^{-7} \) | \(a_{938}= +2.37127238 \pm 6.6 \cdot 10^{-7} \) | \(a_{939}= +1.18172057 \pm 1.0 \cdot 10^{-6} \) |
\(a_{940}= +0.44346918 \pm 9.4 \cdot 10^{-7} \) | \(a_{941}= +0.14937460 \pm 7.8 \cdot 10^{-7} \) | \(a_{942}= +4.89182719 \pm 4.9 \cdot 10^{-7} \) |
\(a_{943}= -1.85344680 \pm 2.6 \cdot 10^{-7} \) | \(a_{944}= +1.03946221 \pm 1.1 \cdot 10^{-6} \) | \(a_{945}= -0.22336515 \pm 3.5 \cdot 10^{-7} \) |
\(a_{946}= +0.44079925 \pm 1.5 \cdot 10^{-6} \) | \(a_{947}= +1.05670068 \pm 6.1 \cdot 10^{-7} \) | \(a_{948}= +4.54501365 \pm 7.2 \cdot 10^{-7} \) |
\(a_{949}= -0.06417405 \pm 8.3 \cdot 10^{-7} \) | \(a_{950}= +0.37294208 \pm 5.1 \cdot 10^{-7} \) | \(a_{951}= +0.91688757 \pm 7.9 \cdot 10^{-7} \) |
\(a_{952}= -5.21330742 \pm 4.0 \cdot 10^{-7} \) | \(a_{953}= +0.38323253 \pm 5.8 \cdot 10^{-7} \) | \(a_{954}= +1.45029365 \pm 1.0 \cdot 10^{-6} \) |
\(a_{955}= -0.37864954 \pm 6.1 \cdot 10^{-7} \) | \(a_{956}= +1.76569595 \pm 6.6 \cdot 10^{-7} \) | \(a_{957}= -0.33316112 \pm 1.7 \cdot 10^{-6} \) |
\(a_{958}= -3.12438412 \pm 5.6 \cdot 10^{-7} \) | \(a_{959}= +0.32653484 \pm 3.6 \cdot 10^{-7} \) | \(a_{960}= -2.90262950 \pm 5.2 \cdot 10^{-7} \) |
\(a_{961}= -0.75614188 \pm 6.4 \cdot 10^{-7} \) | \(a_{962}= +0.18728895 \pm 3.9 \cdot 10^{-7} \) | \(a_{963}= +0.96583807 \pm 4.9 \cdot 10^{-7} \) |
\(a_{964}= +3.04152439 \pm 6.3 \cdot 10^{-7} \) | \(a_{965}= -0.71944391 \pm 6.5 \cdot 10^{-7} \) | \(a_{966}= +3.72871532 \pm 3.3 \cdot 10^{-7} \) |
\(a_{967}= +1.95818057 \pm 8.2 \cdot 10^{-7} \) | \(a_{968}= +0.29657795 \pm 8.9 \cdot 10^{-7} \) | \(a_{969}= +0.79555180 \pm 1.1 \cdot 10^{-6} \) |
\(a_{970}= +0.87041085 \pm 9.0 \cdot 10^{-7} \) | \(a_{971}= +1.23542019 \pm 6.9 \cdot 10^{-7} \) | \(a_{972}= -3.72599116 \pm 4.7 \cdot 10^{-7} \) |
\(a_{973}= -0.86088832 \pm 6.3 \cdot 10^{-7} \) | \(a_{974}= +0.53833824 \pm 1.1 \cdot 10^{-6} \) | \(a_{975}= -0.12383637 \pm 5.1 \cdot 10^{-7} \) |
\(a_{976}= +0.45243563 \pm 8.9 \cdot 10^{-7} \) | \(a_{977}= +0.40654282 \pm 1.0 \cdot 10^{-6} \) | \(a_{978}= -4.60229932 \pm 1.0 \cdot 10^{-6} \) |
\(a_{979}= +0.27813796 \pm 6.8 \cdot 10^{-7} \) | \(a_{980}= +0.36690102 \pm 8.0 \cdot 10^{-7} \) | \(a_{981}= -2.32689342 \pm 5.4 \cdot 10^{-7} \) |
\(a_{982}= +0.96761421 \pm 6.8 \cdot 10^{-7} \) | \(a_{983}= +0.18817556 \pm 9.5 \cdot 10^{-7} \) | \(a_{984}= -6.24688680 \pm 1.0 \cdot 10^{-6} \) |
\(a_{985}= +0.06670662 \pm 5.5 \cdot 10^{-7} \) | \(a_{986}= -2.56839338 \pm 7.3 \cdot 10^{-7} \) | \(a_{987}= -0.38257628 \pm 3.2 \cdot 10^{-7} \) |
\(a_{988}= -0.09319711 \pm 2.6 \cdot 10^{-7} \) | \(a_{989}= -1.11556108 \pm 2.6 \cdot 10^{-7} \) | \(a_{990}= +0.42734109 \pm 2.5 \cdot 10^{-6} \) |
\(a_{991}= +1.17976216 \pm 7.8 \cdot 10^{-7} \) | \(a_{992}= -1.78404613 \pm 5.2 \cdot 10^{-7} \) | \(a_{993}= +1.46201426 \pm 1.2 \cdot 10^{-6} \) |
\(a_{994}= -0.09717082 \pm 6.9 \cdot 10^{-7} \) | \(a_{995}= -0.52274858 \pm 7.7 \cdot 10^{-7} \) | \(a_{996}= -1.06978803 \pm 8.6 \cdot 10^{-7} \) |
\(a_{997}= -1.21556530 \pm 8.3 \cdot 10^{-7} \) | \(a_{998}= -0.20644653 \pm 1.1 \cdot 10^{-6} \) | \(a_{999}= +0.36394881 \pm 5.4 \cdot 10^{-7} \) |
\(a_{1000}= +3.10880906 \pm 6.7 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000