Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(14.8103795352232879036592441547 \pm 2 \cdot 10^{-7}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.09443521 \pm 1.7 \cdot 10^{-3} \) | \(a_{3}= +1.79041375 \pm 1.4 \cdot 10^{-3} \) |
\(a_{4}= -0.99108199 \pm 2.0 \cdot 10^{-3} \) | \(a_{5}= +0.77363586 \pm 1.5 \cdot 10^{-3} \) | \(a_{6}= +0.16907809 \pm 1.7 \cdot 10^{-3} \) |
\(a_{7}= +0.37351923 \pm 1.5 \cdot 10^{-3} \) | \(a_{8}= -0.18802824 \pm 1.7 \cdot 10^{-3} \) | \(a_{9}= +2.20558139 \pm 1.6 \cdot 10^{-3} \) |
\(a_{10}= +0.07305846 \pm 1.8 \cdot 10^{-3} \) | \(a_{11}= +0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= -1.77444682 \pm 1.8 \cdot 10^{-3} \) |
\(a_{13}= -0.66755367 \pm 1.1 \cdot 10^{-3} \) | \(a_{14}= +0.03527337 \pm 1.2 \cdot 10^{-3} \) | \(a_{15}= +1.38512828 \pm 1.1 \cdot 10^{-3} \) |
\(a_{16}= +0.97332551 \pm 1.5 \cdot 10^{-3} \) | \(a_{17}= -0.69440097 \pm 1.4 \cdot 10^{-3} \) | \(a_{18}= +0.20828453 \pm 1.6 \cdot 10^{-3} \) |
\(a_{19}= +1.68472998 \pm 1.0 \cdot 10^{-3} \) | \(a_{20}= -0.76673657 \pm 1.9 \cdot 10^{-3} \) | \(a_{21}= +0.66875397 \pm 1.1 \cdot 10^{-3} \) |
\(a_{22}= +0.02847329 \pm 1.7 \cdot 10^{-3} \) | \(a_{23}= +1.52025048 \pm 1.3 \cdot 10^{-3} \) | \(a_{24}= -0.33664834 \pm 2.0 \cdot 10^{-3} \) |
\(a_{25}= -0.40148755 \pm 1.2 \cdot 10^{-3} \) | \(a_{26}= -0.06304057 \pm 9.2 \cdot 10^{-4} \) | \(a_{27}= +2.15848949 \pm 1.3 \cdot 10^{-3} \) |
\(a_{28}= -0.37018818 \pm 1.5 \cdot 10^{-3} \) | \(a_{29}= +0.36185300 \pm 1.3 \cdot 10^{-3} \) | \(a_{30}= +0.13080487 \pm 1.0 \cdot 10^{-3} \) |
\(a_{31}= -1.40355306 \pm 1.4 \cdot 10^{-3} \) | \(a_{32}= +0.27994443 \pm 1.2 \cdot 10^{-3} \) | \(a_{33}= +0.53983006 \pm 1.4 \cdot 10^{-3} \) |
\(a_{34}= -0.06557590 \pm 1.7 \cdot 10^{-3} \) | \(a_{35}= +0.28896787 \pm 1.4 \cdot 10^{-3} \) | \(a_{36}= -2.18591200 \pm 1.7 \cdot 10^{-3} \) |
\(a_{37}= +0.28504196 \pm 1.4 \cdot 10^{-3} \) | \(a_{38}= +0.15909782 \pm 1.4 \cdot 10^{-3} \) | \(a_{39}= -1.19519726 \pm 8.6 \cdot 10^{-4} \) |
\(a_{40}= -0.14546539 \pm 1.4 \cdot 10^{-3} \) | \(a_{41}= +0.18037046 \pm 9.8 \cdot 10^{-4} \) | \(a_{42}= +0.06315392 \pm 1.2 \cdot 10^{-3} \) |
\(a_{43}= +1.25014492 \pm 1.4 \cdot 10^{-3} \) | \(a_{44}= -0.29882246 \pm 2.0 \cdot 10^{-3} \) | \(a_{45}= +1.70631686 \pm 1.5 \cdot 10^{-3} \) |
\(a_{46}= +0.14356517 \pm 2.0 \cdot 10^{-3} \) | \(a_{47}= -0.45293810 \pm 1.1 \cdot 10^{-3} \) | \(a_{48}= +1.74265537 \pm 1.5 \cdot 10^{-3} \) |
\(a_{49}= -0.86048338 \pm 1.3 \cdot 10^{-3} \) | \(a_{50}= -0.03791456 \pm 1.8 \cdot 10^{-3} \) | \(a_{51}= -1.24326504 \pm 1.4 \cdot 10^{-3} \) |
\(a_{52}= +0.66160042 \pm 1.2 \cdot 10^{-3} \) | \(a_{53}= +1.39335227 \pm 1.1 \cdot 10^{-3} \) | \(a_{54}= +0.20383740 \pm 1.1 \cdot 10^{-3} \) |
\(a_{55}= +0.23325999 \pm 1.5 \cdot 10^{-3} \) | \(a_{56}= -0.07023216 \pm 1.0 \cdot 10^{-3} \) | \(a_{57}= +3.01636372 \pm 9.6 \cdot 10^{-4} \) |
\(a_{58}= +0.03417166 \pm 1.3 \cdot 10^{-3} \) | \(a_{59}= +0.49375585 \pm 1.6 \cdot 10^{-3} \) | \(a_{60}= -1.37277570 \pm 9.1 \cdot 10^{-4} \) |
\(a_{61}= +1.74449009 \pm 1.2 \cdot 10^{-3} \) | \(a_{62}= -0.13254482 \pm 1.3 \cdot 10^{-3} \) | \(a_{63}= +0.82382707 \pm 1.1 \cdot 10^{-3} \) |
\(a_{64}= -0.94688890 \pm 1.5 \cdot 10^{-3} \) | \(a_{65}= -0.51644346 \pm 9.8 \cdot 10^{-4} \) | \(a_{66}= +0.05097896 \pm 3.2 \cdot 10^{-3} \) |
\(a_{67}= -0.94184597 \pm 1.7 \cdot 10^{-3} \) | \(a_{68}= +0.68820830 \pm 2.2 \cdot 10^{-3} \) | \(a_{69}= +2.72187736 \pm 1.6 \cdot 10^{-3} \) |
\(a_{70}= +0.02728874 \pm 1.2 \cdot 10^{-3} \) | \(a_{71}= -0.09201530 \pm 1.1 \cdot 10^{-3} \) | \(a_{72}= -0.41471158 \pm 1.6 \cdot 10^{-3} \) |
\(a_{73}= +0.13523868 \pm 1.4 \cdot 10^{-3} \) | \(a_{74}= +0.02691800 \pm 1.3 \cdot 10^{-3} \) | \(a_{75}= -0.71882883 \pm 9.0 \cdot 10^{-4} \) |
\(a_{76}= -1.66970554 \pm 1.4 \cdot 10^{-3} \) | \(a_{77}= +0.11262029 \pm 1.5 \cdot 10^{-3} \) | \(a_{78}= -0.11286870 \pm 1.1 \cdot 10^{-3} \) |
\(a_{79}= +1.36433636 \pm 1.1 \cdot 10^{-3} \) | \(a_{80}= +0.75299952 \pm 9.2 \cdot 10^{-4} \) | \(a_{81}= +1.65900787 \pm 1.5 \cdot 10^{-3} \) |
\(a_{82}= +0.01703332 \pm 9.8 \cdot 10^{-4} \) | \(a_{83}= +0.65708861 \pm 1.4 \cdot 10^{-3} \) | \(a_{84}= -0.66279001 \pm 1.1 \cdot 10^{-3} \) |
\(a_{85}= -0.53721349 \pm 1.1 \cdot 10^{-3} \) | \(a_{86}= +0.11805769 \pm 1.6 \cdot 10^{-3} \) | \(a_{87}= +0.64786659 \pm 1.0 \cdot 10^{-3} \) |
\(a_{88}= -0.05669265 \pm 1.7 \cdot 10^{-3} \) | \(a_{89}= -0.73913530 \pm 1.4 \cdot 10^{-3} \) | \(a_{90}= +0.16113638 \pm 1.8 \cdot 10^{-3} \) |
\(a_{91}= -0.24934413 \pm 1.3 \cdot 10^{-3} \) | \(a_{92}= -1.50669288 \pm 2.2 \cdot 10^{-3} \) | \(a_{93}= -2.51294069 \pm 1.4 \cdot 10^{-3} \) |
\(a_{94}= -0.04277330 \pm 1.2 \cdot 10^{-3} \) | \(a_{95}= +1.30336753 \pm 1.2 \cdot 10^{-3} \) | \(a_{96}= +0.50121636 \pm 1.2 \cdot 10^{-3} \) |
\(a_{97}= +1.57118211 \pm 1.2 \cdot 10^{-3} \) | \(a_{98}= -0.08125992 \pm 1.4 \cdot 10^{-3} \) | \(a_{99}= +0.66500781 \pm 1.6 \cdot 10^{-3} \) |
\(a_{100}= +0.39790708 \pm 2.0 \cdot 10^{-3} \) | \(a_{101}= -0.18894571 \pm 1.0 \cdot 10^{-3} \) | \(a_{102}= -0.11740799 \pm 2.0 \cdot 10^{-3} \) |
\(a_{103}= +0.09562133 \pm 1.5 \cdot 10^{-3} \) | \(a_{104}= +0.12551894 \pm 6.8 \cdot 10^{-4} \) | \(a_{105}= +0.51737205 \pm 1.0 \cdot 10^{-3} \) |
\(a_{106}= +0.13158151 \pm 1.4 \cdot 10^{-3} \) | \(a_{107}= +0.06369760 \pm 1.6 \cdot 10^{-3} \) | \(a_{108}= -2.13924007 \pm 1.0 \cdot 10^{-3} \) |
\(a_{109}= +0.68204668 \pm 1.0 \cdot 10^{-3} \) | \(a_{110}= +0.02202795 \pm 3.2 \cdot 10^{-3} \) | \(a_{111}= +0.51034304 \pm 8.4 \cdot 10^{-4} \) |
\(a_{112}= +0.36355580 \pm 1.2 \cdot 10^{-3} \) | \(a_{113}= -1.02744061 \pm 1.7 \cdot 10^{-3} \) | \(a_{114}= +0.28485093 \pm 1.0 \cdot 10^{-3} \) |
\(a_{115}= +1.17612029 \pm 1.0 \cdot 10^{-3} \) | \(a_{116}= -0.35862600 \pm 1.8 \cdot 10^{-3} \) | \(a_{117}= -1.47234394 \pm 1.1 \cdot 10^{-3} \) |
\(a_{118}= +0.04662794 \pm 2.0 \cdot 10^{-3} \) | \(a_{119}= -0.25937212 \pm 1.3 \cdot 10^{-3} \) | \(a_{120}= -0.26044323 \pm 1.0 \cdot 10^{-3} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +0.16474128 \pm 1.7 \cdot 10^{-3} \) | \(a_{123}= +0.32293775 \pm 1.2 \cdot 10^{-3} \) |
\(a_{124}= +1.39103616 \pm 1.3 \cdot 10^{-3} \) | \(a_{125}= -1.08424103 \pm 1.3 \cdot 10^{-3} \) | \(a_{126}= +0.07779828 \pm 1.0 \cdot 10^{-3} \) |
\(a_{127}= -1.57949945 \pm 1.4 \cdot 10^{-3} \) | \(a_{128}= -0.36936408 \pm 1.5 \cdot 10^{-3} \) | \(a_{129}= +2.23827665 \pm 1.4 \cdot 10^{-3} \) |
\(a_{130}= -0.04877044 \pm 8.1 \cdot 10^{-4} \) | \(a_{131}= -0.81956021 \pm 1.6 \cdot 10^{-3} \) | \(a_{132}= -0.53501585 \pm 3.4 \cdot 10^{-3} \) |
\(a_{133}= +0.62927905 \pm 9.5 \cdot 10^{-4} \) | \(a_{134}= -0.08894342 \pm 1.9 \cdot 10^{-3} \) | \(a_{135}= +1.66988488 \pm 1.2 \cdot 10^{-3} \) |
\(a_{136}= +0.13056699 \pm 2.0 \cdot 10^{-3} \) | \(a_{137}= +0.59953179 \pm 1.4 \cdot 10^{-3} \) | \(a_{138}= +0.25704105 \pm 2.4 \cdot 10^{-3} \) |
\(a_{139}= -0.88408972 \pm 1.1 \cdot 10^{-3} \) | \(a_{140}= -0.28639086 \pm 1.4 \cdot 10^{-3} \) | \(a_{141}= -0.81094660 \pm 1.6 \cdot 10^{-3} \) |
\(a_{142}= -0.00868948 \pm 8.9 \cdot 10^{-4} \) | \(a_{143}= -0.20127500 \pm 1.1 \cdot 10^{-3} \) | \(a_{144}= +2.14674862 \pm 1.2 \cdot 10^{-3} \) |
\(a_{145}= +0.27994246 \pm 1.2 \cdot 10^{-3} \) | \(a_{146}= +0.01277129 \pm 1.5 \cdot 10^{-3} \) | \(a_{147}= -1.54062128 \pm 1.4 \cdot 10^{-3} \) |
\(a_{148}= -0.28249995 \pm 1.8 \cdot 10^{-3} \) | \(a_{149}= -0.28556128 \pm 1.0 \cdot 10^{-3} \) | \(a_{150}= -0.06788275 \pm 1.3 \cdot 10^{-3} \) |
\(a_{151}= -0.52695981 \pm 1.9 \cdot 10^{-3} \) | \(a_{152}= -0.31677681 \pm 1.1 \cdot 10^{-3} \) | \(a_{153}= -1.53155786 \pm 1.4 \cdot 10^{-3} \) |
\(a_{154}= +0.01063532 \pm 3.2 \cdot 10^{-3} \) | \(a_{155}= -1.08583898 \pm 1.3 \cdot 10^{-3} \) | \(a_{156}= +1.18453848 \pm 1.0 \cdot 10^{-3} \) |
\(a_{157}= -0.92703691 \pm 1.2 \cdot 10^{-3} \) | \(a_{158}= +0.12884138 \pm 1.1 \cdot 10^{-3} \) | \(a_{159}= +2.49467706 \pm 9.9 \cdot 10^{-4} \) |
\(a_{160}= +0.21657505 \pm 1.2 \cdot 10^{-3} \) | \(a_{161}= +0.56784279 \pm 1.1 \cdot 10^{-3} \) | \(a_{162}= +0.15666875 \pm 1.8 \cdot 10^{-3} \) |
\(a_{163}= +0.88059384 \pm 1.4 \cdot 10^{-3} \) | \(a_{164}= -0.17876191 \pm 8.6 \cdot 10^{-4} \) | \(a_{165}= +0.41763189 \pm 2.9 \cdot 10^{-3} \) |
\(a_{166}= +0.06205230 \pm 1.2 \cdot 10^{-3} \) | \(a_{167}= -1.40338525 \pm 1.8 \cdot 10^{-3} \) | \(a_{168}= -0.12574463 \pm 9.2 \cdot 10^{-4} \) |
\(a_{169}= -0.55437210 \pm 1.2 \cdot 10^{-3} \) | \(a_{170}= -0.05073187 \pm 1.2 \cdot 10^{-3} \) | \(a_{171}= +3.71580909 \pm 1.0 \cdot 10^{-3} \) |
\(a_{172}= -1.23899612 \pm 1.9 \cdot 10^{-3} \) | \(a_{173}= -1.55093649 \pm 1.4 \cdot 10^{-3} \) | \(a_{174}= +0.06118141 \pm 1.3 \cdot 10^{-3} \) |
\(a_{175}= -0.14996332 \pm 8.3 \cdot 10^{-4} \) | \(a_{176}= +0.29346868 \pm 1.5 \cdot 10^{-3} \) | \(a_{177}= +0.88402726 \pm 1.5 \cdot 10^{-3} \) |
\(a_{178}= -0.06980039 \pm 2.0 \cdot 10^{-3} \) | \(a_{179}= -1.04744515 \pm 1.6 \cdot 10^{-3} \) | \(a_{180}= -1.69109991 \pm 1.9 \cdot 10^{-3} \) |
\(a_{181}= -1.03037532 \pm 1.3 \cdot 10^{-3} \) | \(a_{182}= -0.02354686 \pm 1.0 \cdot 10^{-3} \) | \(a_{183}= +3.12335904 \pm 7.1 \cdot 10^{-4} \) |
\(a_{184}= -0.28585002 \pm 2.2 \cdot 10^{-3} \) | \(a_{185}= +0.22051868 \pm 1.4 \cdot 10^{-3} \) | \(a_{186}= -0.23731007 \pm 1.3 \cdot 10^{-3} \) |
\(a_{187}= -0.20936977 \pm 1.4 \cdot 10^{-3} \) | \(a_{188}= +0.44889879 \pm 1.3 \cdot 10^{-3} \) | \(a_{189}= +0.80623734 \pm 1.1 \cdot 10^{-3} \) |
\(a_{190}= +0.12308378 \pm 1.8 \cdot 10^{-3} \) | \(a_{191}= -1.86675889 \pm 1.4 \cdot 10^{-3} \) | \(a_{192}= -1.69532290 \pm 1.2 \cdot 10^{-3} \) |
\(a_{193}= +1.34788512 \pm 1.4 \cdot 10^{-3} \) | \(a_{194}= +0.14837491 \pm 1.9 \cdot 10^{-3} \) | \(a_{195}= -0.92464746 \pm 7.6 \cdot 10^{-4} \) |
\(a_{196}= +0.85280959 \pm 1.6 \cdot 10^{-3} \) | \(a_{197}= -0.58821448 \pm 1.0 \cdot 10^{-3} \) | \(a_{198}= +0.06280015 \pm 3.3 \cdot 10^{-3} \) |
\(a_{199}= -0.27146599 \pm 1.6 \cdot 10^{-3} \) | \(a_{200}= +0.07549100 \pm 1.7 \cdot 10^{-3} \) | \(a_{201}= -1.68629398 \pm 9.8 \cdot 10^{-4} \) |
\(a_{202}= -0.01784313 \pm 1.6 \cdot 10^{-3} \) | \(a_{203}= +0.13515906 \pm 1.4 \cdot 10^{-3} \) | \(a_{204}= +1.23217760 \pm 2.4 \cdot 10^{-3} \) |
\(a_{205}= +0.13954106 \pm 8.4 \cdot 10^{-4} \) | \(a_{206}= +0.00903002 \pm 1.2 \cdot 10^{-3} \) | \(a_{207}= +3.35303617 \pm 1.3 \cdot 10^{-3} \) |
\(a_{208}= -0.64974701 \pm 1.1 \cdot 10^{-3} \) | \(a_{209}= +0.50796520 \pm 1.0 \cdot 10^{-3} \) | \(a_{210}= +0.04885814 \pm 1.0 \cdot 10^{-3} \) |
\(a_{211}= +1.17238532 \pm 1.6 \cdot 10^{-3} \) | \(a_{212}= -1.38092634 \pm 1.4 \cdot 10^{-3} \) | \(a_{213}= -0.16474545 \pm 1.3 \cdot 10^{-3} \) |
\(a_{214}= +0.00601530 \pm 2.4 \cdot 10^{-3} \) | \(a_{215}= +0.96715695 \pm 1.3 \cdot 10^{-3} \) | \(a_{216}= -0.40585697 \pm 1.4 \cdot 10^{-3} \) |
\(a_{217}= -0.52425406 \pm 1.7 \cdot 10^{-3} \) | \(a_{218}= +0.06440922 \pm 1.1 \cdot 10^{-3} \) | \(a_{219}= +0.24213319 \pm 9.3 \cdot 10^{-4} \) |
\(a_{220}= -0.23117977 \pm 3.5 \cdot 10^{-3} \) | \(a_{221}= +0.46354991 \pm 1.1 \cdot 10^{-3} \) | \(a_{222}= +0.04819435 \pm 1.0 \cdot 10^{-3} \) |
\(a_{223}= -0.74946131 \pm 1.5 \cdot 10^{-3} \) | \(a_{224}= +0.10456463 \pm 1.2 \cdot 10^{-3} \) | \(a_{225}= -0.88551347 \pm 1.0 \cdot 10^{-3} \) |
\(a_{226}= -0.09702656 \pm 1.9 \cdot 10^{-3} \) | \(a_{227}= -1.12830740 \pm 1.2 \cdot 10^{-3} \) | \(a_{228}= -2.98946376 \pm 1.0 \cdot 10^{-3} \) |
\(a_{229}= -0.08237227 \pm 1.2 \cdot 10^{-3} \) | \(a_{230}= +0.11106716 \pm 1.1 \cdot 10^{-3} \) | \(a_{231}= +0.20163691 \pm 2.9 \cdot 10^{-3} \) |
\(a_{232}= -0.06803858 \pm 1.3 \cdot 10^{-3} \) | \(a_{233}= +1.40048538 \pm 1.7 \cdot 10^{-3} \) | \(a_{234}= -0.13904110 \pm 8.3 \cdot 10^{-4} \) |
\(a_{235}= -0.35040916 \pm 9.6 \cdot 10^{-4} \) | \(a_{236}= -0.48935253 \pm 2.4 \cdot 10^{-3} \) | \(a_{237}= +2.44272657 \pm 1.0 \cdot 10^{-3} \) |
\(a_{238}= -0.02449386 \pm 9.1 \cdot 10^{-4} \) | \(a_{239}= +1.79875235 \pm 1.3 \cdot 10^{-3} \) | \(a_{240}= +1.34818069 \pm 7.5 \cdot 10^{-4} \) |
\(a_{241}= -0.91380021 \pm 2.0 \cdot 10^{-3} \) | \(a_{242}= +0.00858502 \pm 1.7 \cdot 10^{-3} \) | \(a_{243}= +0.81182101 \pm 1.0 \cdot 10^{-3} \) |
\(a_{244}= -1.72893271 \pm 1.7 \cdot 10^{-3} \) | \(a_{245}= -0.66570080 \pm 1.3 \cdot 10^{-3} \) | \(a_{246}= +0.03049669 \pm 1.2 \cdot 10^{-3} \) |
\(a_{247}= -1.12464767 \pm 5.6 \cdot 10^{-4} \) | \(a_{248}= +0.26390761 \pm 1.0 \cdot 10^{-3} \) | \(a_{249}= +1.17646048 \pm 1.8 \cdot 10^{-3} \) |
\(a_{250}= -0.10239052 \pm 1.2 \cdot 10^{-3} \) | \(a_{251}= +0.18344875 \pm 1.6 \cdot 10^{-3} \) | \(a_{252}= -0.81648017 \pm 1.2 \cdot 10^{-3} \) |
\(a_{253}= +0.45837277 \pm 1.3 \cdot 10^{-3} \) | \(a_{254}= -0.14916035 \pm 1.6 \cdot 10^{-3} \) | \(a_{255}= -0.96183442 \pm 9.1 \cdot 10^{-4} \) |
\(a_{256}= +0.91200792 \pm 1.7 \cdot 10^{-3} \) | \(a_{257}= -0.46195507 \pm 1.2 \cdot 10^{-3} \) | \(a_{258}= +0.21137212 \pm 1.7 \cdot 10^{-3} \) |
\(a_{259}= +0.10646865 \pm 1.5 \cdot 10^{-3} \) | \(a_{260}= +0.51183781 \pm 1.0 \cdot 10^{-3} \) | \(a_{261}= +0.79809625 \pm 1.1 \cdot 10^{-3} \) |
\(a_{262}= -0.07739534 \pm 1.7 \cdot 10^{-3} \) | \(a_{263}= +0.04215239 \pm 1.9 \cdot 10^{-3} \) | \(a_{264}= -0.10150329 \pm 3.1 \cdot 10^{-3} \) |
\(a_{265}= +1.07794729 \pm 1.3 \cdot 10^{-3} \) | \(a_{266}= +0.05942610 \pm 1.1 \cdot 10^{-3} \) | \(a_{267}= -1.32335801 \pm 1.4 \cdot 10^{-3} \) |
\(a_{268}= +0.93344658 \pm 2.3 \cdot 10^{-3} \) | \(a_{269}= -0.28380115 \pm 1.3 \cdot 10^{-3} \) | \(a_{270}= +0.15769592 \pm 9.7 \cdot 10^{-4} \) |
\(a_{271}= +1.50405275 \pm 1.4 \cdot 10^{-3} \) | \(a_{272}= -0.67587818 \pm 1.7 \cdot 10^{-3} \) | \(a_{273}= -0.44642916 \pm 1.0 \cdot 10^{-3} \) |
\(a_{274}= +0.05661691 \pm 1.3 \cdot 10^{-3} \) | \(a_{275}= -0.12105305 \pm 1.2 \cdot 10^{-3} \) | \(a_{276}= -2.69760364 \pm 2.7 \cdot 10^{-3} \) |
\(a_{277}= +1.12474313 \pm 2.0 \cdot 10^{-3} \) | \(a_{278}= -0.08348919 \pm 1.4 \cdot 10^{-3} \) | \(a_{279}= -3.09565050 \pm 1.4 \cdot 10^{-3} \) |
\(a_{280}= -0.05433412 \pm 1.0 \cdot 10^{-3} \) | \(a_{281}= +0.17881726 \pm 1.7 \cdot 10^{-3} \) | \(a_{282}= -0.07658191 \pm 1.7 \cdot 10^{-3} \) |
\(a_{283}= -1.65565878 \pm 1.2 \cdot 10^{-3} \) | \(a_{284}= +0.09119470 \pm 1.0 \cdot 10^{-3} \) | \(a_{285}= +2.33356715 \pm 7.9 \cdot 10^{-4} \) |
\(a_{286}= -0.01900745 \pm 2.9 \cdot 10^{-3} \) | \(a_{287}= +0.06737184 \pm 9.7 \cdot 10^{-4} \) | \(a_{288}= +0.61744023 \pm 1.2 \cdot 10^{-3} \) |
\(a_{289}= -0.51780729 \pm 9.1 \cdot 10^{-4} \) | \(a_{290}= +0.02643642 \pm 1.2 \cdot 10^{-3} \) | \(a_{291}= +2.81306605 \pm 8.9 \cdot 10^{-4} \) |
\(a_{292}= -0.13403262 \pm 1.7 \cdot 10^{-3} \) | \(a_{293}= -1.19050542 \pm 1.4 \cdot 10^{-3} \) | \(a_{294}= -0.14548889 \pm 1.6 \cdot 10^{-3} \) |
\(a_{295}= +0.38198723 \pm 1.8 \cdot 10^{-3} \) | \(a_{296}= -0.05359594 \pm 1.0 \cdot 10^{-3} \) | \(a_{297}= +0.65080907 \pm 1.3 \cdot 10^{-3} \) |
\(a_{298}= -0.02696704 \pm 1.0 \cdot 10^{-3} \) | \(a_{299}= -1.01484878 \pm 8.4 \cdot 10^{-4} \) | \(a_{300}= +0.71241831 \pm 1.6 \cdot 10^{-3} \) |
\(a_{301}= +0.46695317 \pm 1.5 \cdot 10^{-3} \) | \(a_{302}= -0.04976356 \pm 2.3 \cdot 10^{-3} \) | \(a_{303}= -0.33829100 \pm 1.3 \cdot 10^{-3} \) |
\(a_{304}= +1.63979066 \pm 9.3 \cdot 10^{-4} \) | \(a_{305}= +1.34960010 \pm 1.6 \cdot 10^{-3} \) | \(a_{306}= -0.14463298 \pm 1.4 \cdot 10^{-3} \) |
\(a_{307}= -1.50218034 \pm 1.6 \cdot 10^{-3} \) | \(a_{308}= -0.11161594 \pm 3.5 \cdot 10^{-3} \) | \(a_{309}= +0.17120174 \pm 1.5 \cdot 10^{-3} \) |
\(a_{310}= -0.10254143 \pm 1.3 \cdot 10^{-3} \) | \(a_{311}= -0.68518759 \pm 1.7 \cdot 10^{-3} \) | \(a_{312}= +0.22473083 \pm 7.3 \cdot 10^{-4} \) |
\(a_{313}= +0.35193180 \pm 1.4 \cdot 10^{-3} \) | \(a_{314}= -0.08754492 \pm 1.3 \cdot 10^{-3} \) | \(a_{315}= +0.63734216 \pm 1.0 \cdot 10^{-3} \) |
\(a_{316}= -1.35216920 \pm 1.3 \cdot 10^{-3} \) | \(a_{317}= +0.35950118 \pm 1.6 \cdot 10^{-3} \) | \(a_{318}= +0.23558534 \pm 1.0 \cdot 10^{-3} \) |
\(a_{319}= +0.10910279 \pm 1.3 \cdot 10^{-3} \) | \(a_{320}= -0.73254721 \pm 1.8 \cdot 10^{-3} \) | \(a_{321}= +0.11404507 \pm 1.6 \cdot 10^{-3} \) |
\(a_{322}= +0.05362435 \pm 1.2 \cdot 10^{-3} \) | \(a_{323}= -1.16987813 \pm 8.5 \cdot 10^{-4} \) | \(a_{324}= -1.64421283 \pm 2.1 \cdot 10^{-3} \) |
\(a_{325}= +0.26801449 \pm 5.8 \cdot 10^{-4} \) | \(a_{326}= +0.08315906 \pm 1.9 \cdot 10^{-3} \) | \(a_{327}= +1.22114575 \pm 1.1 \cdot 10^{-3} \) |
\(a_{328}= -0.03391474 \pm 7.1 \cdot 10^{-4} \) | \(a_{329}= -0.16918109 \pm 8.8 \cdot 10^{-4} \) | \(a_{330}= +0.03943915 \pm 4.7 \cdot 10^{-3} \) |
\(a_{331}= +0.73079118 \pm 1.0 \cdot 10^{-3} \) | \(a_{332}= -0.65122869 \pm 1.4 \cdot 10^{-3} \) | \(a_{333}= +0.62868323 \pm 1.4 \cdot 10^{-3} \) |
\(a_{334}= -0.13252897 \pm 1.9 \cdot 10^{-3} \) | \(a_{335}= -0.72864582 \pm 1.8 \cdot 10^{-3} \) | \(a_{336}= +0.65091529 \pm 1.0 \cdot 10^{-3} \) |
\(a_{337}= +0.15280703 \pm 1.5 \cdot 10^{-3} \) | \(a_{338}= -0.05235224 \pm 1.6 \cdot 10^{-3} \) | \(a_{339}= -1.83954379 \pm 1.5 \cdot 10^{-3} \) |
\(a_{340}= +0.53242262 \pm 1.4 \cdot 10^{-3} \) | \(a_{341}= -0.42318717 \pm 1.4 \cdot 10^{-3} \) | \(a_{342}= +0.35090319 \pm 1.3 \cdot 10^{-3} \) |
\(a_{343}= -0.69492632 \pm 1.2 \cdot 10^{-3} \) | \(a_{344}= -0.23506254 \pm 1.7 \cdot 10^{-3} \) | \(a_{345}= +2.10574194 \pm 1.1 \cdot 10^{-3} \) |
\(a_{346}= -0.14646301 \pm 1.8 \cdot 10^{-3} \) | \(a_{347}= +0.86307792 \pm 1.2 \cdot 10^{-3} \) | \(a_{348}= -0.64208891 \pm 1.6 \cdot 10^{-3} \) |
\(a_{349}= +0.40667485 \pm 1.4 \cdot 10^{-3} \) | \(a_{350}= -0.01416182 \pm 1.0 \cdot 10^{-3} \) | \(a_{351}= -1.44090757 \pm 6.4 \cdot 10^{-4} \) |
\(a_{352}= +0.08440642 \pm 1.2 \cdot 10^{-3} \) | \(a_{353}= +0.99185481 \pm 1.5 \cdot 10^{-3} \) | \(a_{354}= +0.08348330 \pm 1.8 \cdot 10^{-3} \) |
\(a_{355}= -0.07118633 \pm 1.0 \cdot 10^{-3} \) | \(a_{356}= +0.73254369 \pm 2.6 \cdot 10^{-3} \) | \(a_{357}= -0.46438340 \pm 9.1 \cdot 10^{-4} \) |
\(a_{358}= -0.09891570 \pm 2.3 \cdot 10^{-3} \) | \(a_{359}= -1.20226712 \pm 1.4 \cdot 10^{-3} \) | \(a_{360}= -0.32083575 \pm 1.5 \cdot 10^{-3} \) |
\(a_{361}= +1.83831510 \pm 1.2 \cdot 10^{-3} \) | \(a_{362}= -0.09730370 \pm 8.2 \cdot 10^{-4} \) | \(a_{363}= +0.16276489 \pm 1.4 \cdot 10^{-3} \) |
\(a_{364}= +0.24712048 \pm 1.3 \cdot 10^{-3} \) | \(a_{365}= +0.10462549 \pm 1.7 \cdot 10^{-3} \) | \(a_{366}= +0.29495505 \pm 6.7 \cdot 10^{-4} \) |
\(a_{367}= -0.96939624 \pm 1.5 \cdot 10^{-3} \) | \(a_{368}= +1.47969857 \pm 1.8 \cdot 10^{-3} \) | \(a_{369}= +0.39782173 \pm 1.3 \cdot 10^{-3} \) |
\(a_{370}= +0.02082473 \pm 1.8 \cdot 10^{-3} \) | \(a_{371}= +0.52044387 \pm 1.2 \cdot 10^{-3} \) | \(a_{372}= +2.49053026 \pm 1.0 \cdot 10^{-3} \) |
\(a_{373}= +0.35316398 \pm 1.0 \cdot 10^{-3} \) | \(a_{374}= -0.01977188 \pm 3.2 \cdot 10^{-3} \) | \(a_{375}= -1.94124005 \pm 1.2 \cdot 10^{-3} \) |
\(a_{376}= +0.08516515 \pm 1.4 \cdot 10^{-3} \) | \(a_{377}= -0.24155630 \pm 1.2 \cdot 10^{-3} \) | \(a_{378}= +0.07613719 \pm 8.6 \cdot 10^{-4} \) |
\(a_{379}= -0.38262055 \pm 1.3 \cdot 10^{-3} \) | \(a_{380}= -1.29174409 \pm 1.8 \cdot 10^{-3} \) | \(a_{381}= -2.82795753 \pm 1.1 \cdot 10^{-3} \) |
\(a_{382}= -0.17628776 \pm 1.2 \cdot 10^{-3} \) | \(a_{383}= -1.02901511 \pm 1.5 \cdot 10^{-3} \) | \(a_{384}= -0.66131452 \pm 1.0 \cdot 10^{-3} \) |
\(a_{385}= +0.08712709 \pm 3.0 \cdot 10^{-3} \) | \(a_{386}= +0.12728781 \pm 1.9 \cdot 10^{-3} \) | \(a_{387}= +2.75729637 \pm 1.4 \cdot 10^{-3} \) |
\(a_{388}= -1.55717030 \pm 2.0 \cdot 10^{-3} \) | \(a_{389}= +0.52012222 \pm 1.4 \cdot 10^{-3} \) | \(a_{390}= -0.08731927 \pm 9.5 \cdot 10^{-4} \) |
\(a_{391}= -1.05566341 \pm 1.5 \cdot 10^{-3} \) | \(a_{392}= +0.16179517 \pm 1.6 \cdot 10^{-3} \) | \(a_{393}= -1.46735186 \pm 1.9 \cdot 10^{-3} \) |
\(a_{394}= -0.05554816 \pm 1.5 \cdot 10^{-3} \) | \(a_{395}= +1.05549954 \pm 1.0 \cdot 10^{-3} \) | \(a_{396}= -0.65907727 \pm 3.6 \cdot 10^{-3} \) |
\(a_{397}= +1.61838429 \pm 1.8 \cdot 10^{-3} \) | \(a_{398}= -0.02563595 \pm 1.7 \cdot 10^{-3} \) | \(a_{399}= +1.12666986 \pm 8.5 \cdot 10^{-4} \) |
\(a_{400}= -0.39077807 \pm 1.1 \cdot 10^{-3} \) | \(a_{401}= -1.54982277 \pm 1.2 \cdot 10^{-3} \) | \(a_{402}= -0.15924552 \pm 1.4 \cdot 10^{-3} \) |
\(a_{403}= +0.93694699 \pm 9.9 \cdot 10^{-4} \) | \(a_{404}= +0.18726069 \pm 1.8 \cdot 10^{-3} \) | \(a_{405}= +1.28346799 \pm 1.4 \cdot 10^{-3} \) |
\(a_{406}= +0.01276377 \pm 8.8 \cdot 10^{-4} \) | \(a_{407}= +0.08594338 \pm 1.4 \cdot 10^{-3} \) | \(a_{408}= +0.23376893 \pm 2.5 \cdot 10^{-3} \) |
\(a_{409}= +0.85763282 \pm 1.5 \cdot 10^{-3} \) | \(a_{410}= +0.01317759 \pm 8.4 \cdot 10^{-4} \) | \(a_{411}= +1.07340996 \pm 1.4 \cdot 10^{-3} \) |
\(a_{412}= -0.09476858 \pm 1.6 \cdot 10^{-3} \) | \(a_{413}= +0.18442731 \pm 1.4 \cdot 10^{-3} \) | \(a_{414}= +0.31664466 \pm 1.5 \cdot 10^{-3} \) |
\(a_{415}= +0.50834731 \pm 1.1 \cdot 10^{-3} \) | \(a_{416}= -0.18687793 \pm 8.5 \cdot 10^{-4} \) | \(a_{417}= -1.58288638 \pm 1.0 \cdot 10^{-3} \) |
\(a_{418}= +0.04796980 \pm 2.8 \cdot 10^{-3} \) | \(a_{419}= +0.63934736 \pm 1.4 \cdot 10^{-3} \) | \(a_{420}= -0.51275812 \pm 9.8 \cdot 10^{-4} \) |
\(a_{421}= -1.14039802 \pm 1.0 \cdot 10^{-3} \) | \(a_{422}= +0.11071445 \pm 1.7 \cdot 10^{-3} \) | \(a_{423}= -0.99899184 \pm 1.8 \cdot 10^{-3} \) |
\(a_{424}= -0.26198957 \pm 1.2 \cdot 10^{-3} \) | \(a_{425}= +0.27879335 \pm 1.1 \cdot 10^{-3} \) | \(a_{426}= -0.01555777 \pm 1.2 \cdot 10^{-3} \) |
\(a_{427}= +0.65160060 \pm 1.0 \cdot 10^{-3} \) | \(a_{428}= -0.06312955 \pm 2.6 \cdot 10^{-3} \) | \(a_{429}= -0.36036553 \pm 2.6 \cdot 10^{-3} \) |
\(a_{430}= +0.09133366 \pm 1.5 \cdot 10^{-3} \) | \(a_{431}= -0.38322788 \pm 1.8 \cdot 10^{-3} \) | \(a_{432}= +2.10091288 \pm 9.9 \cdot 10^{-4} \) |
\(a_{433}= -1.16639341 \pm 1.7 \cdot 10^{-3} \) | \(a_{434}= -0.04950804 \pm 1.4 \cdot 10^{-3} \) | \(a_{435}= +0.50121283 \pm 8.2 \cdot 10^{-4} \) |
\(a_{436}= -0.67596418 \pm 1.0 \cdot 10^{-3} \) | \(a_{437}= +2.56121156 \pm 1.1 \cdot 10^{-3} \) | \(a_{438}= +0.02286590 \pm 6.9 \cdot 10^{-4} \) |
\(a_{439}= +0.23799073 \pm 1.8 \cdot 10^{-3} \) | \(a_{440}= -0.04385946 \pm 3.2 \cdot 10^{-3} \) | \(a_{441}= -1.89786614 \pm 1.3 \cdot 10^{-3} \) |
\(a_{442}= +0.04377543 \pm 7.2 \cdot 10^{-4} \) | \(a_{443}= +0.58172115 \pm 1.8 \cdot 10^{-3} \) | \(a_{444}= -0.50579179 \pm 1.0 \cdot 10^{-3} \) |
\(a_{445}= -0.57182158 \pm 9.9 \cdot 10^{-4} \) | \(a_{446}= -0.07077553 \pm 1.5 \cdot 10^{-3} \) | \(a_{447}= -0.51127284 \pm 5.5 \cdot 10^{-4} \) |
\(a_{448}= -0.35368121 \pm 1.3 \cdot 10^{-3} \) | \(a_{449}= +1.36847334 \pm 1.1 \cdot 10^{-3} \) | \(a_{450}= -0.08362365 \pm 1.6 \cdot 10^{-3} \) |
\(a_{451}= +0.05438374 \pm 9.8 \cdot 10^{-4} \) | \(a_{452}= +1.01827789 \pm 2.6 \cdot 10^{-3} \) | \(a_{453}= -0.94347609 \pm 1.8 \cdot 10^{-3} \) |
\(a_{454}= -0.10655194 \pm 1.8 \cdot 10^{-3} \) | \(a_{455}= -0.19290156 \pm 1.1 \cdot 10^{-3} \) | \(a_{456}= -0.56716155 \pm 1.0 \cdot 10^{-3} \) |
\(a_{457}= -0.24021690 \pm 1.2 \cdot 10^{-3} \) | \(a_{458}= -0.00777884 \pm 1.7 \cdot 10^{-3} \) | \(a_{459}= -1.49885720 \pm 1.2 \cdot 10^{-3} \) |
\(a_{460}= -1.16563164 \pm 1.1 \cdot 10^{-3} \) | \(a_{461}= +0.30481993 \pm 9.5 \cdot 10^{-4} \) | \(a_{462}= +0.01904162 \pm 4.7 \cdot 10^{-3} \) |
\(a_{463}= -0.29307971 \pm 1.1 \cdot 10^{-3} \) | \(a_{464}= +0.35220076 \pm 1.4 \cdot 10^{-3} \) | \(a_{465}= -1.94410104 \pm 1.2 \cdot 10^{-3} \) |
\(a_{466}= +0.13225512 \pm 1.3 \cdot 10^{-3} \) | \(a_{467}= +1.43634259 \pm 1.5 \cdot 10^{-3} \) | \(a_{468}= +1.45921357 \pm 1.1 \cdot 10^{-3} \) |
\(a_{469}= -0.35179758 \pm 1.6 \cdot 10^{-3} \) | \(a_{470}= -0.03309096 \pm 7.4 \cdot 10^{-4} \) | \(a_{471}= -1.65977962 \pm 1.1 \cdot 10^{-3} \) |
\(a_{472}= -0.09284004 \pm 2.0 \cdot 10^{-3} \) | \(a_{473}= +0.37693288 \pm 1.4 \cdot 10^{-3} \) | \(a_{474}= +0.23067939 \pm 1.3 \cdot 10^{-3} \) |
\(a_{475}= -0.67639811 \pm 1.1 \cdot 10^{-3} \) | \(a_{476}= +0.25705903 \pm 1.3 \cdot 10^{-3} \) | \(a_{477}= +3.07315184 \pm 1.0 \cdot 10^{-3} \) |
\(a_{478}= +0.16986555 \pm 1.8 \cdot 10^{-3} \) | \(a_{479}= +1.04411310 \pm 1.8 \cdot 10^{-3} \) | \(a_{480}= +0.38775895 \pm 1.0 \cdot 10^{-3} \) |
\(a_{481}= -0.19028080 \pm 1.5 \cdot 10^{-3} \) | \(a_{482}= -0.08629491 \pm 1.9 \cdot 10^{-3} \) | \(a_{483}= +1.01667354 \pm 1.0 \cdot 10^{-3} \) |
\(a_{484}= -0.09009836 \pm 2.0 \cdot 10^{-3} \) | \(a_{485}= +1.21552283 \pm 1.6 \cdot 10^{-3} \) | \(a_{486}= +0.07666448 \pm 1.4 \cdot 10^{-3} \) |
\(a_{487}= +0.26814619 \pm 8.3 \cdot 10^{-4} \) | \(a_{488}= -0.32801340 \pm 1.2 \cdot 10^{-3} \) | \(a_{489}= +1.57662732 \pm 1.2 \cdot 10^{-3} \) |
\(a_{490}= -0.06286559 \pm 1.4 \cdot 10^{-3} \) | \(a_{491}= -1.21203978 \pm 1.8 \cdot 10^{-3} \) | \(a_{492}= -0.32005779 \pm 8.6 \cdot 10^{-4} \) |
\(a_{493}= -0.25127108 \pm 1.3 \cdot 10^{-3} \) | \(a_{494}= -0.10620633 \pm 6.6 \cdot 10^{-4} \) | \(a_{495}= +0.51447389 \pm 3.1 \cdot 10^{-3} \) |
\(a_{496}= -1.36611399 \pm 1.2 \cdot 10^{-3} \) | \(a_{497}= -0.03436948 \pm 1.2 \cdot 10^{-3} \) | \(a_{498}= +0.11109929 \pm 1.7 \cdot 10^{-3} \) |
\(a_{499}= -1.08754069 \pm 1.6 \cdot 10^{-3} \) | \(a_{500}= +1.07457176 \pm 1.4 \cdot 10^{-3} \) | \(a_{501}= -2.51264024 \pm 1.4 \cdot 10^{-3} \) |
\(a_{502}= +0.01732402 \pm 1.7 \cdot 10^{-3} \) | \(a_{503}= -0.15013677 \pm 1.8 \cdot 10^{-3} \) | \(a_{504}= -0.15490275 \pm 6.6 \cdot 10^{-4} \) |
\(a_{505}= -0.14617518 \pm 7.7 \cdot 10^{-4} \) | \(a_{506}= +0.04328653 \pm 3.1 \cdot 10^{-3} \) | \(a_{507}= -0.99255544 \pm 1.3 \cdot 10^{-3} \) |
\(a_{508}= +1.56541346 \pm 1.8 \cdot 10^{-3} \) | \(a_{509}= -1.17922199 \pm 1.5 \cdot 10^{-3} \) | \(a_{510}= -0.09083103 \pm 8.2 \cdot 10^{-4} \) |
\(a_{511}= +0.05051425 \pm 1.5 \cdot 10^{-3} \) | \(a_{512}= +0.45548973 \pm 1.6 \cdot 10^{-3} \) | \(a_{513}= +3.63647196 \pm 9.5 \cdot 10^{-4} \) |
\(a_{514}= -0.04362482 \pm 1.6 \cdot 10^{-3} \) | \(a_{515}= +0.07397609 \pm 1.4 \cdot 10^{-3} \) | \(a_{516}= -2.21831569 \pm 1.9 \cdot 10^{-3} \) |
\(a_{517}= -0.13656598 \pm 1.1 \cdot 10^{-3} \) | \(a_{518}= +0.01005439 \pm 1.0 \cdot 10^{-3} \) | \(a_{519}= -2.77681801 \pm 1.5 \cdot 10^{-3} \) |
\(a_{520}= +0.09710595 \pm 5.4 \cdot 10^{-4} \) | \(a_{521}= -0.28239214 \pm 1.7 \cdot 10^{-3} \) | \(a_{522}= +0.07536838 \pm 1.0 \cdot 10^{-3} \) |
\(a_{523}= +0.26647907 \pm 1.1 \cdot 10^{-3} \) | \(a_{524}= +0.81225136 \pm 2.1 \cdot 10^{-3} \) | \(a_{525}= -0.26849639 \pm 6.1 \cdot 10^{-4} \) |
\(a_{526}= +0.00398067 \pm 1.9 \cdot 10^{-3} \) | \(a_{527}= +0.97462860 \pm 1.1 \cdot 10^{-3} \) | \(a_{528}= +0.52543036 \pm 2.9 \cdot 10^{-3} \) |
\(a_{529}= +1.31116153 \pm 1.4 \cdot 10^{-3} \) | \(a_{530}= +0.10179617 \pm 1.8 \cdot 10^{-3} \) | \(a_{531}= +1.08901871 \pm 1.8 \cdot 10^{-3} \) |
\(a_{532}= -0.62366713 \pm 1.0 \cdot 10^{-3} \) | \(a_{533}= -0.12040696 \pm 8.1 \cdot 10^{-4} \) | \(a_{534}= -0.12497159 \pm 2.4 \cdot 10^{-3} \) |
\(a_{535}= +0.04927875 \pm 1.8 \cdot 10^{-3} \) | \(a_{536}= +0.17709364 \pm 1.5 \cdot 10^{-3} \) | \(a_{537}= -1.87536020 \pm 1.1 \cdot 10^{-3} \) |
\(a_{538}= -0.02680082 \pm 2.1 \cdot 10^{-3} \) | \(a_{539}= -0.25944550 \pm 1.3 \cdot 10^{-3} \) | \(a_{540}= -1.65499283 \pm 8.3 \cdot 10^{-4} \) |
\(a_{541}= -0.72568838 \pm 1.1 \cdot 10^{-3} \) | \(a_{542}= +0.14203553 \pm 1.2 \cdot 10^{-3} \) | \(a_{543}= -1.84479814 \pm 1.3 \cdot 10^{-3} \) |
\(a_{544}= -0.19439368 \pm 1.1 \cdot 10^{-3} \) | \(a_{545}= +0.52765577 \pm 1.0 \cdot 10^{-3} \) | \(a_{546}= -0.04215863 \pm 1.3 \cdot 10^{-3} \) |
\(a_{547}= +0.45573525 \pm 1.3 \cdot 10^{-3} \) | \(a_{548}= -0.59418516 \pm 1.5 \cdot 10^{-3} \) | \(a_{549}= +3.84761488 \pm 1.1 \cdot 10^{-3} \) |
\(a_{550}= -0.01143167 \pm 2.9 \cdot 10^{-3} \) | \(a_{551}= +0.60962460 \pm 8.7 \cdot 10^{-4} \) | \(a_{552}= -0.51178980 \pm 2.8 \cdot 10^{-3} \) |
\(a_{553}= +0.50960587 \pm 1.4 \cdot 10^{-3} \) | \(a_{554}= +0.10621535 \pm 2.1 \cdot 10^{-3} \) | \(a_{555}= +0.39481967 \pm 6.6 \cdot 10^{-4} \) |
\(a_{556}= +0.87620540 \pm 1.5 \cdot 10^{-3} \) | \(a_{557}= +1.68691267 \pm 1.2 \cdot 10^{-3} \) | \(a_{558}= -0.29233839 \pm 1.3 \cdot 10^{-3} \) |
\(a_{559}= -0.83453883 \pm 8.8 \cdot 10^{-4} \) | \(a_{560}= +0.28125980 \pm 9.6 \cdot 10^{-4} \) | \(a_{561}= -0.37485852 \pm 2.9 \cdot 10^{-3} \) |
\(a_{562}= +0.01688664 \pm 2.1 \cdot 10^{-3} \) | \(a_{563}= +0.63000886 \pm 1.5 \cdot 10^{-3} \) | \(a_{564}= +0.80371457 \pm 1.6 \cdot 10^{-3} \) |
\(a_{565}= -0.79486490 \pm 1.3 \cdot 10^{-3} \) | \(a_{566}= -0.15635248 \pm 1.3 \cdot 10^{-3} \) | \(a_{567}= +0.61967135 \pm 1.2 \cdot 10^{-3} \) |
\(a_{568}= +0.01730147 \pm 1.1 \cdot 10^{-3} \) | \(a_{569}= +1.37651043 \pm 1.4 \cdot 10^{-3} \) | \(a_{570}= +0.22037089 \pm 7.3 \cdot 10^{-4} \) |
\(a_{571}= -0.25565358 \pm 1.3 \cdot 10^{-3} \) | \(a_{572}= +0.19948003 \pm 3.2 \cdot 10^{-3} \) | \(a_{573}= -3.34227078 \pm 1.5 \cdot 10^{-3} \) |
\(a_{574}= +0.00636227 \pm 1.0 \cdot 10^{-3} \) | \(a_{575}= -0.61036164 \pm 1.1 \cdot 10^{-3} \) | \(a_{576}= -2.08844053 \pm 1.8 \cdot 10^{-3} \) |
\(a_{577}= +0.73664014 \pm 1.2 \cdot 10^{-3} \) | \(a_{578}= -0.04889924 \pm 1.3 \cdot 10^{-3} \) | \(a_{579}= +2.41327204 \pm 1.1 \cdot 10^{-3} \) |
\(a_{580}= -0.27744593 \pm 1.5 \cdot 10^{-3} \) | \(a_{581}= +0.24543523 \pm 1.2 \cdot 10^{-3} \) | \(a_{582}= +0.26565247 \pm 1.3 \cdot 10^{-3} \) |
\(a_{583}= +0.42011152 \pm 1.1 \cdot 10^{-3} \) | \(a_{584}= -0.02542869 \pm 1.3 \cdot 10^{-3} \) | \(a_{585}= -1.13905808 \pm 9.1 \cdot 10^{-4} \) |
\(a_{586}= -0.11242562 \pm 1.7 \cdot 10^{-3} \) | \(a_{587}= -0.11647260 \pm 1.2 \cdot 10^{-3} \) | \(a_{588}= +1.52688201 \pm 1.6 \cdot 10^{-3} \) |
\(a_{589}= -2.36460791 \pm 1.2 \cdot 10^{-3} \) | \(a_{590}= +0.03607304 \pm 2.4 \cdot 10^{-3} \) | \(a_{591}= -1.05314729 \pm 1.3 \cdot 10^{-3} \) |
\(a_{592}= +0.27743861 \pm 1.3 \cdot 10^{-3} \) | \(a_{593}= -1.04793454 \pm 1.7 \cdot 10^{-3} \) | \(a_{594}= +0.06145929 \pm 3.1 \cdot 10^{-3} \) |
\(a_{595}= -0.20065957 \pm 1.1 \cdot 10^{-3} \) | \(a_{596}= +0.28301464 \pm 1.3 \cdot 10^{-3} \) | \(a_{597}= -0.48603644 \pm 1.4 \cdot 10^{-3} \) |
\(a_{598}= -0.09583745 \pm 1.0 \cdot 10^{-3} \) | \(a_{599}= +0.77657371 \pm 1.5 \cdot 10^{-3} \) | \(a_{600}= +0.13516012 \pm 1.6 \cdot 10^{-3} \) |
\(a_{601}= -0.23130861 \pm 1.3 \cdot 10^{-3} \) | \(a_{602}= +0.04409682 \pm 1.0 \cdot 10^{-3} \) | \(a_{603}= -2.07731795 \pm 1.6 \cdot 10^{-3} \) |
\(a_{604}= +0.52226038 \pm 2.8 \cdot 10^{-3} \) | \(a_{605}= +0.07033053 \pm 1.5 \cdot 10^{-3} \) | \(a_{606}= -0.03194658 \pm 2.0 \cdot 10^{-3} \) |
\(a_{607}= -0.18856332 \pm 1.5 \cdot 10^{-3} \) | \(a_{608}= +0.47163077 \pm 1.1 \cdot 10^{-3} \) | \(a_{609}= +0.24199063 \pm 9.1 \cdot 10^{-4} \) |
\(a_{610}= +0.12744976 \pm 2.5 \cdot 10^{-3} \) | \(a_{611}= +0.30236049 \pm 8.4 \cdot 10^{-4} \) | \(a_{612}= +1.51789941 \pm 1.6 \cdot 10^{-3} \) |
\(a_{613}= +0.00299784 \pm 1.2 \cdot 10^{-3} \) | \(a_{614}= -0.14185871 \pm 1.8 \cdot 10^{-3} \) | \(a_{615}= +0.24983623 \pm 1.0 \cdot 10^{-3} \) |
\(a_{616}= -0.02117579 \pm 3.2 \cdot 10^{-3} \) | \(a_{617}= -0.17415838 \pm 1.6 \cdot 10^{-3} \) | \(a_{618}= +0.01616747 \pm 1.5 \cdot 10^{-3} \) |
\(a_{619}= -1.79796193 \pm 1.2 \cdot 10^{-3} \) | \(a_{620}= +1.07615546 \pm 1.3 \cdot 10^{-3} \) | \(a_{621}= +3.28144469 \pm 1.3 \cdot 10^{-3} \) |
\(a_{622}= -0.06470583 \pm 1.9 \cdot 10^{-3} \) | \(a_{623}= -0.27608125 \pm 1.1 \cdot 10^{-3} \) | \(a_{624}= -1.16331598 \pm 7.3 \cdot 10^{-4} \) |
\(a_{625}= -0.43732019 \pm 1.0 \cdot 10^{-3} \) | \(a_{626}= +0.03323475 \pm 1.8 \cdot 10^{-3} \) | \(a_{627}= +0.90946788 \pm 2.5 \cdot 10^{-3} \) |
\(a_{628}= +0.91876958 \pm 1.3 \cdot 10^{-3} \) | \(a_{629}= -0.19793341 \pm 1.4 \cdot 10^{-3} \) | \(a_{630}= +0.06018754 \pm 1.1 \cdot 10^{-3} \) |
\(a_{631}= +0.00170692 \pm 1.5 \cdot 10^{-3} \) | \(a_{632}= -0.25653376 \pm 1.2 \cdot 10^{-3} \) | \(a_{633}= +2.09905479 \pm 1.6 \cdot 10^{-3} \) |
\(a_{634}= +0.03394957 \pm 2.4 \cdot 10^{-3} \) | \(a_{635}= -1.22195742 \pm 1.5 \cdot 10^{-3} \) | \(a_{636}= -2.47242951 \pm 1.0 \cdot 10^{-3} \) |
\(a_{637}= +0.57441884 \pm 7.5 \cdot 10^{-4} \) | \(a_{638}= +0.01030314 \pm 3.1 \cdot 10^{-3} \) | \(a_{639}= -0.20294722 \pm 1.3 \cdot 10^{-3} \) |
\(a_{640}= -0.28575330 \pm 1.8 \cdot 10^{-3} \) | \(a_{641}= +1.47019310 \pm 1.6 \cdot 10^{-3} \) | \(a_{642}= +0.01076987 \pm 2.2 \cdot 10^{-3} \) |
\(a_{643}= -0.95163690 \pm 1.3 \cdot 10^{-3} \) | \(a_{644}= -0.56277877 \pm 1.2 \cdot 10^{-3} \) | \(a_{645}= +1.73161109 \pm 1.1 \cdot 10^{-3} \) |
\(a_{646}= -0.11047768 \pm 1.1 \cdot 10^{-3} \) | \(a_{647}= +0.39898605 \pm 1.7 \cdot 10^{-3} \) | \(a_{648}= -0.31194032 \pm 2.0 \cdot 10^{-3} \) |
\(a_{649}= +0.14887299 \pm 1.6 \cdot 10^{-3} \) | \(a_{650}= +0.02531000 \pm 5.7 \cdot 10^{-4} \) | \(a_{651}= -0.93863167 \pm 1.4 \cdot 10^{-3} \) |
\(a_{652}= -0.87274070 \pm 1.9 \cdot 10^{-3} \) | \(a_{653}= -0.53953470 \pm 1.2 \cdot 10^{-3} \) | \(a_{654}= +0.11531915 \pm 1.2 \cdot 10^{-3} \) |
\(a_{655}= -0.63404117 \pm 1.2 \cdot 10^{-3} \) | \(a_{656}= +0.17555917 \pm 8.1 \cdot 10^{-4} \) | \(a_{657}= +0.29827991 \pm 1.2 \cdot 10^{-3} \) |
\(a_{658}= -0.01597665 \pm 7.6 \cdot 10^{-4} \) | \(a_{659}= +1.34334981 \pm 1.4 \cdot 10^{-3} \) | \(a_{660}= -0.41390745 \pm 4.9 \cdot 10^{-3} \) |
\(a_{661}= -0.15520459 \pm 1.6 \cdot 10^{-3} \) | \(a_{662}= +0.06901241 \pm 1.3 \cdot 10^{-3} \) | \(a_{663}= +0.82994614 \pm 6.0 \cdot 10^{-4} \) |
\(a_{664}= -0.12355121 \pm 1.5 \cdot 10^{-3} \) | \(a_{665}= +0.48683284 \pm 9.4 \cdot 10^{-4} \) | \(a_{666}= +0.05936983 \pm 1.3 \cdot 10^{-3} \) |
\(a_{667}= +0.55010720 \pm 1.2 \cdot 10^{-3} \) | \(a_{668}= +1.39086985 \pm 2.4 \cdot 10^{-3} \) | \(a_{669}= -1.34184584 \pm 1.6 \cdot 10^{-3} \) |
\(a_{670}= -0.06880982 \pm 2.5 \cdot 10^{-3} \) | \(a_{671}= +0.52598355 \pm 1.2 \cdot 10^{-3} \) | \(a_{672}= +0.18721395 \pm 1.2 \cdot 10^{-3} \) |
\(a_{673}= -1.01988359 \pm 1.1 \cdot 10^{-3} \) | \(a_{674}= +0.01443036 \pm 1.1 \cdot 10^{-3} \) | \(a_{675}= -0.86660666 \pm 6.1 \cdot 10^{-4} \) |
\(a_{676}= +0.54942821 \pm 1.7 \cdot 10^{-3} \) | \(a_{677}= +0.07956138 \pm 1.6 \cdot 10^{-3} \) | \(a_{678}= -0.17371770 \pm 2.3 \cdot 10^{-3} \) |
\(a_{679}= +0.58686674 \pm 1.0 \cdot 10^{-3} \) | \(a_{680}= +0.10101131 \pm 1.0 \cdot 10^{-3} \) | \(a_{681}= -2.02013708 \pm 1.2 \cdot 10^{-3} \) |
\(a_{682}= -0.03996377 \pm 3.2 \cdot 10^{-3} \) | \(a_{683}= -1.85882466 \pm 1.2 \cdot 10^{-3} \) | \(a_{684}= -3.68267147 \pm 1.2 \cdot 10^{-3} \) |
\(a_{685}= +0.46381929 \pm 1.4 \cdot 10^{-3} \) | \(a_{686}= -0.06562551 \pm 1.3 \cdot 10^{-3} \) | \(a_{687}= -0.14748045 \pm 8.1 \cdot 10^{-4} \) |
\(a_{688}= +1.21679794 \pm 1.3 \cdot 10^{-3} \) | \(a_{689}= -0.93013742 \pm 7.6 \cdot 10^{-4} \) | \(a_{690}= +0.19885617 \pm 1.0 \cdot 10^{-3} \) |
\(a_{691}= +0.31512321 \pm 1.5 \cdot 10^{-3} \) | \(a_{692}= +1.53710522 \pm 1.9 \cdot 10^{-3} \) | \(a_{693}= +0.24839321 \pm 3.1 \cdot 10^{-3} \) |
\(a_{694}= +0.08150494 \pm 1.5 \cdot 10^{-3} \) | \(a_{695}= -0.68396351 \pm 1.2 \cdot 10^{-3} \) | \(a_{696}= -0.12181721 \pm 1.5 \cdot 10^{-3} \) |
\(a_{697}= -0.12524942 \pm 8.5 \cdot 10^{-4} \) | \(a_{698}= +0.03840442 \pm 1.4 \cdot 10^{-3} \) | \(a_{699}= +2.50744828 \pm 1.8 \cdot 10^{-3} \) |
\(a_{700}= +0.14862595 \pm 1.0 \cdot 10^{-3} \) | \(a_{701}= +0.74597144 \pm 1.7 \cdot 10^{-3} \) | \(a_{702}= -0.13607240 \pm 5.7 \cdot 10^{-4} \) |
\(a_{703}= +0.48021873 \pm 9.0 \cdot 10^{-4} \) | \(a_{704}= -0.28549774 \pm 1.5 \cdot 10^{-3} \) | \(a_{705}= -0.62737737 \pm 1.3 \cdot 10^{-3} \) |
\(a_{706}= +0.09366601 \pm 1.3 \cdot 10^{-3} \) | \(a_{707}= -0.07057486 \pm 9.5 \cdot 10^{-4} \) | \(a_{708}= -0.87614350 \pm 2.0 \cdot 10^{-3} \) |
\(a_{709}= -0.15578722 \pm 1.2 \cdot 10^{-3} \) | \(a_{710}= -0.00672250 \pm 6.9 \cdot 10^{-4} \) | \(a_{711}= +3.00915488 \pm 6.3 \cdot 10^{-4} \) |
\(a_{712}= +0.13897831 \pm 2.3 \cdot 10^{-3} \) | \(a_{713}= -2.13375221 \pm 1.3 \cdot 10^{-3} \) | \(a_{714}= -0.04385414 \pm 9.6 \cdot 10^{-4} \) |
\(a_{715}= -0.15571356 \pm 2.6 \cdot 10^{-3} \) | \(a_{716}= +1.03810403 \pm 2.5 \cdot 10^{-3} \) | \(a_{717}= +3.22051094 \pm 1.0 \cdot 10^{-3} \) |
\(a_{718}= -0.11353634 \pm 1.8 \cdot 10^{-3} \) | \(a_{719}= +1.01392275 \pm 1.6 \cdot 10^{-3} \) | \(a_{720}= +1.66080172 \pm 8.6 \cdot 10^{-4} \) |
\(a_{721}= +0.03571641 \pm 1.7 \cdot 10^{-3} \) | \(a_{722}= +0.17360166 \pm 1.2 \cdot 10^{-3} \) | \(a_{723}= -1.63608045 \pm 2.0 \cdot 10^{-3} \) |
\(a_{724}= +1.02118642 \pm 1.0 \cdot 10^{-3} \) | \(a_{725}= -0.14527948 \pm 1.0 \cdot 10^{-3} \) | \(a_{726}= +0.01537074 \pm 3.2 \cdot 10^{-3} \) |
\(a_{727}= -0.88154669 \pm 1.6 \cdot 10^{-3} \) | \(a_{728}= +0.04688374 \pm 6.8 \cdot 10^{-4} \) | \(a_{729}= -0.20551237 \pm 1.2 \cdot 10^{-3} \) |
\(a_{730}= +0.00988033 \pm 2.3 \cdot 10^{-3} \) | \(a_{731}= -0.86810185 \pm 1.3 \cdot 10^{-3} \) | \(a_{732}= -3.09550490 \pm 5.9 \cdot 10^{-4} \) |
\(a_{733}= +0.50094661 \pm 1.9 \cdot 10^{-3} \) | \(a_{734}= -0.09154513 \pm 1.6 \cdot 10^{-3} \) | \(a_{735}= -1.19187987 \pm 1.1 \cdot 10^{-3} \) |
\(a_{736}= +0.42558566 \pm 1.3 \cdot 10^{-3} \) | \(a_{737}= -0.28397725 \pm 1.7 \cdot 10^{-3} \) | \(a_{738}= +0.03756838 \pm 1.1 \cdot 10^{-3} \) |
\(a_{739}= +0.46625026 \pm 1.8 \cdot 10^{-3} \) | \(a_{740}= -0.21855209 \pm 2.0 \cdot 10^{-3} \) | \(a_{741}= -2.01358466 \pm 6.2 \cdot 10^{-4} \) |
\(a_{742}= +0.04914822 \pm 1.1 \cdot 10^{-3} \) | \(a_{743}= -0.14195531 \pm 1.3 \cdot 10^{-3} \) | \(a_{744}= +0.47250381 \pm 1.2 \cdot 10^{-3} \) |
\(a_{745}= -0.22092045 \pm 1.2 \cdot 10^{-3} \) | \(a_{746}= +0.03335111 \pm 8.1 \cdot 10^{-4} \) | \(a_{747}= +1.44926241 \pm 2.1 \cdot 10^{-3} \) |
\(a_{748}= +0.20750261 \pm 3.5 \cdot 10^{-3} \) | \(a_{749}= +0.02379228 \pm 1.0 \cdot 10^{-3} \) | \(a_{750}= -0.18332140 \pm 1.2 \cdot 10^{-3} \) |
\(a_{751}= +0.36419563 \pm 1.5 \cdot 10^{-3} \) | \(a_{752}= -0.44085620 \pm 1.2 \cdot 10^{-3} \) | \(a_{753}= +0.32844916 \pm 1.6 \cdot 10^{-3} \) |
\(a_{754}= -0.02281142 \pm 6.9 \cdot 10^{-4} \) | \(a_{755}= -0.40767501 \pm 1.6 \cdot 10^{-3} \) | \(a_{756}= -0.79904731 \pm 9.4 \cdot 10^{-4} \) |
\(a_{757}= -0.02439064 \pm 1.3 \cdot 10^{-3} \) | \(a_{758}= -0.03613285 \pm 1.5 \cdot 10^{-3} \) | \(a_{759}= +0.82067690 \pm 2.8 \cdot 10^{-3} \) |
\(a_{760}= -0.24506990 \pm 1.2 \cdot 10^{-3} \) | \(a_{761}= +0.79340240 \pm 1.5 \cdot 10^{-3} \) | \(a_{762}= -0.26705875 \pm 1.3 \cdot 10^{-3} \) |
\(a_{763}= +0.25475755 \pm 1.2 \cdot 10^{-3} \) | \(a_{764}= +1.85011112 \pm 1.3 \cdot 10^{-3} \) | \(a_{765}= -1.18486808 \pm 1.2 \cdot 10^{-3} \) |
\(a_{766}= -0.09717525 \pm 2.2 \cdot 10^{-3} \) | \(a_{767}= -0.32960853 \pm 1.0 \cdot 10^{-3} \) | \(a_{768}= +1.63287153 \pm 1.7 \cdot 10^{-3} \) |
\(a_{769}= -1.64203289 \pm 1.2 \cdot 10^{-3} \) | \(a_{770}= +0.00822786 \pm 4.7 \cdot 10^{-3} \) | \(a_{771}= -0.82709071 \pm 7.9 \cdot 10^{-4} \) |
\(a_{772}= -1.33586467 \pm 2.2 \cdot 10^{-3} \) | \(a_{773}= -0.52411247 \pm 1.5 \cdot 10^{-3} \) | \(a_{774}= +0.26038585 \pm 1.5 \cdot 10^{-3} \) |
\(a_{775}= +0.56350908 \pm 7.1 \cdot 10^{-4} \) | \(a_{776}= -0.29542660 \pm 1.6 \cdot 10^{-3} \) | \(a_{777}= +0.19062294 \pm 9.1 \cdot 10^{-4} \) |
\(a_{778}= +0.04911785 \pm 9.3 \cdot 10^{-4} \) | \(a_{779}= +0.30387552 \pm 8.0 \cdot 10^{-4} \) | \(a_{780}= +0.91640145 \pm 8.4 \cdot 10^{-4} \) |
\(a_{781}= -0.02774366 \pm 1.1 \cdot 10^{-3} \) | \(a_{782}= -0.09969179 \pm 2.4 \cdot 10^{-3} \) | \(a_{783}= +0.78105590 \pm 8.8 \cdot 10^{-4} \) |
\(a_{784}= -0.83753043 \pm 1.1 \cdot 10^{-3} \) | \(a_{785}= -0.71718900 \pm 1.3 \cdot 10^{-3} \) | \(a_{786}= -0.13856967 \pm 2.3 \cdot 10^{-3} \) |
\(a_{787}= -0.47644557 \pm 1.9 \cdot 10^{-3} \) | \(a_{788}= +0.58296878 \pm 1.8 \cdot 10^{-3} \) | \(a_{789}= +0.07547022 \pm 1.7 \cdot 10^{-3} \) |
\(a_{790}= +0.09967632 \pm 7.2 \cdot 10^{-4} \) | \(a_{791}= -0.38376883 \pm 1.7 \cdot 10^{-3} \) | \(a_{792}= -0.12504025 \pm 3.3 \cdot 10^{-3} \) |
\(a_{793}= -1.16454076 \pm 7.1 \cdot 10^{-4} \) | \(a_{794}= +0.15283245 \pm 1.8 \cdot 10^{-3} \) | \(a_{795}= +1.92997164 \pm 8.6 \cdot 10^{-4} \) |
\(a_{796}= +0.26904505 \pm 1.7 \cdot 10^{-3} \) | \(a_{797}= -0.21311345 \pm 1.3 \cdot 10^{-3} \) | \(a_{798}= +0.10639730 \pm 9.8 \cdot 10^{-4} \) |
\(a_{799}= +0.31452066 \pm 1.2 \cdot 10^{-3} \) | \(a_{800}= -0.11239420 \pm 1.0 \cdot 10^{-3} \) | \(a_{801}= -1.63022307 \pm 1.1 \cdot 10^{-3} \) |
\(a_{802}= -0.14635783 \pm 1.6 \cdot 10^{-3} \) | \(a_{803}= +0.04077600 \pm 1.4 \cdot 10^{-3} \) | \(a_{804}= +1.67125560 \pm 1.4 \cdot 10^{-3} \) |
\(a_{805}= +0.43930355 \pm 1.0 \cdot 10^{-3} \) | \(a_{806}= +0.08848078 \pm 9.3 \cdot 10^{-4} \) | \(a_{807}= -0.50812149 \pm 1.3 \cdot 10^{-3} \) |
\(a_{808}= +0.03552713 \pm 1.7 \cdot 10^{-3} \) | \(a_{809}= +1.20950078 \pm 1.8 \cdot 10^{-3} \) | \(a_{810}= +0.12120456 \pm 1.7 \cdot 10^{-3} \) |
\(a_{811}= +0.30622980 \pm 1.4 \cdot 10^{-3} \) | \(a_{812}= -0.13395371 \pm 1.4 \cdot 10^{-3} \) | \(a_{813}= +2.69287673 \pm 1.9 \cdot 10^{-3} \) |
\(a_{814}= +0.00811608 \pm 3.2 \cdot 10^{-3} \) | \(a_{815}= +0.68125898 \pm 1.7 \cdot 10^{-3} \) | \(a_{816}= -1.21010158 \pm 1.9 \cdot 10^{-3} \) |
\(a_{817}= +2.10615663 \pm 9.5 \cdot 10^{-4} \) | \(a_{818}= +0.08099073 \pm 2.2 \cdot 10^{-3} \) | \(a_{819}= -0.54994878 \pm 1.2 \cdot 10^{-3} \) |
\(a_{820}= -0.13829663 \pm 7.6 \cdot 10^{-4} \) | \(a_{821}= -0.17788644 \pm 1.9 \cdot 10^{-3} \) | \(a_{822}= +0.10136769 \pm 1.3 \cdot 10^{-3} \) |
\(a_{823}= -0.05449275 \pm 1.3 \cdot 10^{-3} \) | \(a_{824}= -0.01797951 \pm 1.2 \cdot 10^{-3} \) | \(a_{825}= -0.21673505 \pm 2.6 \cdot 10^{-3} \) |
\(a_{826}= +0.01741643 \pm 1.0 \cdot 10^{-3} \) | \(a_{827}= +0.53383086 \pm 1.5 \cdot 10^{-3} \) | \(a_{828}= -3.32313376 \pm 1.5 \cdot 10^{-3} \) |
\(a_{829}= -1.16252986 \pm 1.1 \cdot 10^{-3} \) | \(a_{830}= +0.04800588 \pm 8.6 \cdot 10^{-4} \) | \(a_{831}= +2.01375556 \pm 1.9 \cdot 10^{-3} \) |
\(a_{832}= +0.63209915 \pm 1.2 \cdot 10^{-3} \) | \(a_{833}= +0.59752050 \pm 1.2 \cdot 10^{-3} \) | \(a_{834}= -0.14948020 \pm 1.4 \cdot 10^{-3} \) |
\(a_{835}= -1.08570916 \pm 1.4 \cdot 10^{-3} \) | \(a_{836}= -0.50343516 \pm 3.1 \cdot 10^{-3} \) | \(a_{837}= -3.02955452 \pm 1.6 \cdot 10^{-3} \) |
\(a_{838}= +0.06037690 \pm 1.4 \cdot 10^{-3} \) | \(a_{839}= +0.41075019 \pm 1.5 \cdot 10^{-3} \) | \(a_{840}= -0.09728055 \pm 7.6 \cdot 10^{-4} \) |
\(a_{841}= -0.86906240 \pm 9.8 \cdot 10^{-4} \) | \(a_{842}= -0.10769372 \pm 1.1 \cdot 10^{-3} \) | \(a_{843}= +0.32015689 \pm 1.3 \cdot 10^{-3} \) |
\(a_{844}= -1.16192998 \pm 1.8 \cdot 10^{-3} \) | \(a_{845}= -0.42888214 \pm 1.2 \cdot 10^{-3} \) | \(a_{846}= -0.09434000 \pm 1.5 \cdot 10^{-3} \) |
\(a_{847}= +0.03395629 \pm 1.5 \cdot 10^{-3} \) | \(a_{848}= +1.35618531 \pm 8.5 \cdot 10^{-4} \) | \(a_{849}= -2.96431423 \pm 1.4 \cdot 10^{-3} \) |
\(a_{850}= +0.02632791 \pm 1.8 \cdot 10^{-3} \) | \(a_{851}= +0.43333517 \pm 8.1 \cdot 10^{-4} \) | \(a_{852}= +0.16327625 \pm 1.1 \cdot 10^{-3} \) |
\(a_{853}= +0.58978467 \pm 1.8 \cdot 10^{-3} \) | \(a_{854}= +0.06153404 \pm 1.0 \cdot 10^{-3} \) | \(a_{855}= +2.87468317 \pm 1.2 \cdot 10^{-3} \) |
\(a_{856}= -0.01197695 \pm 2.3 \cdot 10^{-3} \) | \(a_{857}= -0.53548174 \pm 1.4 \cdot 10^{-3} \) | \(a_{858}= -0.03403119 \pm 4.3 \cdot 10^{-3} \) |
\(a_{859}= +0.47228281 \pm 1.6 \cdot 10^{-3} \) | \(a_{860}= -0.95853183 \pm 1.6 \cdot 10^{-3} \) | \(a_{861}= +0.12062346 \pm 1.0 \cdot 10^{-3} \) |
\(a_{862}= -0.03619020 \pm 2.0 \cdot 10^{-3} \) | \(a_{863}= -0.04721570 \pm 1.4 \cdot 10^{-3} \) | \(a_{864}= +0.60425711 \pm 1.1 \cdot 10^{-3} \) |
\(a_{865}= -1.19986009 \pm 1.6 \cdot 10^{-3} \) | \(a_{866}= -0.11014860 \pm 2.1 \cdot 10^{-3} \) | \(a_{867}= -0.92708929 \pm 9.6 \cdot 10^{-4} \) |
\(a_{868}= +0.51957876 \pm 1.6 \cdot 10^{-3} \) | \(a_{869}= +0.41136289 \pm 1.1 \cdot 10^{-3} \) | \(a_{870}= +0.04733214 \pm 6.1 \cdot 10^{-4} \) |
\(a_{871}= +0.62873273 \pm 1.5 \cdot 10^{-3} \) | \(a_{872}= -0.12824403 \pm 8.3 \cdot 10^{-4} \) | \(a_{873}= +3.46537002 \pm 1.1 \cdot 10^{-3} \) |
\(a_{874}= +0.24186854 \pm 1.5 \cdot 10^{-3} \) | \(a_{875}= -0.40498488 \pm 1.4 \cdot 10^{-3} \) | \(a_{876}= -0.23997384 \pm 7.3 \cdot 10^{-4} \) |
\(a_{877}= +0.01974896 \pm 1.5 \cdot 10^{-3} \) | \(a_{878}= +0.02247470 \pm 2.3 \cdot 10^{-3} \) | \(a_{879}= -2.13149728 \pm 1.3 \cdot 10^{-3} \) |
\(a_{880}= +0.22703790 \pm 3.0 \cdot 10^{-3} \) | \(a_{881}= -0.43904533 \pm 1.7 \cdot 10^{-3} \) | \(a_{882}= -0.17922538 \pm 1.3 \cdot 10^{-3} \) |
\(a_{883}= +0.97829101 \pm 1.7 \cdot 10^{-3} \) | \(a_{884}= -0.45941597 \pm 1.2 \cdot 10^{-3} \) | \(a_{885}= +0.68391519 \pm 1.1 \cdot 10^{-3} \) |
\(a_{886}= +0.05493496 \pm 2.3 \cdot 10^{-3} \) | \(a_{887}= +1.45038845 \pm 1.2 \cdot 10^{-3} \) | \(a_{888}= -0.09595890 \pm 8.3 \cdot 10^{-4} \) |
\(a_{889}= -0.58997342 \pm 1.3 \cdot 10^{-3} \) | \(a_{890}= -0.05400009 \pm 1.2 \cdot 10^{-3} \) | \(a_{891}= +0.50020969 \pm 1.5 \cdot 10^{-3} \) |
\(a_{892}= +0.74277761 \pm 1.8 \cdot 10^{-3} \) | \(a_{893}= -0.76307839 \pm 7.2 \cdot 10^{-4} \) | \(a_{894}= -0.04828216 \pm 6.4 \cdot 10^{-4} \) |
\(a_{895}= -0.81034113 \pm 2.0 \cdot 10^{-3} \) | \(a_{896}= -0.13796459 \pm 1.1 \cdot 10^{-3} \) | \(a_{897}= -1.81699921 \pm 9.1 \cdot 10^{-4} \) |
\(a_{898}= +0.12923206 \pm 1.3 \cdot 10^{-3} \) | \(a_{899}= -0.50787989 \pm 1.3 \cdot 10^{-3} \) | \(a_{900}= +0.87761646 \pm 1.8 \cdot 10^{-3} \) |
\(a_{901}= -0.96754517 \pm 1.0 \cdot 10^{-3} \) | \(a_{902}= +0.00513574 \pm 2.7 \cdot 10^{-3} \) | \(a_{903}= +0.83603938 \pm 1.1 \cdot 10^{-3} \) |
\(a_{904}= +0.19318785 \pm 2.3 \cdot 10^{-3} \) | \(a_{905}= -0.79713530 \pm 1.1 \cdot 10^{-3} \) | \(a_{906}= -0.08909736 \pm 2.6 \cdot 10^{-3} \) |
\(a_{907}= +0.69095946 \pm 1.8 \cdot 10^{-3} \) | \(a_{908}= +1.11824514 \pm 2.2 \cdot 10^{-3} \) | \(a_{909}= -0.41673514 \pm 9.9 \cdot 10^{-4} \) |
\(a_{910}= -0.01821670 \pm 9.3 \cdot 10^{-4} \) | \(a_{911}= +0.31763219 \pm 1.2 \cdot 10^{-3} \) | \(a_{912}= +2.93590374 \pm 9.8 \cdot 10^{-4} \) |
\(a_{913}= +0.19811967 \pm 1.4 \cdot 10^{-3} \) | \(a_{914}= -0.02268493 \pm 1.7 \cdot 10^{-3} \) | \(a_{915}= +2.41634257 \pm 5.9 \cdot 10^{-4} \) |
\(a_{916}= +0.08163768 \pm 1.8 \cdot 10^{-3} \) | \(a_{917}= -0.30612150 \pm 1.3 \cdot 10^{-3} \) | \(a_{918}= -0.14154489 \pm 1.1 \cdot 10^{-3} \) |
\(a_{919}= +0.10835014 \pm 1.3 \cdot 10^{-3} \) | \(a_{920}= -0.22114382 \pm 8.1 \cdot 10^{-4} \) | \(a_{921}= -2.68952434 \pm 1.4 \cdot 10^{-3} \) |
\(a_{922}= +0.02878573 \pm 1.4 \cdot 10^{-3} \) | \(a_{923}= +0.06142515 \pm 6.0 \cdot 10^{-4} \) | \(a_{924}= -0.19983871 \pm 4.9 \cdot 10^{-3} \) |
\(a_{925}= -0.11444080 \pm 1.1 \cdot 10^{-3} \) | \(a_{926}= -0.02767704 \pm 1.3 \cdot 10^{-3} \) | \(a_{927}= +0.21090062 \pm 1.9 \cdot 10^{-3} \) |
\(a_{928}= +0.10129873 \pm 9.8 \cdot 10^{-4} \) | \(a_{929}= +0.45651814 \pm 1.4 \cdot 10^{-3} \) | \(a_{930}= -0.18359158 \pm 1.1 \cdot 10^{-3} \) |
\(a_{931}= -1.44968215 \pm 8.2 \cdot 10^{-4} \) | \(a_{932}= -1.38799584 \pm 1.6 \cdot 10^{-3} \) | \(a_{933}= -1.22676929 \pm 8.2 \cdot 10^{-4} \) |
\(a_{934}= +0.13564131 \pm 1.7 \cdot 10^{-3} \) | \(a_{935}= -0.16197596 \pm 2.9 \cdot 10^{-3} \) | \(a_{936}= +0.27684223 \pm 5.7 \cdot 10^{-4} \) |
\(a_{937}= +1.22469333 \pm 1.3 \cdot 10^{-3} \) | \(a_{938}= -0.03322208 \pm 1.3 \cdot 10^{-3} \) | \(a_{939}= +0.63010353 \pm 1.4 \cdot 10^{-3} \) |
\(a_{940}= +0.34728421 \pm 7.7 \cdot 10^{-4} \) | \(a_{941}= -0.55672312 \pm 1.4 \cdot 10^{-3} \) | \(a_{942}= -0.15674163 \pm 1.1 \cdot 10^{-3} \) |
\(a_{943}= +0.27420828 \pm 9.4 \cdot 10^{-4} \) | \(a_{944}= +0.48058516 \pm 1.5 \cdot 10^{-3} \) | \(a_{945}= +0.62373412 \pm 1.1 \cdot 10^{-3} \) |
\(a_{946}= +0.03559573 \pm 3.1 \cdot 10^{-3} \) | \(a_{947}= -0.42209611 \pm 1.8 \cdot 10^{-3} \) | \(a_{948}= -2.42094232 \pm 1.4 \cdot 10^{-3} \) |
\(a_{949}= -0.09027907 \pm 9.6 \cdot 10^{-4} \) | \(a_{950}= -0.06387579 \pm 1.6 \cdot 10^{-3} \) | \(a_{951}= +0.64365585 \pm 1.6 \cdot 10^{-3} \) |
\(a_{952}= +0.04876928 \pm 9.7 \cdot 10^{-4} \) | \(a_{953}= +0.00092369 \pm 1.3 \cdot 10^{-3} \) | \(a_{954}= +0.29021372 \pm 1.3 \cdot 10^{-3} \) |
\(a_{955}= -1.44419163 \pm 1.2 \cdot 10^{-3} \) | \(a_{956}= -1.78271106 \pm 1.9 \cdot 10^{-3} \) | \(a_{957}= +0.19533913 \pm 2.8 \cdot 10^{-3} \) |
\(a_{958}= +0.09860103 \pm 1.9 \cdot 10^{-3} \) | \(a_{959}= +0.22393665 \pm 1.3 \cdot 10^{-3} \) | \(a_{960}= -1.31156259 \pm 1.1 \cdot 10^{-3} \) |
\(a_{961}= +0.96996118 \pm 1.8 \cdot 10^{-3} \) | \(a_{962}= -0.01796921 \pm 8.0 \cdot 10^{-4} \) | \(a_{963}= +0.14049025 \pm 1.9 \cdot 10^{-3} \) |
\(a_{964}= +0.90565093 \pm 2.4 \cdot 10^{-3} \) | \(a_{965}= +1.04277226 \pm 1.7 \cdot 10^{-3} \) | \(a_{966}= +0.09600977 \pm 1.2 \cdot 10^{-3} \) |
\(a_{967}= -0.94305195 \pm 1.6 \cdot 10^{-3} \) | \(a_{968}= -0.01709348 \pm 1.7 \cdot 10^{-3} \) | \(a_{969}= -2.09456589 \pm 8.9 \cdot 10^{-4} \) |
\(a_{970}= +0.11478815 \pm 2.5 \cdot 10^{-3} \) | \(a_{971}= +0.53679568 \pm 1.8 \cdot 10^{-3} \) | \(a_{972}= -0.80458118 \pm 1.6 \cdot 10^{-3} \) |
\(a_{973}= -0.33022451 \pm 1.2 \cdot 10^{-3} \) | \(a_{974}= +0.02532244 \pm 1.1 \cdot 10^{-3} \) | \(a_{975}= +0.47985682 \pm 4.3 \cdot 10^{-4} \) |
\(a_{976}= +1.69795670 \pm 8.0 \cdot 10^{-4} \) | \(a_{977}= +1.85381153 \pm 1.3 \cdot 10^{-3} \) | \(a_{978}= +0.14888912 \pm 1.4 \cdot 10^{-3} \) |
\(a_{979}= -0.22285768 \pm 1.4 \cdot 10^{-3} \) | \(a_{980}= +0.65976408 \pm 1.4 \cdot 10^{-3} \) | \(a_{981}= +1.50430945 \pm 1.0 \cdot 10^{-3} \) |
\(a_{982}= -0.11445923 \pm 1.8 \cdot 10^{-3} \) | \(a_{983}= -1.73671835 \pm 1.3 \cdot 10^{-3} \) | \(a_{984}= -0.06072142 \pm 1.1 \cdot 10^{-3} \) |
\(a_{985}= -0.45506382 \pm 7.7 \cdot 10^{-4} \) | \(a_{986}= -0.02372884 \pm 1.4 \cdot 10^{-3} \) | \(a_{987}= -0.30290415 \pm 7.6 \cdot 10^{-4} \) |
\(a_{988}= +1.11461806 \pm 5.6 \cdot 10^{-4} \) | \(a_{989}= +1.90053342 \pm 1.4 \cdot 10^{-3} \) | \(a_{990}= +0.04858445 \pm 4.8 \cdot 10^{-3} \) |
\(a_{991}= -0.30743321 \pm 1.2 \cdot 10^{-3} \) | \(a_{992}= -0.39291686 \pm 1.3 \cdot 10^{-3} \) | \(a_{993}= +1.30841857 \pm 1.1 \cdot 10^{-3} \) |
\(a_{994}= -0.00324569 \pm 7.4 \cdot 10^{-4} \) | \(a_{995}= -0.21001582 \pm 1.7 \cdot 10^{-3} \) | \(a_{996}= -1.16596880 \pm 1.5 \cdot 10^{-3} \) |
\(a_{997}= +0.91472077 \pm 1.3 \cdot 10^{-3} \) | \(a_{998}= -0.10270213 \pm 2.0 \cdot 10^{-3} \) | \(a_{999}= +0.61526006 \pm 6.5 \cdot 10^{-4} \) |
\(a_{1000}= +0.20386793 \pm 1.1 \cdot 10^{-3} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000