Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(14.8274044216704387574107898134 \pm 8 \cdot 10^{-8}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.83574704 \pm 1.1 \cdot 10^{-3} \) | \(a_{3}= +0.01781603 \pm 9.7 \cdot 10^{-4} \) |
\(a_{4}= +2.36996720 \pm 1.3 \cdot 10^{-3} \) | \(a_{5}= -0.23274490 \pm 1.0 \cdot 10^{-3} \) | \(a_{6}= -0.03270573 \pm 1.2 \cdot 10^{-3} \) |
\(a_{7}= -1.29577121 \pm 1.0 \cdot 10^{-3} \) | \(a_{8}= -2.51491324 \pm 1.1 \cdot 10^{-3} \) | \(a_{9}= -0.99968259 \pm 1.0 \cdot 10^{-3} \) |
\(a_{10}= +0.42726076 \pm 1.2 \cdot 10^{-3} \) | \(a_{11}= +0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +0.04222341 \pm 1.2 \cdot 10^{-3} \) |
\(a_{13}= -0.79493299 \pm 8.0 \cdot 10^{-4} \) | \(a_{14}= +2.37870817 \pm 8.4 \cdot 10^{-4} \) | \(a_{15}= -0.00414659 \pm 7.7 \cdot 10^{-4} \) |
\(a_{16}= +2.24677734 \pm 1.0 \cdot 10^{-3} \) | \(a_{17}= -1.03699708 \pm 1.0 \cdot 10^{-3} \) | \(a_{18}= +1.83516436 \pm 1.1 \cdot 10^{-3} \) |
\(a_{19}= +0.93345291 \pm 7.3 \cdot 10^{-4} \) | \(a_{20}= -0.55159778 \pm 1.3 \cdot 10^{-3} \) | \(a_{21}= -0.02308550 \pm 7.8 \cdot 10^{-4} \) |
\(a_{22}= -0.55349856 \pm 1.1 \cdot 10^{-3} \) | \(a_{23}= -1.29188712 \pm 9.4 \cdot 10^{-4} \) | \(a_{24}= -0.04480577 \pm 1.3 \cdot 10^{-3} \) |
\(a_{25}= -0.94582981 \pm 8.4 \cdot 10^{-4} \) | \(a_{26}= +1.45929589 \pm 6.2 \cdot 10^{-4} \) | \(a_{27}= -0.03562641 \pm 9.3 \cdot 10^{-4} \) |
\(a_{28}= -3.07093528 \pm 1.0 \cdot 10^{-3} \) | \(a_{29}= -0.22668458 \pm 9.3 \cdot 10^{-4} \) | \(a_{30}= +0.00761209 \pm 7.1 \cdot 10^{-4} \) |
\(a_{31}= -0.93905401 \pm 9.9 \cdot 10^{-4} \) | \(a_{32}= -1.60960161 \pm 8.5 \cdot 10^{-4} \) | \(a_{33}= +0.00537174 \pm 9.7 \cdot 10^{-4} \) |
\(a_{34}= +1.90366432 \pm 1.2 \cdot 10^{-3} \) | \(a_{35}= +0.30158414 \pm 9.6 \cdot 10^{-4} \) | \(a_{36}= -2.36921495 \pm 1.1 \cdot 10^{-3} \) |
\(a_{37}= -1.59962290 \pm 1.0 \cdot 10^{-3} \) | \(a_{38}= -1.71358342 \pm 1.0 \cdot 10^{-3} \) | \(a_{39}= -0.01416255 \pm 5.8 \cdot 10^{-4} \) |
\(a_{40}= +0.58533323 \pm 9.5 \cdot 10^{-4} \) | \(a_{41}= +0.42371092 \pm 6.6 \cdot 10^{-4} \) | \(a_{42}= +0.04237914 \pm 8.6 \cdot 10^{-4} \) |
\(a_{43}= +0.16705464 \pm 9.6 \cdot 10^{-4} \) | \(a_{44}= +0.71457200 \pm 1.3 \cdot 10^{-3} \) | \(a_{45}= +0.23267102 \pm 1.0 \cdot 10^{-3} \) |
\(a_{46}= +2.37157796 \pm 1.3 \cdot 10^{-3} \) | \(a_{47}= -1.96608973 \pm 8.0 \cdot 10^{-4} \) | \(a_{48}= +0.04002865 \pm 1.0 \cdot 10^{-3} \) |
\(a_{49}= +0.67902304 \pm 8.9 \cdot 10^{-4} \) | \(a_{50}= +1.73630428 \pm 1.2 \cdot 10^{-3} \) | \(a_{51}= -0.01847517 \pm 9.9 \cdot 10^{-4} \) |
\(a_{52}= -1.88396512 \pm 8.4 \cdot 10^{-4} \) | \(a_{53}= +0.25747578 \pm 7.7 \cdot 10^{-4} \) | \(a_{54}= +0.06540107 \pm 8.0 \cdot 10^{-4} \) |
\(a_{55}= -0.07017523 \pm 1.0 \cdot 10^{-3} \) | \(a_{56}= +3.25875218 \pm 6.9 \cdot 10^{-4} \) | \(a_{57}= +0.01663043 \pm 6.5 \cdot 10^{-4} \) |
\(a_{58}= +0.41613555 \pm 9.0 \cdot 10^{-4} \) | \(a_{59}= +0.17526237 \pm 1.1 \cdot 10^{-3} \) | \(a_{60}= -0.00982728 \pm 6.1 \cdot 10^{-4} \) |
\(a_{61}= -0.35254927 \pm 8.3 \cdot 10^{-4} \) | \(a_{62}= +1.72386563 \pm 9.1 \cdot 10^{-4} \) | \(a_{63}= +1.29535992 \pm 7.7 \cdot 10^{-4} \) |
\(a_{64}= +0.70804406 \pm 1.0 \cdot 10^{-3} \) | \(a_{65}= +0.18501660 \pm 6.7 \cdot 10^{-4} \) | \(a_{66}= -0.00986115 \pm 2.1 \cdot 10^{-3} \) |
\(a_{67}= -0.91243472 \pm 1.1 \cdot 10^{-3} \) | \(a_{68}= -2.45764906 \pm 1.5 \cdot 10^{-3} \) | \(a_{69}= -0.02301630 \pm 1.1 \cdot 10^{-3} \) |
\(a_{70}= -0.55363219 \pm 8.7 \cdot 10^{-4} \) | \(a_{71}= -1.93670765 \pm 7.4 \cdot 10^{-4} \) | \(a_{72}= +2.51411498 \pm 1.1 \cdot 10^{-3} \) |
\(a_{73}= -0.02134929 \pm 9.6 \cdot 10^{-4} \) | \(a_{74}= +2.93650301 \pm 9.3 \cdot 10^{-4} \) | \(a_{75}= -0.01685093 \pm 6.1 \cdot 10^{-4} \) |
\(a_{76}= +2.21225279 \pm 1.0 \cdot 10^{-3} \) | \(a_{77}= -0.39068972 \pm 1.0 \cdot 10^{-3} \) | \(a_{78}= +0.02599886 \pm 7.7 \cdot 10^{-4} \) |
\(a_{79}= -1.55783897 \pm 7.8 \cdot 10^{-4} \) | \(a_{80}= -0.52292596 \pm 6.2 \cdot 10^{-4} \) | \(a_{81}= +0.99904787 \pm 1.0 \cdot 10^{-3} \) |
\(a_{82}= -0.77782607 \pm 6.6 \cdot 10^{-4} \) | \(a_{83}= -0.36436930 \pm 9.5 \cdot 10^{-4} \) | \(a_{84}= -0.05471188 \pm 8.0 \cdot 10^{-4} \) |
\(a_{85}= +0.24135578 \pm 7.8 \cdot 10^{-4} \) | \(a_{86}= -0.30667005 \pm 1.1 \cdot 10^{-3} \) | \(a_{87}= -0.00403862 \pm 6.8 \cdot 10^{-4} \) |
\(a_{88}= -0.75827487 \pm 1.1 \cdot 10^{-3} \) | \(a_{89}= +1.60210361 \pm 1.0 \cdot 10^{-3} \) | \(a_{90}= -0.42712514 \pm 1.2 \cdot 10^{-3} \) |
\(a_{91}= +1.03005129 \pm 9.2 \cdot 10^{-4} \) | \(a_{92}= -3.06173011 \pm 1.5 \cdot 10^{-3} \) | \(a_{93}= -0.01673022 \pm 9.9 \cdot 10^{-4} \) |
\(a_{94}= +3.60924340 \pm 8.1 \cdot 10^{-4} \) | \(a_{95}= -0.21725640 \pm 8.5 \cdot 10^{-4} \) | \(a_{96}= -0.02867671 \pm 8.8 \cdot 10^{-4} \) |
\(a_{97}= +0.19011153 \pm 8.6 \cdot 10^{-4} \) | \(a_{98}= -1.24651453 \pm 1.0 \cdot 10^{-3} \) | \(a_{99}= -0.30141564 \pm 1.0 \cdot 10^{-3} \) |
\(a_{100}= -2.24158563 \pm 1.4 \cdot 10^{-3} \) | \(a_{101}= +0.89133833 \pm 7.4 \cdot 10^{-4} \) | \(a_{102}= +0.03391574 \pm 1.4 \cdot 10^{-3} \) |
\(a_{103}= +0.13342299 \pm 1.0 \cdot 10^{-3} \) | \(a_{104}= +1.99918751 \pm 4.6 \cdot 10^{-4} \) | \(a_{105}= +0.00537303 \pm 7.0 \cdot 10^{-4} \) |
\(a_{106}= -0.47266041 \pm 9.6 \cdot 10^{-4} \) | \(a_{107}= +1.56683197 \pm 1.1 \cdot 10^{-3} \) | \(a_{108}= -0.08443342 \pm 7.1 \cdot 10^{-4} \) |
\(a_{109}= -0.55338741 \pm 7.0 \cdot 10^{-4} \) | \(a_{110}= +0.12882397 \pm 2.2 \cdot 10^{-3} \) | \(a_{111}= -0.02849893 \pm 5.7 \cdot 10^{-4} \) |
\(a_{112}= -2.91130940 \pm 8.6 \cdot 10^{-4} \) | \(a_{113}= +1.30053446 \pm 1.2 \cdot 10^{-3} \) | \(a_{114}= -0.03052926 \pm 7.4 \cdot 10^{-4} \) |
\(a_{115}= +0.30068014 \pm 7.0 \cdot 10^{-4} \) | \(a_{116}= -0.53723502 \pm 1.2 \cdot 10^{-3} \) | \(a_{117}= +0.79468067 \pm 7.6 \cdot 10^{-4} \) |
\(a_{118}= -0.32173737 \pm 1.3 \cdot 10^{-3} \) | \(a_{119}= +1.34371096 \pm 9.0 \cdot 10^{-4} \) | \(a_{120}= +0.01042831 \pm 7.1 \cdot 10^{-4} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +0.64719128 \pm 1.1 \cdot 10^{-3} \) | \(a_{123}= +0.00754885 \pm 8.3 \cdot 10^{-4} \) |
\(a_{124}= -2.22552721 \pm 9.2 \cdot 10^{-4} \) | \(a_{125}= +0.45288196 \pm 9.3 \cdot 10^{-4} \) | \(a_{126}= -2.37795314 \pm 6.9 \cdot 10^{-4} \) |
\(a_{127}= -0.50686051 \pm 9.8 \cdot 10^{-4} \) | \(a_{128}= +0.30981182 \pm 1.0 \cdot 10^{-3} \) | \(a_{129}= +0.00297625 \pm 9.7 \cdot 10^{-4} \) |
\(a_{130}= -0.33964367 \pm 5.5 \cdot 10^{-4} \) | \(a_{131}= +1.86111811 \pm 1.1 \cdot 10^{-3} \) | \(a_{132}= +0.01273084 \pm 2.3 \cdot 10^{-3} \) |
\(a_{133}= -1.20954141 \pm 6.4 \cdot 10^{-4} \) | \(a_{134}= +1.67499934 \pm 1.3 \cdot 10^{-3} \) | \(a_{135}= +0.00829186 \pm 8.4 \cdot 10^{-4} \) |
\(a_{136}= +2.60795768 \pm 1.3 \cdot 10^{-3} \) | \(a_{137}= -0.38514642 \pm 9.5 \cdot 10^{-4} \) | \(a_{138}= +0.04225211 \pm 1.6 \cdot 10^{-3} \) |
\(a_{139}= -1.13810617 \pm 7.7 \cdot 10^{-4} \) | \(a_{140}= +0.71474452 \pm 1.0 \cdot 10^{-3} \) | \(a_{141}= -0.03502792 \pm 1.0 \cdot 10^{-3} \) |
\(a_{142}= +3.55530534 \pm 6.0 \cdot 10^{-4} \) | \(a_{143}= -0.23968132 \pm 8.0 \cdot 10^{-4} \) | \(a_{144}= -2.24606419 \pm 8.2 \cdot 10^{-4} \) |
\(a_{145}= +0.05275968 \pm 8.6 \cdot 10^{-4} \) | \(a_{146}= +0.03919190 \pm 1.0 \cdot 10^{-3} \) | \(a_{147}= +0.01209750 \pm 9.6 \cdot 10^{-4} \) |
\(a_{148}= -3.79105382 \pm 1.2 \cdot 10^{-3} \) | \(a_{149}= -1.27578939 \pm 7.4 \cdot 10^{-4} \) | \(a_{150}= +0.03093405 \pm 9.4 \cdot 10^{-4} \) |
\(a_{151}= +0.88604045 \pm 1.2 \cdot 10^{-3} \) | \(a_{152}= -2.34755309 \pm 7.5 \cdot 10^{-4} \) | \(a_{153}= +1.03666792 \pm 9.8 \cdot 10^{-4} \) |
\(a_{154}= +0.71720750 \pm 2.2 \cdot 10^{-3} \) | \(a_{155}= +0.21856003 \pm 9.2 \cdot 10^{-4} \) | \(a_{156}= -0.03356478 \pm 6.9 \cdot 10^{-4} \) |
\(a_{157}= -1.91262910 \pm 8.7 \cdot 10^{-4} \) | \(a_{158}= +2.85979829 \pm 7.8 \cdot 10^{-4} \) | \(a_{159}= +0.00458720 \pm 6.7 \cdot 10^{-4} \) |
\(a_{160}= +0.37462656 \pm 8.3 \cdot 10^{-4} \) | \(a_{161}= +1.67399014 \pm 7.5 \cdot 10^{-4} \) | \(a_{162}= -1.83399917 \pm 1.2 \cdot 10^{-3} \) |
\(a_{163}= +1.22429323 \pm 9.5 \cdot 10^{-4} \) | \(a_{164}= +1.00418099 \pm 5.8 \cdot 10^{-4} \) | \(a_{165}= -0.00125024 \pm 1.9 \cdot 10^{-3} \) |
\(a_{166}= +0.66888987 \pm 8.3 \cdot 10^{-4} \) | \(a_{167}= -0.49407181 \pm 1.2 \cdot 10^{-3} \) | \(a_{168}= +0.05805803 \pm 6.2 \cdot 10^{-4} \) |
\(a_{169}= -0.36808153 \pm 8.1 \cdot 10^{-4} \) | \(a_{170}= -0.44306816 \pm 8.3 \cdot 10^{-4} \) | \(a_{171}= -0.93315662 \pm 7.0 \cdot 10^{-4} \) |
\(a_{172}= +0.39591401 \pm 1.3 \cdot 10^{-3} \) | \(a_{173}= +0.97936103 \pm 9.8 \cdot 10^{-4} \) | \(a_{174}= +0.00741388 \pm 9.3 \cdot 10^{-4} \) |
\(a_{175}= +1.22557904 \pm 5.6 \cdot 10^{-4} \) | \(a_{176}= +0.67742886 \pm 1.0 \cdot 10^{-3} \) | \(a_{177}= +0.00312248 \pm 1.0 \cdot 10^{-3} \) |
\(a_{178}= -2.94105696 \pm 1.4 \cdot 10^{-3} \) | \(a_{179}= -1.19660756 \pm 1.1 \cdot 10^{-3} \) | \(a_{180}= +0.55142269 \pm 1.2 \cdot 10^{-3} \) |
\(a_{181}= +0.20889590 \pm 8.9 \cdot 10^{-4} \) | \(a_{182}= -1.89091361 \pm 7.1 \cdot 10^{-4} \) | \(a_{183}= -0.00628103 \pm 4.8 \cdot 10^{-4} \) |
\(a_{184}= +3.24898403 \pm 1.4 \cdot 10^{-3} \) | \(a_{185}= +0.37230407 \pm 9.9 \cdot 10^{-4} \) | \(a_{186}= +0.03071244 \pm 9.1 \cdot 10^{-4} \) |
\(a_{187}= -0.31266638 \pm 1.0 \cdot 10^{-3} \) | \(a_{188}= -4.65956817 \pm 9.4 \cdot 10^{-4} \) | \(a_{189}= +0.04616367 \pm 7.9 \cdot 10^{-4} \) |
\(a_{190}= +0.39882780 \pm 1.2 \cdot 10^{-3} \) | \(a_{191}= +1.26809481 \pm 9.9 \cdot 10^{-4} \) | \(a_{192}= +0.01261453 \pm 8.4 \cdot 10^{-4} \) |
\(a_{193}= +0.03086571 \pm 1.0 \cdot 10^{-3} \) | \(a_{194}= -0.34899668 \pm 1.3 \cdot 10^{-3} \) | \(a_{195}= +0.00329626 \pm 5.1 \cdot 10^{-4} \) |
\(a_{196}= +1.60926233 \pm 1.0 \cdot 10^{-3} \) | \(a_{197}= +0.08649174 \pm 7.3 \cdot 10^{-4} \) | \(a_{198}= +0.55332287 \pm 2.2 \cdot 10^{-3} \) |
\(a_{199}= +0.11528075 \pm 1.0 \cdot 10^{-3} \) | \(a_{200}= +2.37867992 \pm 1.1 \cdot 10^{-3} \) | \(a_{201}= -0.01625597 \pm 6.7 \cdot 10^{-4} \) |
\(a_{202}= -1.63627169 \pm 1.1 \cdot 10^{-3} \) | \(a_{203}= +0.29373136 \pm 9.6 \cdot 10^{-4} \) | \(a_{204}= -0.04378555 \pm 1.6 \cdot 10^{-3} \) |
\(a_{205}= -0.09861656 \pm 5.7 \cdot 10^{-4} \) | \(a_{206}= -0.24493087 \pm 8.5 \cdot 10^{-4} \) | \(a_{207}= +1.29147706 \pm 8.9 \cdot 10^{-4} \) |
\(a_{208}= -1.78603744 \pm 7.6 \cdot 10^{-4} \) | \(a_{209}= +0.28144664 \pm 7.3 \cdot 10^{-4} \) | \(a_{210}= -0.00986353 \pm 6.9 \cdot 10^{-4} \) |
\(a_{211}= -1.08597693 \pm 1.1 \cdot 10^{-3} \) | \(a_{212}= +0.61020916 \pm 9.7 \cdot 10^{-4} \) | \(a_{213}= -0.03450444 \pm 9.0 \cdot 10^{-4} \) |
\(a_{214}= -2.87630716 \pm 1.6 \cdot 10^{-3} \) | \(a_{215}= -0.03888111 \pm 9.2 \cdot 10^{-4} \) | \(a_{216}= +0.08959732 \pm 9.7 \cdot 10^{-4} \) |
\(a_{217}= +1.21679916 \pm 1.1 \cdot 10^{-3} \) | \(a_{218}= +1.01587929 \pm 7.9 \cdot 10^{-4} \) | \(a_{219}= -0.00038036 \pm 6.3 \cdot 10^{-4} \) |
\(a_{220}= -0.16631299 \pm 2.4 \cdot 10^{-3} \) | \(a_{221}= +0.82434319 \pm 7.6 \cdot 10^{-4} \) | \(a_{222}= +0.05231683 \pm 7.2 \cdot 10^{-4} \) |
\(a_{223}= +0.41820511 \pm 1.0 \cdot 10^{-3} \) | \(a_{224}= +2.08567544 \pm 8.3 \cdot 10^{-4} \) | \(a_{225}= +0.94552960 \pm 7.3 \cdot 10^{-4} \) |
\(a_{226}= -2.38745228 \pm 1.3 \cdot 10^{-3} \) | \(a_{227}= +0.84626796 \pm 8.2 \cdot 10^{-4} \) | \(a_{228}= +0.03941356 \pm 7.3 \cdot 10^{-4} \) |
\(a_{229}= -1.15903751 \pm 8.4 \cdot 10^{-4} \) | \(a_{230}= -0.55197267 \pm 7.4 \cdot 10^{-4} \) | \(a_{231}= -0.00696054 \pm 1.9 \cdot 10^{-3} \) |
\(a_{232}= +0.57009206 \pm 9.3 \cdot 10^{-4} \) | \(a_{233}= -0.34330726 \pm 1.1 \cdot 10^{-3} \) | \(a_{234}= -1.45883270 \pm 5.6 \cdot 10^{-4} \) |
\(a_{235}= +0.45759735 \pm 6.5 \cdot 10^{-4} \) | \(a_{236}= +0.41536607 \pm 1.6 \cdot 10^{-3} \) | \(a_{237}= -0.02775451 \pm 7.2 \cdot 10^{-4} \) |
\(a_{238}= -2.46671342 \pm 6.2 \cdot 10^{-4} \) | \(a_{239}= -0.59613293 \pm 9.1 \cdot 10^{-4} \) | \(a_{240}= -0.00931647 \pm 5.0 \cdot 10^{-4} \) |
\(a_{241}= +1.14674386 \pm 1.4 \cdot 10^{-3} \) | \(a_{242}= -0.16688609 \pm 1.1 \cdot 10^{-3} \) | \(a_{243}= +0.05342547 \pm 7.0 \cdot 10^{-4} \) |
\(a_{244}= -0.83553020 \pm 1.2 \cdot 10^{-3} \) | \(a_{245}= -0.15803915 \pm 9.1 \cdot 10^{-4} \) | \(a_{246}= -0.01385777 \pm 8.4 \cdot 10^{-4} \) |
\(a_{247}= -0.74203252 \pm 3.8 \cdot 10^{-4} \) | \(a_{248}= +2.36163937 \pm 7.0 \cdot 10^{-4} \) | \(a_{249}= -0.00649161 \pm 1.2 \cdot 10^{-3} \) |
\(a_{250}= -0.83137672 \pm 8.3 \cdot 10^{-4} \) | \(a_{251}= +0.79520183 \pm 1.1 \cdot 10^{-3} \) | \(a_{252}= +3.06996053 \pm 8.6 \cdot 10^{-4} \) |
\(a_{253}= -0.38951862 \pm 9.4 \cdot 10^{-4} \) | \(a_{254}= +0.93046768 \pm 1.1 \cdot 10^{-3} \) | \(a_{255}= +0.00430000 \pm 6.1 \cdot 10^{-4} \) |
\(a_{256}= -1.27678019 \pm 1.2 \cdot 10^{-3} \) | \(a_{257}= +0.72002689 \pm 8.3 \cdot 10^{-4} \) | \(a_{258}= -0.00546364 \pm 1.1 \cdot 10^{-3} \) |
\(a_{259}= +2.07274531 \pm 1.0 \cdot 10^{-3} \) | \(a_{260}= +0.43848327 \pm 7.0 \cdot 10^{-4} \) | \(a_{261}= +0.22661263 \pm 7.5 \cdot 10^{-4} \) |
\(a_{262}= -3.41654206 \pm 1.2 \cdot 10^{-3} \) | \(a_{263}= -0.56855805 \pm 1.3 \cdot 10^{-3} \) | \(a_{264}= -0.01350945 \pm 2.1 \cdot 10^{-3} \) |
\(a_{265}= -0.05992618 \pm 9.0 \cdot 10^{-4} \) | \(a_{266}= +2.22041207 \pm 8.0 \cdot 10^{-4} \) | \(a_{267}= +0.02854313 \pm 9.8 \cdot 10^{-4} \) |
\(a_{268}= -2.16244036 \pm 1.5 \cdot 10^{-3} \) | \(a_{269}= -0.30805292 \pm 9.1 \cdot 10^{-4} \) | \(a_{270}= -0.01522177 \pm 6.6 \cdot 10^{-4} \) |
\(a_{271}= +1.10310334 \pm 9.7 \cdot 10^{-4} \) | \(a_{272}= -2.32990154 \pm 1.2 \cdot 10^{-3} \) | \(a_{273}= +0.01835143 \pm 6.9 \cdot 10^{-4} \) |
\(a_{274}= +0.70703141 \pm 9.1 \cdot 10^{-4} \) | \(a_{275}= -0.28517842 \pm 8.4 \cdot 10^{-4} \) | \(a_{276}= -0.05454788 \pm 1.8 \cdot 10^{-3} \) |
\(a_{277}= +0.35110802 \pm 1.4 \cdot 10^{-3} \) | \(a_{278}= +2.08927503 \pm 9.9 \cdot 10^{-4} \) | \(a_{279}= +0.93875595 \pm 9.8 \cdot 10^{-4} \) |
\(a_{280}= -0.75845795 \pm 7.3 \cdot 10^{-4} \) | \(a_{281}= -1.23962013 \pm 1.1 \cdot 10^{-3} \) | \(a_{282}= +0.06430239 \pm 1.1 \cdot 10^{-3} \) |
\(a_{283}= -1.49701406 \pm 8.4 \cdot 10^{-4} \) | \(a_{284}= -4.58993361 \pm 7.3 \cdot 10^{-4} \) | \(a_{285}= -0.00387065 \pm 5.4 \cdot 10^{-4} \) |
\(a_{286}= +0.43999427 \pm 1.9 \cdot 10^{-3} \) | \(a_{287}= -0.54903241 \pm 6.6 \cdot 10^{-4} \) | \(a_{288}= +1.60909071 \pm 8.3 \cdot 10^{-4} \) |
\(a_{289}= +0.07536294 \pm 6.2 \cdot 10^{-4} \) | \(a_{290}= -0.09685343 \pm 8.4 \cdot 10^{-4} \) | \(a_{291}= +0.00338703 \pm 6.0 \cdot 10^{-4} \) |
\(a_{292}= -0.05059712 \pm 1.2 \cdot 10^{-3} \) | \(a_{293}= +0.77343548 \pm 9.9 \cdot 10^{-4} \) | \(a_{294}= -0.02220794 \pm 1.1 \cdot 10^{-3} \) |
\(a_{295}= -0.04079142 \pm 1.2 \cdot 10^{-3} \) | \(a_{296}= +4.02291282 \pm 7.2 \cdot 10^{-4} \) | \(a_{297}= -0.01074177 \pm 9.3 \cdot 10^{-4} \) |
\(a_{298}= +2.34202659 \pm 7.3 \cdot 10^{-4} \) | \(a_{299}= +1.02696370 \pm 5.7 \cdot 10^{-4} \) | \(a_{300}= -0.03993616 \pm 1.1 \cdot 10^{-3} \) |
\(a_{301}= -0.21646459 \pm 1.0 \cdot 10^{-3} \) | \(a_{302}= -1.62654613 \pm 1.5 \cdot 10^{-3} \) | \(a_{303}= +0.01588011 \pm 8.8 \cdot 10^{-4} \) |
\(a_{304}= +2.09726085 \pm 6.3 \cdot 10^{-4} \) | \(a_{305}= +0.08205404 \pm 1.1 \cdot 10^{-3} \) | \(a_{306}= -1.90306008 \pm 9.7 \cdot 10^{-4} \) |
\(a_{307}= +0.38656509 \pm 1.1 \cdot 10^{-3} \) | \(a_{308}= -0.92592182 \pm 2.4 \cdot 10^{-3} \) | \(a_{309}= +0.00237707 \pm 1.0 \cdot 10^{-3} \) |
\(a_{310}= -0.40122093 \pm 9.1 \cdot 10^{-4} \) | \(a_{311}= -0.77339652 \pm 1.1 \cdot 10^{-3} \) | \(a_{312}= +0.03561759 \pm 4.9 \cdot 10^{-4} \) |
\(a_{313}= -0.43868832 \pm 9.5 \cdot 10^{-4} \) | \(a_{314}= +3.51110322 \pm 8.9 \cdot 10^{-4} \) | \(a_{315}= -0.30148841 \pm 7.1 \cdot 10^{-4} \) |
\(a_{316}= -3.69202727 \pm 9.2 \cdot 10^{-4} \) | \(a_{317}= -0.13990421 \pm 1.1 \cdot 10^{-3} \) | \(a_{318}= -0.00842093 \pm 7.2 \cdot 10^{-4} \) |
\(a_{319}= -0.06834797 \pm 9.3 \cdot 10^{-4} \) | \(a_{320}= -0.16479364 \pm 1.2 \cdot 10^{-3} \) | \(a_{321}= +0.02791473 \pm 1.1 \cdot 10^{-3} \) |
\(a_{322}= -3.07302246 \pm 8.3 \cdot 10^{-4} \) | \(a_{323}= -0.96798794 \pm 5.8 \cdot 10^{-4} \) | \(a_{324}= +2.36771068 \pm 1.4 \cdot 10^{-3} \) |
\(a_{325}= +0.75187132 \pm 3.9 \cdot 10^{-4} \) | \(a_{326}= -2.24749267 \pm 1.2 \cdot 10^{-3} \) | \(a_{327}= -0.00985917 \pm 7.4 \cdot 10^{-4} \) |
\(a_{328}= -1.06559621 \pm 4.8 \cdot 10^{-4} \) | \(a_{329}= +2.54760247 \pm 6.0 \cdot 10^{-4} \) | \(a_{330}= +0.00229513 \pm 3.1 \cdot 10^{-3} \) |
\(a_{331}= +0.87800421 \pm 7.4 \cdot 10^{-4} \) | \(a_{332}= -0.86354329 \pm 9.6 \cdot 10^{-4} \) | \(a_{333}= +1.59911517 \pm 9.8 \cdot 10^{-4} \) |
\(a_{334}= +0.90699086 \pm 1.2 \cdot 10^{-3} \) | \(a_{335}= +0.21236453 \pm 1.2 \cdot 10^{-3} \) | \(a_{336}= -0.05186798 \pm 6.8 \cdot 10^{-4} \) |
\(a_{337}= -0.55883067 \pm 1.0 \cdot 10^{-3} \) | \(a_{338}= +0.67570459 \pm 1.0 \cdot 10^{-3} \) | \(a_{339}= +0.02317036 \pm 1.0 \cdot 10^{-3} \) |
\(a_{340}= +0.57200528 \pm 9.6 \cdot 10^{-4} \) | \(a_{341}= -0.28313544 \pm 9.9 \cdot 10^{-4} \) | \(a_{342}= +1.71303951 \pm 9.1 \cdot 10^{-4} \) |
\(a_{343}= +0.41591271 \pm 8.6 \cdot 10^{-4} \) | \(a_{344}= -0.42012792 \pm 1.1 \cdot 10^{-3} \) | \(a_{345}= +0.00535693 \pm 7.4 \cdot 10^{-4} \) |
\(a_{346}= -1.79785911 \pm 1.2 \cdot 10^{-3} \) | \(a_{347}= -1.67068217 \pm 8.5 \cdot 10^{-4} \) | \(a_{348}= -0.00957140 \pm 1.1 \cdot 10^{-3} \) |
\(a_{349}= -0.56134328 \pm 9.9 \cdot 10^{-4} \) | \(a_{350}= -2.24985310 \pm 6.9 \cdot 10^{-4} \) | \(a_{351}= +0.02832061 \pm 4.3 \cdot 10^{-4} \) |
\(a_{352}= -0.48531315 \pm 8.5 \cdot 10^{-4} \) | \(a_{353}= -0.53424536 \pm 1.0 \cdot 10^{-3} \) | \(a_{354}= -0.00573208 \pm 1.2 \cdot 10^{-3} \) |
\(a_{355}= +0.45075883 \pm 7.2 \cdot 10^{-4} \) | \(a_{356}= +3.79693300 \pm 1.7 \cdot 10^{-3} \) | \(a_{357}= +0.02393960 \pm 6.2 \cdot 10^{-4} \) |
\(a_{358}= +2.19666878 \pm 1.5 \cdot 10^{-3} \) | \(a_{359}= +0.74525804 \pm 1.0 \cdot 10^{-3} \) | \(a_{360}= -0.58514744 \pm 1.0 \cdot 10^{-3} \) |
\(a_{361}= -0.12866566 \pm 8.6 \cdot 10^{-4} \) | \(a_{362}= -0.38348003 \pm 5.5 \cdot 10^{-4} \) | \(a_{363}= +0.00161964 \pm 9.7 \cdot 10^{-4} \) |
\(a_{364}= +2.44118777 \pm 9.1 \cdot 10^{-4} \) | \(a_{365}= +0.00496894 \pm 1.1 \cdot 10^{-3} \) | \(a_{366}= +0.01153038 \pm 4.5 \cdot 10^{-4} \) |
\(a_{367}= -1.69274823 \pm 1.0 \cdot 10^{-3} \) | \(a_{368}= -2.90258271 \pm 1.2 \cdot 10^{-3} \) | \(a_{369}= -0.42357643 \pm 9.0 \cdot 10^{-4} \) |
\(a_{370}= -0.68345610 \pm 1.2 \cdot 10^{-3} \) | \(a_{371}= -0.33362971 \pm 8.6 \cdot 10^{-4} \) | \(a_{372}= -0.03965006 \pm 7.3 \cdot 10^{-4} \) |
\(a_{373}= -0.49006330 \pm 6.8 \cdot 10^{-4} \) | \(a_{374}= +0.57397639 \pm 2.1 \cdot 10^{-3} \) | \(a_{375}= +0.00806856 \pm 8.7 \cdot 10^{-4} \) |
\(a_{376}= +4.94454509 \pm 9.8 \cdot 10^{-4} \) | \(a_{377}= +0.18019905 \pm 8.3 \cdot 10^{-4} \) | \(a_{378}= -0.08474482 \pm 5.8 \cdot 10^{-4} \) |
\(a_{379}= -0.98888800 \pm 8.9 \cdot 10^{-4} \) | \(a_{380}= -0.51489055 \pm 1.2 \cdot 10^{-3} \) | \(a_{381}= -0.00903024 \pm 7.6 \cdot 10^{-4} \) |
\(a_{382}= -2.32790129 \pm 8.4 \cdot 10^{-4} \) | \(a_{383}= +0.45179273 \pm 1.0 \cdot 10^{-3} \) | \(a_{384}= +0.00551962 \pm 7.2 \cdot 10^{-4} \) |
\(a_{385}= +0.09093104 \pm 2.0 \cdot 10^{-3} \) | \(a_{386}= -0.05666163 \pm 1.3 \cdot 10^{-3} \) | \(a_{387}= -0.16700161 \pm 9.7 \cdot 10^{-4} \) |
\(a_{388}= +0.45055809 \pm 1.3 \cdot 10^{-3} \) | \(a_{389}= +1.21860844 \pm 9.8 \cdot 10^{-4} \) | \(a_{390}= -0.00605110 \pm 6.4 \cdot 10^{-4} \) |
\(a_{391}= +1.33968317 \pm 1.0 \cdot 10^{-3} \) | \(a_{392}= -1.70768403 \pm 1.1 \cdot 10^{-3} \) | \(a_{393}= +0.03315774 \pm 1.3 \cdot 10^{-3} \) |
\(a_{394}= -0.15877695 \pm 1.0 \cdot 10^{-3} \) | \(a_{395}= +0.36257907 \pm 6.8 \cdot 10^{-4} \) | \(a_{396}= -0.71434518 \pm 2.4 \cdot 10^{-3} \) |
\(a_{397}= -1.43518993 \pm 1.2 \cdot 10^{-3} \) | \(a_{398}= -0.21162629 \pm 1.2 \cdot 10^{-3} \) | \(a_{399}= -0.02154923 \pm 5.7 \cdot 10^{-4} \) |
\(a_{400}= -2.12506899 \pm 8.0 \cdot 10^{-4} \) | \(a_{401}= -0.65946723 \pm 8.3 \cdot 10^{-4} \) | \(a_{402}= +0.02984184 \pm 9.5 \cdot 10^{-4} \) |
\(a_{403}= +0.74648502 \pm 6.7 \cdot 10^{-4} \) | \(a_{404}= +2.11244260 \pm 1.2 \cdot 10^{-3} \) | \(a_{405}= -0.23252329 \pm 9.7 \cdot 10^{-4} \) |
\(a_{406}= -0.53921647 \pm 6.0 \cdot 10^{-4} \) | \(a_{407}= -0.48230445 \pm 1.0 \cdot 10^{-3} \) | \(a_{408}= +0.04646345 \pm 1.7 \cdot 10^{-3} \) |
\(a_{409}= +0.83410012 \pm 1.0 \cdot 10^{-3} \) | \(a_{410}= +0.18103505 \pm 5.6 \cdot 10^{-4} \) | \(a_{411}= -0.00686178 \pm 9.5 \cdot 10^{-4} \) |
\(a_{412}= +0.31620812 \pm 1.1 \cdot 10^{-3} \) | \(a_{413}= -0.22709993 \pm 9.7 \cdot 10^{-4} \) | \(a_{414}= -2.37082520 \pm 1.0 \cdot 10^{-3} \) |
\(a_{415}= +0.08480510 \pm 8.0 \cdot 10^{-4} \) | \(a_{416}= +1.27952543 \pm 5.7 \cdot 10^{-4} \) | \(a_{417}= -0.02027653 \pm 7.3 \cdot 10^{-4} \) |
\(a_{418}= -0.51666484 \pm 1.9 \cdot 10^{-3} \) | \(a_{419}= +1.22631123 \pm 9.6 \cdot 10^{-4} \) | \(a_{420}= +0.01273391 \pm 6.6 \cdot 10^{-4} \) |
\(a_{421}= -0.45504697 \pm 7.0 \cdot 10^{-4} \) | \(a_{422}= +1.99357893 \pm 1.1 \cdot 10^{-3} \) | \(a_{423}= +1.96546567 \pm 1.2 \cdot 10^{-3} \) |
\(a_{424}= -0.64752926 \pm 8.2 \cdot 10^{-4} \) | \(a_{425}= +0.98082275 \pm 7.7 \cdot 10^{-4} \) | \(a_{426}= +0.06334143 \pm 8.1 \cdot 10^{-4} \) |
\(a_{427}= +0.45682319 \pm 7.1 \cdot 10^{-4} \) | \(a_{428}= +3.71334039 \pm 1.8 \cdot 10^{-3} \) | \(a_{429}= -0.00427017 \pm 1.7 \cdot 10^{-3} \) |
\(a_{430}= +0.07137589 \pm 1.0 \cdot 10^{-3} \) | \(a_{431}= +0.60060980 \pm 1.2 \cdot 10^{-3} \) | \(a_{432}= -0.08004460 \pm 6.7 \cdot 10^{-4} \) |
\(a_{433}= -0.47585930 \pm 1.1 \cdot 10^{-3} \) | \(a_{434}= -2.23373546 \pm 9.7 \cdot 10^{-4} \) | \(a_{435}= +0.00093997 \pm 5.6 \cdot 10^{-4} \) |
\(a_{436}= -1.31151000 \pm 7.4 \cdot 10^{-4} \) | \(a_{437}= -1.20591580 \pm 7.5 \cdot 10^{-4} \) | \(a_{438}= +0.00069824 \pm 4.7 \cdot 10^{-4} \) |
\(a_{439}= +0.58811402 \pm 1.2 \cdot 10^{-3} \) | \(a_{440}= +0.17648461 \pm 2.1 \cdot 10^{-3} \) | \(a_{441}= -0.67880751 \pm 8.9 \cdot 10^{-4} \) |
\(a_{442}= -1.51328558 \pm 4.8 \cdot 10^{-4} \) | \(a_{443}= -1.29318498 \pm 1.2 \cdot 10^{-3} \) | \(a_{444}= -0.06754153 \pm 6.8 \cdot 10^{-4} \) |
\(a_{445}= -0.37288144 \pm 6.7 \cdot 10^{-4} \) | \(a_{446}= -0.76771879 \pm 1.0 \cdot 10^{-3} \) | \(a_{447}= -0.02272950 \pm 3.7 \cdot 10^{-4} \) |
\(a_{448}= -0.91746311 \pm 9.3 \cdot 10^{-4} \) | \(a_{449}= -0.64342988 \pm 7.5 \cdot 10^{-4} \) | \(a_{450}= -1.73575316 \pm 1.1 \cdot 10^{-3} \) |
\(a_{451}= +0.12775365 \pm 6.6 \cdot 10^{-4} \) | \(a_{452}= +3.08222401 \pm 1.8 \cdot 10^{-3} \) | \(a_{453}= +0.01578572 \pm 1.2 \cdot 10^{-3} \) |
\(a_{454}= -1.55353390 \pm 1.2 \cdot 10^{-3} \) | \(a_{455}= -0.23973918 \pm 7.9 \cdot 10^{-4} \) | \(a_{456}= -0.04182408 \pm 7.4 \cdot 10^{-4} \) |
\(a_{457}= +0.15390559 \pm 8.3 \cdot 10^{-4} \) | \(a_{458}= +2.12769968 \pm 1.2 \cdot 10^{-3} \) | \(a_{459}= +0.03694448 \pm 8.2 \cdot 10^{-4} \) |
\(a_{460}= +0.71260206 \pm 7.4 \cdot 10^{-4} \) | \(a_{461}= -1.52097136 \pm 6.4 \cdot 10^{-4} \) | \(a_{462}= +0.01277779 \pm 3.1 \cdot 10^{-3} \) |
\(a_{463}= +0.49388382 \pm 8.0 \cdot 10^{-4} \) | \(a_{464}= -0.50930978 \pm 1.0 \cdot 10^{-3} \) | \(a_{465}= +0.00389387 \pm 8.5 \cdot 10^{-4} \) |
\(a_{466}= +0.63022529 \pm 9.0 \cdot 10^{-4} \) | \(a_{467}= -0.24817897 \pm 1.0 \cdot 10^{-3} \) | \(a_{468}= +1.88336713 \pm 8.0 \cdot 10^{-4} \) |
\(a_{469}= +1.18230665 \pm 1.0 \cdot 10^{-3} \) | \(a_{470}= -0.84003299 \pm 5.0 \cdot 10^{-4} \) | \(a_{471}= -0.03407546 \pm 7.8 \cdot 10^{-4} \) |
\(a_{472}= -0.44076965 \pm 1.3 \cdot 10^{-3} \) | \(a_{473}= +0.05036887 \pm 9.6 \cdot 10^{-4} \) | \(a_{474}= +0.05095025 \pm 8.8 \cdot 10^{-4} \) |
\(a_{475}= -0.88288759 \pm 7.5 \cdot 10^{-4} \) | \(a_{476}= +3.18455091 \pm 9.2 \cdot 10^{-4} \) | \(a_{477}= -0.25739406 \pm 7.0 \cdot 10^{-4} \) |
\(a_{478}= +1.09434926 \pm 1.2 \cdot 10^{-3} \) | \(a_{479}= -1.36489151 \pm 1.2 \cdot 10^{-3} \) | \(a_{480}= +0.00667436 \pm 6.7 \cdot 10^{-4} \) |
\(a_{481}= +1.27159302 \pm 1.0 \cdot 10^{-3} \) | \(a_{482}= -2.10513165 \pm 1.3 \cdot 10^{-3} \) | \(a_{483}= +0.02982386 \pm 7.0 \cdot 10^{-4} \) |
\(a_{484}= +0.21545156 \pm 1.3 \cdot 10^{-3} \) | \(a_{485}= -0.04424749 \pm 1.0 \cdot 10^{-3} \) | \(a_{486}= -0.09807566 \pm 1.0 \cdot 10^{-3} \) |
\(a_{487}= +0.06436425 \pm 5.6 \cdot 10^{-4} \) | \(a_{488}= +0.88663082 \pm 8.5 \cdot 10^{-4} \) | \(a_{489}= +0.02181205 \pm 8.7 \cdot 10^{-4} \) |
\(a_{490}= +0.29011990 \pm 9.6 \cdot 10^{-4} \) | \(a_{491}= -1.79012311 \pm 1.2 \cdot 10^{-3} \) | \(a_{492}= +0.01789052 \pm 5.8 \cdot 10^{-4} \) |
\(a_{493}= +0.23507125 \pm 9.1 \cdot 10^{-4} \) | \(a_{494}= +1.36218400 \pm 4.5 \cdot 10^{-4} \) | \(a_{495}= +0.07015295 \pm 2.1 \cdot 10^{-3} \) |
\(a_{496}= -2.10984528 \pm 8.3 \cdot 10^{-4} \) | \(a_{497}= +2.50953002 \pm 8.5 \cdot 10^{-4} \) | \(a_{498}= +0.01191696 \pm 1.1 \cdot 10^{-3} \) |
\(a_{499}= -0.00985528 \pm 1.1 \cdot 10^{-3} \) | \(a_{500}= +1.07331540 \pm 1.0 \cdot 10^{-3} \) | \(a_{501}= -0.00880240 \pm 9.9 \cdot 10^{-4} \) |
\(a_{502}= -1.45978941 \pm 1.1 \cdot 10^{-3} \) | \(a_{503}= +0.61560630 \pm 1.2 \cdot 10^{-3} \) | \(a_{504}= -3.25771782 \pm 4.4 \cdot 10^{-4} \) |
\(a_{505}= -0.20745445 \pm 5.2 \cdot 10^{-4} \) | \(a_{506}= +0.71505766 \pm 2.1 \cdot 10^{-3} \) | \(a_{507}= -0.00655775 \pm 8.9 \cdot 10^{-4} \) |
\(a_{508}= -1.20124278 \pm 1.2 \cdot 10^{-3} \) | \(a_{509}= +0.09532855 \pm 1.0 \cdot 10^{-3} \) | \(a_{510}= -0.00789372 \pm 5.6 \cdot 10^{-4} \) |
\(a_{511}= +0.02766380 \pm 1.0 \cdot 10^{-3} \) | \(a_{512}= +2.03403365 \pm 1.1 \cdot 10^{-3} \) | \(a_{513}= -0.03325557 \pm 6.4 \cdot 10^{-4} \) |
\(a_{514}= -1.32178723 \pm 1.1 \cdot 10^{-3} \) | \(a_{515}= -0.03105352 \pm 9.6 \cdot 10^{-4} \) | \(a_{516}= +0.00705362 \pm 1.3 \cdot 10^{-3} \) |
\(a_{517}= -0.59279836 \pm 8.0 \cdot 10^{-4} \) | \(a_{518}= -3.80503607 \pm 7.2 \cdot 10^{-4} \) | \(a_{519}= +0.01744833 \pm 1.0 \cdot 10^{-3} \) |
\(a_{520}= -0.46530069 \pm 3.6 \cdot 10^{-4} \) | \(a_{521}= +0.01779692 \pm 1.1 \cdot 10^{-3} \) | \(a_{522}= -0.41600346 \pm 6.9 \cdot 10^{-4} \) |
\(a_{523}= +1.34701195 \pm 7.9 \cdot 10^{-4} \) | \(a_{524}= +4.41078887 \pm 1.4 \cdot 10^{-3} \) | \(a_{525}= +0.02183495 \pm 4.1 \cdot 10^{-4} \) |
\(a_{526}= +1.04372875 \pm 1.3 \cdot 10^{-3} \) | \(a_{527}= +0.97379627 \pm 7.8 \cdot 10^{-4} \) | \(a_{528}= +0.01206909 \pm 2.0 \cdot 10^{-3} \) |
\(a_{529}= +0.66897234 \pm 9.7 \cdot 10^{-4} \) | \(a_{530}= +0.11000930 \pm 1.2 \cdot 10^{-3} \) | \(a_{531}= -0.17520674 \pm 1.2 \cdot 10^{-3} \) |
\(a_{532}= -2.86657348 \pm 7.0 \cdot 10^{-4} \) | \(a_{533}= -0.33682179 \pm 5.5 \cdot 10^{-4} \) | \(a_{534}= -0.05239796 \pm 1.6 \cdot 10^{-3} \) |
\(a_{535}= -0.36467215 \pm 1.2 \cdot 10^{-3} \) | \(a_{536}= +2.29469416 \pm 1.0 \cdot 10^{-3} \) | \(a_{537}= -0.02131880 \pm 8.0 \cdot 10^{-4} \) |
\(a_{538}= +0.56550723 \pm 1.4 \cdot 10^{-3} \) | \(a_{539}= +0.20473315 \pm 8.9 \cdot 10^{-4} \) | \(a_{540}= +0.01965145 \pm 5.6 \cdot 10^{-4} \) |
\(a_{541}= -1.09860466 \pm 7.5 \cdot 10^{-4} \) | \(a_{542}= -2.02501869 \pm 8.2 \cdot 10^{-4} \) | \(a_{543}= +0.00372170 \pm 9.1 \cdot 10^{-4} \) |
\(a_{544}= +1.66915217 \pm 7.5 \cdot 10^{-4} \) | \(a_{545}= +0.12879810 \pm 7.3 \cdot 10^{-4} \) | \(a_{546}= -0.03368858 \pm 9.0 \cdot 10^{-4} \) |
\(a_{547}= -1.54275039 \pm 9.1 \cdot 10^{-4} \) | \(a_{548}= -0.91278439 \pm 1.0 \cdot 10^{-3} \) | \(a_{549}= +0.35243737 \pm 7.6 \cdot 10^{-4} \) |
\(a_{550}= +0.52351544 \pm 2.0 \cdot 10^{-3} \) | \(a_{551}= -0.21159938 \pm 5.9 \cdot 10^{-4} \) | \(a_{552}= +0.05788400 \pm 1.9 \cdot 10^{-3} \) |
\(a_{553}= +2.01860290 \pm 9.5 \cdot 10^{-4} \) | \(a_{554}= -0.64454551 \pm 1.4 \cdot 10^{-3} \) | \(a_{555}= +0.00663298 \pm 4.5 \cdot 10^{-4} \) |
\(a_{556}= -2.69727429 \pm 1.0 \cdot 10^{-3} \) | \(a_{557}= -0.02403759 \pm 8.5 \cdot 10^{-4} \) | \(a_{558}= -1.72331845 \pm 8.9 \cdot 10^{-4} \) |
\(a_{559}= -0.13279724 \pm 5.9 \cdot 10^{-4} \) | \(a_{560}= +0.67759241 \pm 6.5 \cdot 10^{-4} \) | \(a_{561}= -0.00557047 \pm 1.9 \cdot 10^{-3} \) |
\(a_{562}= +2.27562898 \pm 1.4 \cdot 10^{-3} \) | \(a_{563}= -1.46349222 \pm 1.0 \cdot 10^{-3} \) | \(a_{564}= -0.08301501 \pm 1.0 \cdot 10^{-3} \) |
\(a_{565}= -0.30269276 \pm 9.4 \cdot 10^{-4} \) | \(a_{566}= +2.74813913 \pm 9.0 \cdot 10^{-4} \) | \(a_{567}= -1.29453747 \pm 8.3 \cdot 10^{-4} \) |
\(a_{568}= +4.87065171 \pm 7.5 \cdot 10^{-4} \) | \(a_{569}= +0.15264326 \pm 9.8 \cdot 10^{-4} \) | \(a_{570}= +0.00710553 \pm 4.9 \cdot 10^{-4} \) |
\(a_{571}= -0.73290817 \pm 9.4 \cdot 10^{-4} \) | \(a_{572}= -0.56803686 \pm 2.1 \cdot 10^{-3} \) | \(a_{573}= +0.02259242 \pm 1.0 \cdot 10^{-3} \) |
\(a_{574}= +1.00788463 \pm 7.2 \cdot 10^{-4} \) | \(a_{575}= +1.22190535 \pm 7.5 \cdot 10^{-4} \) | \(a_{576}= -0.70781932 \pm 1.2 \cdot 10^{-3} \) |
\(a_{577}= +0.21950511 \pm 8.4 \cdot 10^{-4} \) | \(a_{578}= -0.13834730 \pm 9.3 \cdot 10^{-4} \) | \(a_{579}= +0.00054990 \pm 7.6 \cdot 10^{-4} \) |
\(a_{580}= +0.12503871 \pm 1.0 \cdot 10^{-3} \) | \(a_{581}= +0.47213925 \pm 8.6 \cdot 10^{-4} \) | \(a_{582}= -0.00621774 \pm 8.9 \cdot 10^{-4} \) |
\(a_{583}= +0.07763187 \pm 7.7 \cdot 10^{-4} \) | \(a_{584}= +0.05369162 \pm 8.9 \cdot 10^{-4} \) | \(a_{585}= -0.18495787 \pm 6.2 \cdot 10^{-4} \) |
\(a_{586}= -1.41983189 \pm 1.1 \cdot 10^{-3} \) | \(a_{587}= +0.43395574 \pm 8.4 \cdot 10^{-4} \) | \(a_{588}= +0.02867067 \pm 1.1 \cdot 10^{-3} \) |
\(a_{589}= -0.87656270 \pm 8.5 \cdot 10^{-4} \) | \(a_{590}= +0.07488273 \pm 1.6 \cdot 10^{-3} \) | \(a_{591}= +0.00154094 \pm 9.1 \cdot 10^{-4} \) |
\(a_{592}= -3.59399649 \pm 9.3 \cdot 10^{-4} \) | \(a_{593}= +1.16509611 \pm 1.2 \cdot 10^{-3} \) | \(a_{594}= +0.01971916 \pm 2.1 \cdot 10^{-3} \) |
\(a_{595}= -0.31274187 \pm 7.9 \cdot 10^{-4} \) | \(a_{596}= -3.02357900 \pm 9.3 \cdot 10^{-4} \) | \(a_{597}= +0.00205385 \pm 9.9 \cdot 10^{-4} \) |
\(a_{598}= -1.88524557 \pm 7.2 \cdot 10^{-4} \) | \(a_{599}= -0.37721091 \pm 1.0 \cdot 10^{-3} \) | \(a_{600}= +0.04237863 \pm 1.1 \cdot 10^{-3} \) |
\(a_{601}= +0.18204277 \pm 9.2 \cdot 10^{-4} \) | \(a_{602}= +0.39737423 \pm 7.4 \cdot 10^{-4} \) | \(a_{603}= +0.91214510 \pm 1.1 \cdot 10^{-3} \) |
\(a_{604}= +2.09988680 \pm 1.9 \cdot 10^{-3} \) | \(a_{605}= -0.02115863 \pm 1.0 \cdot 10^{-3} \) | \(a_{606}= -0.02915187 \pm 1.3 \cdot 10^{-3} \) |
\(a_{607}= -0.57653470 \pm 1.0 \cdot 10^{-3} \) | \(a_{608}= -1.50248731 \pm 7.4 \cdot 10^{-4} \) | \(a_{609}= +0.00523313 \pm 6.1 \cdot 10^{-4} \) |
\(a_{610}= -0.15063047 \pm 1.7 \cdot 10^{-3} \) | \(a_{611}= +1.56290959 \pm 5.7 \cdot 10^{-4} \) | \(a_{612}= +2.45686898 \pm 1.1 \cdot 10^{-3} \) |
\(a_{613}= -0.92080191 \pm 8.3 \cdot 10^{-4} \) | \(a_{614}= -0.70963572 \pm 1.2 \cdot 10^{-3} \) | \(a_{615}= -0.00175696 \pm 7.2 \cdot 10^{-4} \) |
\(a_{616}= +0.98255075 \pm 2.1 \cdot 10^{-3} \) | \(a_{617}= -0.85568122 \pm 1.1 \cdot 10^{-3} \) | \(a_{618}= -0.00436370 \pm 1.0 \cdot 10^{-3} \) |
\(a_{619}= +0.62659455 \pm 8.4 \cdot 10^{-4} \) | \(a_{620}= +0.51798011 \pm 9.4 \cdot 10^{-4} \) | \(a_{621}= +0.04602530 \pm 9.0 \cdot 10^{-4} \) |
\(a_{622}= +1.41976037 \pm 1.3 \cdot 10^{-3} \) | \(a_{623}= -2.07595973 \pm 7.8 \cdot 10^{-4} \) | \(a_{624}= -0.03182010 \pm 4.9 \cdot 10^{-4} \) |
\(a_{625}= +0.84042385 \pm 7.4 \cdot 10^{-4} \) | \(a_{626}= +0.80532079 \pm 1.2 \cdot 10^{-3} \) | \(a_{627}= +0.00501426 \pm 1.7 \cdot 10^{-3} \) |
\(a_{628}= -4.53286824 \pm 9.3 \cdot 10^{-4} \) | \(a_{629}= +1.65880428 \pm 9.8 \cdot 10^{-4} \) | \(a_{630}= +0.55345646 \pm 7.9 \cdot 10^{-4} \) |
\(a_{631}= -0.77619834 \pm 1.0 \cdot 10^{-3} \) | \(a_{632}= +3.91782986 \pm 8.3 \cdot 10^{-4} \) | \(a_{633}= -0.01934780 \pm 1.1 \cdot 10^{-3} \) |
\(a_{634}= +0.25682874 \pm 1.6 \cdot 10^{-3} \) | \(a_{635}= +0.11796920 \pm 1.0 \cdot 10^{-3} \) | \(a_{636}= +0.01087151 \pm 6.8 \cdot 10^{-4} \) |
\(a_{637}= -0.53977782 \pm 5.1 \cdot 10^{-4} \) | \(a_{638}= +0.12546959 \pm 2.1 \cdot 10^{-3} \) | \(a_{639}= +1.93609292 \pm 9.0 \cdot 10^{-4} \) |
\(a_{640}= -0.07210712 \pm 1.2 \cdot 10^{-3} \) | \(a_{641}= -1.62492631 \pm 1.1 \cdot 10^{-3} \) | \(a_{642}= -0.05124438 \pm 1.5 \cdot 10^{-3} \) |
\(a_{643}= -0.50751512 \pm 9.1 \cdot 10^{-4} \) | \(a_{644}= +3.96730174 \pm 8.2 \cdot 10^{-4} \) | \(a_{645}= -0.00069271 \pm 7.6 \cdot 10^{-4} \) |
\(a_{646}= +1.77698100 \pm 7.7 \cdot 10^{-4} \) | \(a_{647}= -1.02950754 \pm 1.2 \cdot 10^{-3} \) | \(a_{648}= -2.51251871 \pm 1.3 \cdot 10^{-3} \) |
\(a_{649}= +0.05284359 \pm 1.1 \cdot 10^{-3} \) | \(a_{650}= -1.38024556 \pm 3.8 \cdot 10^{-4} \) | \(a_{651}= +0.02167853 \pm 9.8 \cdot 10^{-4} \) |
\(a_{652}= +2.90153480 \pm 1.3 \cdot 10^{-3} \) | \(a_{653}= +0.21917434 \pm 8.7 \cdot 10^{-4} \) | \(a_{654}= +0.01809894 \pm 8.1 \cdot 10^{-4} \) |
\(a_{655}= -0.43316574 \pm 8.7 \cdot 10^{-4} \) | \(a_{656}= +0.95198410 \pm 5.5 \cdot 10^{-4} \) | \(a_{657}= +0.02134251 \pm 8.5 \cdot 10^{-4} \) |
\(a_{658}= -4.67675370 \pm 5.1 \cdot 10^{-4} \) | \(a_{659}= +0.42438313 \pm 9.8 \cdot 10^{-4} \) | \(a_{660}= -0.00296304 \pm 3.3 \cdot 10^{-3} \) |
\(a_{661}= -0.45093670 \pm 1.1 \cdot 10^{-3} \) | \(a_{662}= -1.61179364 \pm 8.8 \cdot 10^{-4} \) | \(a_{663}= +0.01468652 \pm 4.1 \cdot 10^{-4} \) |
\(a_{664}= +0.91635718 \pm 1.0 \cdot 10^{-3} \) | \(a_{665}= +0.28151459 \pm 6.4 \cdot 10^{-4} \) | \(a_{666}= -2.93557094 \pm 9.0 \cdot 10^{-4} \) |
\(a_{667}= +0.29285089 \pm 8.6 \cdot 10^{-4} \) | \(a_{668}= -1.17093398 \pm 1.6 \cdot 10^{-3} \) | \(a_{669}= +0.00745076 \pm 1.1 \cdot 10^{-3} \) |
\(a_{670}= -0.38984755 \pm 1.7 \cdot 10^{-3} \) | \(a_{671}= -0.10629760 \pm 8.3 \cdot 10^{-4} \) | \(a_{672}= +0.03715846 \pm 8.1 \cdot 10^{-4} \) |
\(a_{673}= +1.06129301 \pm 7.5 \cdot 10^{-4} \) | \(a_{674}= +1.02587175 \pm 7.6 \cdot 10^{-4} \) | \(a_{675}= +0.03369652 \pm 4.1 \cdot 10^{-4} \) |
\(a_{676}= -0.87234117 \pm 1.2 \cdot 10^{-3} \) | \(a_{677}= +0.54763974 \pm 1.1 \cdot 10^{-3} \) | \(a_{678}= -0.04253492 \pm 1.5 \cdot 10^{-3} \) |
\(a_{679}= -0.24634105 \pm 7.0 \cdot 10^{-4} \) | \(a_{680}= -0.60698885 \pm 7.3 \cdot 10^{-4} \) | \(a_{681}= +0.01507714 \pm 8.6 \cdot 10^{-4} \) |
\(a_{682}= +0.51976504 \pm 2.1 \cdot 10^{-3} \) | \(a_{683}= +0.00359650 \pm 8.2 \cdot 10^{-4} \) | \(a_{684}= -2.21155059 \pm 8.6 \cdot 10^{-4} \) |
\(a_{685}= +0.08964087 \pm 9.8 \cdot 10^{-4} \) | \(a_{686}= -0.76351052 \pm 9.3 \cdot 10^{-4} \) | \(a_{687}= -0.02064945 \pm 5.4 \cdot 10^{-4} \) |
\(a_{688}= +0.37533457 \pm 9.4 \cdot 10^{-4} \) | \(a_{689}= -0.20467600 \pm 5.1 \cdot 10^{-4} \) | \(a_{690}= -0.00983396 \pm 7.1 \cdot 10^{-4} \) |
\(a_{691}= +0.05642555 \pm 1.0 \cdot 10^{-3} \) | \(a_{692}= +2.32105351 \pm 1.3 \cdot 10^{-3} \) | \(a_{693}= +0.39056571 \pm 2.1 \cdot 10^{-3} \) |
\(a_{694}= +3.06694985 \pm 1.0 \cdot 10^{-3} \) | \(a_{695}= +0.26488840 \pm 8.4 \cdot 10^{-4} \) | \(a_{696}= +0.01015678 \pm 1.0 \cdot 10^{-3} \) |
\(a_{697}= -0.43938699 \pm 5.7 \cdot 10^{-4} \) | \(a_{698}= +1.03048426 \pm 9.9 \cdot 10^{-4} \) | \(a_{699}= -0.00611637 \pm 1.2 \cdot 10^{-3} \) |
\(a_{700}= +2.90458214 \pm 7.2 \cdot 10^{-4} \) | \(a_{701}= +1.09911843 \pm 1.2 \cdot 10^{-3} \) | \(a_{702}= -0.05198947 \pm 3.9 \cdot 10^{-4} \) |
\(a_{703}= -1.49317266 \pm 6.1 \cdot 10^{-4} \) | \(a_{704}= +0.21348332 \pm 1.0 \cdot 10^{-3} \) | \(a_{705}= +0.00815257 \pm 9.0 \cdot 10^{-4} \) |
\(a_{706}= +0.98073933 \pm 8.9 \cdot 10^{-4} \) | \(a_{707}= -1.15497054 \pm 6.5 \cdot 10^{-4} \) | \(a_{708}= +0.00740017 \pm 1.4 \cdot 10^{-3} \) |
\(a_{709}= -0.05657926 \pm 8.4 \cdot 10^{-4} \) | \(a_{710}= -0.82747918 \pm 4.7 \cdot 10^{-4} \) | \(a_{711}= +1.55734450 \pm 4.3 \cdot 10^{-4} \) |
\(a_{712}= -4.02915157 \pm 1.6 \cdot 10^{-3} \) | \(a_{713}= +1.21315179 \pm 9.4 \cdot 10^{-4} \) | \(a_{714}= -0.04394704 \pm 6.5 \cdot 10^{-4} \) |
\(a_{715}= +0.05578460 \pm 1.8 \cdot 10^{-3} \) | \(a_{716}= -2.83592066 \pm 1.7 \cdot 10^{-3} \) | \(a_{717}= -0.01062072 \pm 7.3 \cdot 10^{-4} \) |
\(a_{718}= -1.36810524 \pm 1.2 \cdot 10^{-3} \) | \(a_{719}= +0.12995186 \pm 1.1 \cdot 10^{-3} \) | \(a_{720}= +0.52275998 \pm 5.8 \cdot 10^{-4} \) |
\(a_{721}= -0.17288568 \pm 1.1 \cdot 10^{-3} \) | \(a_{722}= +0.23619761 \pm 8.5 \cdot 10^{-4} \) | \(a_{723}= +0.02043042 \pm 1.4 \cdot 10^{-3} \) |
\(a_{724}= +0.49507643 \pm 7.4 \cdot 10^{-4} \) | \(a_{725}= +0.21440504 \pm 6.9 \cdot 10^{-4} \) | \(a_{726}= -0.00297325 \pm 2.1 \cdot 10^{-3} \) |
\(a_{727}= +1.62886649 \pm 1.1 \cdot 10^{-3} \) | \(a_{728}= -2.59048963 \pm 4.6 \cdot 10^{-4} \) | \(a_{729}= -0.99809604 \pm 8.7 \cdot 10^{-4} \) |
\(a_{730}= -0.00912171 \pm 1.5 \cdot 10^{-3} \) | \(a_{731}= -0.17323517 \pm 9.1 \cdot 10^{-4} \) | \(a_{732}= -0.01488583 \pm 4.0 \cdot 10^{-4} \) |
\(a_{733}= -0.49895196 \pm 1.3 \cdot 10^{-3} \) | \(a_{734}= +3.10745756 \pm 1.0 \cdot 10^{-3} \) | \(a_{735}= -0.00281563 \pm 8.1 \cdot 10^{-4} \) |
\(a_{736}= +2.07942360 \pm 8.9 \cdot 10^{-4} \) | \(a_{737}= -0.27510942 \pm 1.1 \cdot 10^{-3} \) | \(a_{738}= +0.77757918 \pm 8.0 \cdot 10^{-4} \) |
\(a_{739}= -0.47456283 \pm 1.2 \cdot 10^{-3} \) | \(a_{740}= +0.88234844 \pm 1.4 \cdot 10^{-3} \) | \(a_{741}= -0.01322007 \pm 4.2 \cdot 10^{-4} \) |
\(a_{742}= +0.61245975 \pm 8.0 \cdot 10^{-4} \) | \(a_{743}= +0.24516804 \pm 9.0 \cdot 10^{-4} \) | \(a_{744}= +0.04207504 \pm 8.7 \cdot 10^{-4} \) |
\(a_{745}= +0.29693347 \pm 8.1 \cdot 10^{-4} \) | \(a_{746}= +0.89963226 \pm 5.4 \cdot 10^{-4} \) | \(a_{747}= +0.36425365 \pm 1.4 \cdot 10^{-3} \) |
\(a_{748}= -0.74100907 \pm 2.3 \cdot 10^{-3} \) | \(a_{749}= -2.03025577 \pm 7.2 \cdot 10^{-4} \) | \(a_{750}= -0.01481183 \pm 8.7 \cdot 10^{-4} \) |
\(a_{751}= +0.30347740 \pm 1.0 \cdot 10^{-3} \) | \(a_{752}= -4.41736585 \pm 8.3 \cdot 10^{-4} \) | \(a_{753}= +0.01416734 \pm 1.1 \cdot 10^{-3} \) |
\(a_{754}= -0.33079988 \pm 4.7 \cdot 10^{-4} \) | \(a_{755}= -0.20622139 \pm 1.1 \cdot 10^{-3} \) | \(a_{756}= +0.10940639 \pm 6.4 \cdot 10^{-4} \) |
\(a_{757}= -1.50397832 \pm 9.0 \cdot 10^{-4} \) | \(a_{758}= +1.81534822 \pm 1.0 \cdot 10^{-3} \) | \(a_{759}= -0.00693968 \pm 1.9 \cdot 10^{-3} \) |
\(a_{760}= +0.54638100 \pm 8.1 \cdot 10^{-4} \) | \(a_{761}= -0.02705552 \pm 1.0 \cdot 10^{-3} \) | \(a_{762}= +0.01657724 \pm 8.8 \cdot 10^{-4} \) |
\(a_{763}= +0.71706347 \pm 8.5 \cdot 10^{-4} \) | \(a_{764}= +3.00534310 \pm 9.0 \cdot 10^{-4} \) | \(a_{765}= -0.24127917 \pm 8.6 \cdot 10^{-4} \) |
\(a_{766}= -0.82937716 \pm 1.5 \cdot 10^{-3} \) | \(a_{767}= -0.13932184 \pm 7.1 \cdot 10^{-4} \) | \(a_{768}= -0.02274716 \pm 1.1 \cdot 10^{-3} \) |
\(a_{769}= -0.33781500 \pm 8.6 \cdot 10^{-4} \) | \(a_{770}= -0.16692639 \pm 3.2 \cdot 10^{-3} \) | \(a_{771}= +0.01282802 \pm 5.3 \cdot 10^{-4} \) |
\(a_{772}= +0.07315071 \pm 1.5 \cdot 10^{-3} \) | \(a_{773}= -1.23253417 \pm 1.0 \cdot 10^{-3} \) | \(a_{774}= +0.30657271 \pm 1.0 \cdot 10^{-3} \) |
\(a_{775}= +0.88818528 \pm 4.8 \cdot 10^{-4} \) | \(a_{776}= -0.47811400 \pm 1.0 \cdot 10^{-3} \) | \(a_{777}= +0.03692809 \pm 6.1 \cdot 10^{-4} \) |
\(a_{778}= -2.23705684 \pm 6.3 \cdot 10^{-4} \) | \(a_{779}= +0.39551419 \pm 5.4 \cdot 10^{-4} \) | \(a_{780}= +0.00781203 \pm 5.7 \cdot 10^{-4} \) |
\(a_{781}= -0.58393933 \pm 7.4 \cdot 10^{-4} \) | \(a_{782}= -2.45931942 \pm 1.6 \cdot 10^{-3} \) | \(a_{783}= +0.00807596 \pm 6.0 \cdot 10^{-4} \) |
\(a_{784}= +1.52561357 \pm 7.8 \cdot 10^{-4} \) | \(a_{785}= +0.44515467 \pm 8.9 \cdot 10^{-4} \) | \(a_{786}= -0.06086922 \pm 1.5 \cdot 10^{-3} \) |
\(a_{787}= +0.48266896 \pm 1.3 \cdot 10^{-3} \) | \(a_{788}= +0.20498258 \pm 1.2 \cdot 10^{-3} \) | \(a_{789}= -0.01012945 \pm 1.1 \cdot 10^{-3} \) |
\(a_{790}= -0.66560346 \pm 4.8 \cdot 10^{-4} \) | \(a_{791}= -1.68519511 \pm 1.1 \cdot 10^{-3} \) | \(a_{792}= +0.75803419 \pm 2.2 \cdot 10^{-3} \) |
\(a_{793}= +0.28025305 \pm 4.8 \cdot 10^{-4} \) | \(a_{794}= +2.63464566 \pm 1.2 \cdot 10^{-3} \) | \(a_{795}= -0.00106765 \pm 5.8 \cdot 10^{-4} \) |
\(a_{796}= +0.27321159 \pm 1.2 \cdot 10^{-3} \) | \(a_{797}= -0.60891433 \pm 8.8 \cdot 10^{-4} \) | \(a_{798}= +0.03955893 \pm 6.6 \cdot 10^{-4} \) |
\(a_{799}= +2.03882930 \pm 8.1 \cdot 10^{-4} \) | \(a_{800}= +1.52240919 \pm 7.1 \cdot 10^{-4} \) | \(a_{801}= -1.60159508 \pm 8.1 \cdot 10^{-4} \) |
\(a_{802}= +1.21061502 \pm 1.1 \cdot 10^{-3} \) | \(a_{803}= -0.00643705 \pm 9.6 \cdot 10^{-4} \) | \(a_{804}= -0.03852610 \pm 1.0 \cdot 10^{-3} \) |
\(a_{805}= -0.38961267 \pm 7.0 \cdot 10^{-4} \) | \(a_{806}= -1.37035767 \pm 6.3 \cdot 10^{-4} \) | \(a_{807}= -0.00548828 \pm 8.9 \cdot 10^{-4} \) |
\(a_{808}= -2.24163856 \pm 1.1 \cdot 10^{-3} \) | \(a_{809}= +0.66527419 \pm 1.2 \cdot 10^{-3} \) | \(a_{810}= +0.42685395 \pm 1.2 \cdot 10^{-3} \) |
\(a_{811}= +1.02058195 \pm 9.7 \cdot 10^{-4} \) | \(a_{812}= +0.69613368 \pm 9.6 \cdot 10^{-4} \) | \(a_{813}= +0.01965292 \pm 1.3 \cdot 10^{-3} \) |
\(a_{814}= +0.88538897 \pm 2.2 \cdot 10^{-3} \) | \(a_{815}= -0.28494800 \pm 1.1 \cdot 10^{-3} \) | \(a_{816}= -0.04150960 \pm 1.3 \cdot 10^{-3} \) |
\(a_{817}= +0.15593764 \pm 6.4 \cdot 10^{-4} \) | \(a_{818}= -1.53119684 \pm 1.4 \cdot 10^{-3} \) | \(a_{819}= -1.02972434 \pm 8.2 \cdot 10^{-4} \) |
\(a_{820}= -0.23371800 \pm 5.2 \cdot 10^{-4} \) | \(a_{821}= +1.28435412 \pm 1.3 \cdot 10^{-3} \) | \(a_{822}= +0.01259649 \pm 8.9 \cdot 10^{-4} \) |
\(a_{823}= +1.08250518 \pm 8.8 \cdot 10^{-4} \) | \(a_{824}= -0.33554726 \pm 8.5 \cdot 10^{-4} \) | \(a_{825}= -0.00508075 \pm 1.8 \cdot 10^{-3} \) |
\(a_{826}= +0.41689803 \pm 7.2 \cdot 10^{-4} \) | \(a_{827}= +1.58846327 \pm 1.0 \cdot 10^{-3} \) | \(a_{828}= +3.06075828 \pm 1.0 \cdot 10^{-3} \) |
\(a_{829}= +0.60759663 \pm 7.4 \cdot 10^{-4} \) | \(a_{830}= -0.15568070 \pm 5.8 \cdot 10^{-4} \) | \(a_{831}= +0.00625535 \pm 1.3 \cdot 10^{-3} \) |
\(a_{832}= -0.56284759 \pm 8.2 \cdot 10^{-4} \) | \(a_{833}= -0.70414491 \pm 8.3 \cdot 10^{-4} \) | \(a_{834}= +0.03722259 \pm 9.5 \cdot 10^{-4} \) |
\(a_{835}= +0.11499269 \pm 1.0 \cdot 10^{-3} \) | \(a_{836}= +0.66701931 \pm 2.1 \cdot 10^{-3} \) | \(a_{837}= +0.03345512 \pm 1.1 \cdot 10^{-3} \) |
\(a_{838}= -2.25119722 \pm 9.7 \cdot 10^{-4} \) | \(a_{839}= +1.15670590 \pm 1.0 \cdot 10^{-3} \) | \(a_{840}= -0.01351271 \pm 5.1 \cdot 10^{-4} \) |
\(a_{841}= -0.94861410 \pm 6.6 \cdot 10^{-4} \) | \(a_{842}= +0.83535113 \pm 8.0 \cdot 10^{-4} \) | \(a_{843}= -0.02208511 \pm 8.9 \cdot 10^{-4} \) |
\(a_{844}= -2.57372970 \pm 1.2 \cdot 10^{-3} \) | \(a_{845}= +0.08566910 \pm 8.4 \cdot 10^{-4} \) | \(a_{846}= -3.60809779 \pm 1.0 \cdot 10^{-3} \) |
\(a_{847}= -0.11779738 \pm 1.0 \cdot 10^{-3} \) | \(a_{848}= +0.57849076 \pm 5.7 \cdot 10^{-4} \) | \(a_{849}= -0.02667085 \pm 9.5 \cdot 10^{-4} \) |
\(a_{850}= -1.80054247 \pm 1.2 \cdot 10^{-3} \) | \(a_{851}= +2.06653223 \pm 5.4 \cdot 10^{-4} \) | \(a_{852}= -0.08177440 \pm 8.0 \cdot 10^{-4} \) |
\(a_{853}= -1.37760513 \pm 1.2 \cdot 10^{-3} \) | \(a_{854}= -0.83861183 \pm 7.4 \cdot 10^{-4} \) | \(a_{855}= +0.21718744 \pm 8.2 \cdot 10^{-4} \) |
\(a_{856}= -3.94044648 \pm 1.5 \cdot 10^{-3} \) | \(a_{857}= -1.08507981 \pm 9.6 \cdot 10^{-4} \) | \(a_{858}= +0.00783895 \pm 2.9 \cdot 10^{-3} \) |
\(a_{859}= +0.11990633 \pm 1.1 \cdot 10^{-3} \) | \(a_{860}= -0.09214697 \pm 1.1 \cdot 10^{-3} \) | \(a_{861}= -0.00978158 \pm 6.8 \cdot 10^{-4} \) |
\(a_{862}= -1.10256766 \pm 1.4 \cdot 10^{-3} \) | \(a_{863}= +1.88026500 \pm 9.6 \cdot 10^{-4} \) | \(a_{864}= +0.05734432 \pm 7.4 \cdot 10^{-4} \) |
\(a_{865}= -0.22794128 \pm 1.1 \cdot 10^{-3} \) | \(a_{866}= +0.87355731 \pm 1.4 \cdot 10^{-3} \) | \(a_{867}= +0.00134267 \pm 6.5 \cdot 10^{-4} \) |
\(a_{868}= +2.88377410 \pm 1.0 \cdot 10^{-3} \) | \(a_{869}= -0.46970612 \pm 7.8 \cdot 10^{-4} \) | \(a_{870}= -0.00172554 \pm 4.1 \cdot 10^{-4} \) |
\(a_{871}= +0.72532446 \pm 1.0 \cdot 10^{-3} \) | \(a_{872}= +1.39172131 \pm 5.6 \cdot 10^{-4} \) | \(a_{873}= -0.19005118 \pm 7.6 \cdot 10^{-4} \) |
\(a_{874}= +2.21375636 \pm 1.0 \cdot 10^{-3} \) | \(a_{875}= -0.58683141 \pm 9.5 \cdot 10^{-4} \) | \(a_{876}= -0.00090144 \pm 4.9 \cdot 10^{-4} \) |
\(a_{877}= +1.02658723 \pm 1.0 \cdot 10^{-3} \) | \(a_{878}= -1.07962858 \pm 1.5 \cdot 10^{-3} \) | \(a_{879}= +0.01377955 \pm 9.4 \cdot 10^{-4} \) |
\(a_{880}= -0.15766811 \pm 2.0 \cdot 10^{-3} \) | \(a_{881}= -1.26331503 \pm 1.1 \cdot 10^{-3} \) | \(a_{882}= +1.24611887 \pm 9.3 \cdot 10^{-4} \) |
\(a_{883}= -0.85976162 \pm 1.1 \cdot 10^{-3} \) | \(a_{884}= +1.95366633 \pm 8.2 \cdot 10^{-4} \) | \(a_{885}= -0.00072674 \pm 7.9 \cdot 10^{-4} \) |
\(a_{886}= +2.37396051 \pm 1.6 \cdot 10^{-3} \) | \(a_{887}= -1.27905116 \pm 8.6 \cdot 10^{-4} \) | \(a_{888}= +0.07167234 \pm 5.6 \cdot 10^{-4} \) |
\(a_{889}= +0.65677526 \pm 8.9 \cdot 10^{-4} \) | \(a_{890}= +0.68451600 \pm 8.3 \cdot 10^{-4} \) | \(a_{891}= +0.30122427 \pm 1.0 \cdot 10^{-3} \) |
\(a_{892}= +0.99113239 \pm 1.2 \cdot 10^{-3} \) | \(a_{893}= -1.83525218 \pm 4.9 \cdot 10^{-4} \) | \(a_{894}= +0.04172562 \pm 4.3 \cdot 10^{-4} \) |
\(a_{895}= +0.27850430 \pm 1.3 \cdot 10^{-3} \) | \(a_{896}= -0.40144524 \pm 8.0 \cdot 10^{-4} \) | \(a_{897}= +0.01829642 \pm 6.2 \cdot 10^{-4} \) |
\(a_{898}= +1.18117450 \pm 8.8 \cdot 10^{-4} \) | \(a_{899}= +0.21286907 \pm 9.3 \cdot 10^{-4} \) | \(a_{900}= +2.24087413 \pm 1.2 \cdot 10^{-3} \) |
\(a_{901}= -0.26700164 \pm 6.8 \cdot 10^{-4} \) | \(a_{902}= -0.23452338 \pm 1.8 \cdot 10^{-3} \) | \(a_{903}= -0.00385654 \pm 7.9 \cdot 10^{-4} \) |
\(a_{904}= -3.27073132 \pm 1.6 \cdot 10^{-3} \) | \(a_{905}= -0.04861945 \pm 7.5 \cdot 10^{-4} \) | \(a_{906}= -0.02897860 \pm 1.7 \cdot 10^{-3} \) |
\(a_{907}= +0.25166950 \pm 1.2 \cdot 10^{-3} \) | \(a_{908}= +2.00562731 \pm 1.5 \cdot 10^{-3} \) | \(a_{909}= -0.89105540 \pm 6.7 \cdot 10^{-4} \) |
\(a_{910}= +0.44010050 \pm 6.3 \cdot 10^{-4} \) | \(a_{911}= -1.70331563 \pm 8.6 \cdot 10^{-4} \) | \(a_{912}= +0.03736486 \pm 6.7 \cdot 10^{-4} \) |
\(a_{913}= -0.10986148 \pm 9.5 \cdot 10^{-4} \) | \(a_{914}= -0.28253173 \pm 1.1 \cdot 10^{-3} \) | \(a_{915}= +0.00146188 \pm 4.0 \cdot 10^{-4} \) |
\(a_{916}= -2.74688089 \pm 1.2 \cdot 10^{-3} \) | \(a_{917}= -2.41158327 \pm 9.0 \cdot 10^{-4} \) | \(a_{918}= -0.06782072 \pm 7.8 \cdot 10^{-4} \) |
\(a_{919}= -0.35025254 \pm 9.1 \cdot 10^{-4} \) | \(a_{920}= -0.75618446 \pm 5.5 \cdot 10^{-4} \) | \(a_{921}= +0.00688706 \pm 1.0 \cdot 10^{-3} \) |
\(a_{922}= +2.79211867 \pm 9.8 \cdot 10^{-4} \) | \(a_{923}= +1.53955281 \pm 4.0 \cdot 10^{-4} \) | \(a_{924}= -0.01649625 \pm 3.3 \cdot 10^{-3} \) |
\(a_{925}= +1.51297103 \pm 8.1 \cdot 10^{-4} \) | \(a_{926}= -0.90664576 \pm 9.1 \cdot 10^{-4} \) | \(a_{927}= -0.13338065 \pm 1.3 \cdot 10^{-3} \) |
\(a_{928}= +0.36487187 \pm 6.6 \cdot 10^{-4} \) | \(a_{929}= +0.19496499 \pm 9.8 \cdot 10^{-4} \) | \(a_{930}= -0.00714816 \pm 7.4 \cdot 10^{-4} \) |
\(a_{931}= +0.63383603 \pm 5.6 \cdot 10^{-4} \) | \(a_{932}= -0.81362695 \pm 1.0 \cdot 10^{-3} \) | \(a_{933}= -0.01377886 \pm 5.6 \cdot 10^{-4} \) |
\(a_{934}= +0.45559381 \pm 1.1 \cdot 10^{-3} \) | \(a_{935}= +0.07277151 \pm 2.0 \cdot 10^{-3} \) | \(a_{936}= -1.99855295 \pm 3.8 \cdot 10^{-4} \) |
\(a_{937}= +0.43631638 \pm 9.2 \cdot 10^{-4} \) | \(a_{938}= -2.17041593 \pm 9.3 \cdot 10^{-4} \) | \(a_{939}= -0.00781568 \pm 9.9 \cdot 10^{-4} \) |
\(a_{940}= +1.08449072 \pm 5.2 \cdot 10^{-4} \) | \(a_{941}= +0.98361768 \pm 9.7 \cdot 10^{-4} \) | \(a_{942}= +0.06255392 \pm 8.0 \cdot 10^{-4} \) |
\(a_{943}= -0.54738668 \pm 6.3 \cdot 10^{-4} \) | \(a_{944}= +0.39377552 \pm 1.0 \cdot 10^{-3} \) | \(a_{945}= -0.01074436 \pm 7.9 \cdot 10^{-4} \) |
\(a_{946}= -0.09246450 \pm 2.1 \cdot 10^{-3} \) | \(a_{947}= -0.23247713 \pm 1.2 \cdot 10^{-3} \) | \(a_{948}= -0.06577727 \pm 1.0 \cdot 10^{-3} \) |
\(a_{949}= +0.01697126 \pm 6.5 \cdot 10^{-4} \) | \(a_{950}= +1.62075829 \pm 1.1 \cdot 10^{-3} \) | \(a_{951}= -0.00249254 \pm 1.1 \cdot 10^{-3} \) |
\(a_{952}= -3.37931649 \pm 6.5 \cdot 10^{-4} \) | \(a_{953}= -0.07300243 \pm 9.1 \cdot 10^{-4} \) | \(a_{954}= +0.47251038 \pm 8.8 \cdot 10^{-4} \) |
\(a_{955}= -0.29514260 \pm 8.7 \cdot 10^{-4} \) | \(a_{956}= -1.41281549 \pm 1.3 \cdot 10^{-3} \) | \(a_{957}= -0.00121769 \pm 1.9 \cdot 10^{-3} \) |
\(a_{958}= +2.50559554 \pm 1.3 \cdot 10^{-3} \) | \(a_{959}= +0.49906165 \pm 9.4 \cdot 10^{-4} \) | \(a_{960}= -0.00293597 \pm 7.8 \cdot 10^{-4} \) |
\(a_{961}= -0.11817756 \pm 1.2 \cdot 10^{-3} \) | \(a_{962}= -2.33432313 \pm 5.4 \cdot 10^{-4} \) | \(a_{963}= -1.56633464 \pm 1.2 \cdot 10^{-3} \) |
\(a_{964}= +2.71774533 \pm 1.6 \cdot 10^{-3} \) | \(a_{965}= -0.00718384 \pm 1.1 \cdot 10^{-3} \) | \(a_{966}= -0.05474906 \pm 8.7 \cdot 10^{-4} \) |
\(a_{967}= +1.11850452 \pm 1.1 \cdot 10^{-3} \) | \(a_{968}= -0.22862848 \pm 1.1 \cdot 10^{-3} \) | \(a_{969}= -0.01724570 \pm 6.0 \cdot 10^{-4} \) |
\(a_{970}= +0.08122720 \pm 1.6 \cdot 10^{-3} \) | \(a_{971}= +0.99624535 \pm 1.2 \cdot 10^{-3} \) | \(a_{972}= +0.12661662 \pm 1.1 \cdot 10^{-3} \) |
\(a_{973}= +1.47472521 \pm 8.7 \cdot 10^{-4} \) | \(a_{974}= -0.11815648 \pm 7.7 \cdot 10^{-4} \) | \(a_{975}= +0.01339536 \pm 2.9 \cdot 10^{-4} \) |
\(a_{976}= -0.79209971 \pm 5.4 \cdot 10^{-4} \) | \(a_{977}= -0.80607443 \pm 9.0 \cdot 10^{-4} \) | \(a_{978}= -0.04004140 \pm 1.0 \cdot 10^{-3} \) |
\(a_{979}= +0.48305241 \pm 1.0 \cdot 10^{-3} \) | \(a_{980}= -0.37454760 \pm 9.9 \cdot 10^{-4} \) | \(a_{981}= +0.55321175 \pm 7.2 \cdot 10^{-4} \) |
\(a_{982}= +3.28621320 \pm 1.2 \cdot 10^{-3} \) | \(a_{983}= +0.30976327 \pm 8.9 \cdot 10^{-4} \) | \(a_{984}= -0.01898469 \pm 7.5 \cdot 10^{-4} \) |
\(a_{985}= -0.02013051 \pm 5.2 \cdot 10^{-4} \) | \(a_{986}= -0.43153135 \pm 1.0 \cdot 10^{-3} \) | \(a_{987}= +0.04538816 \pm 5.2 \cdot 10^{-4} \) |
\(a_{988}= -1.75859273 \pm 3.8 \cdot 10^{-4} \) | \(a_{989}= -0.21581573 \pm 9.6 \cdot 10^{-4} \) | \(a_{990}= -0.12878308 \pm 3.3 \cdot 10^{-3} \) |
\(a_{991}= +1.30063922 \pm 8.7 \cdot 10^{-4} \) | \(a_{992}= +1.51150286 \pm 9.0 \cdot 10^{-4} \) | \(a_{993}= +0.01564255 \pm 8.0 \cdot 10^{-4} \) |
\(a_{994}= -4.60686231 \pm 5.0 \cdot 10^{-4} \) | \(a_{995}= -0.02683101 \pm 1.2 \cdot 10^{-3} \) | \(a_{996}= -0.01538491 \pm 1.0 \cdot 10^{-3} \) |
\(a_{997}= -1.95182941 \pm 9.3 \cdot 10^{-4} \) | \(a_{998}= +0.01809179 \pm 1.3 \cdot 10^{-3} \) | \(a_{999}= +0.05698882 \pm 4.4 \cdot 10^{-4} \) |
\(a_{1000}= -1.13895884 \pm 7.5 \cdot 10^{-4} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000