Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(7.59926619692645837952332821359 \pm 2 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.87766224 \pm 2.3 \cdot 10^{-8} \) | \(a_{3}= +1.16124289 \pm 1.9 \cdot 10^{-8} \) |
\(a_{4}= -0.22970900 \pm 2.7 \cdot 10^{-8} \) | \(a_{5}= -1.92995095 \pm 2.0 \cdot 10^{-8} \) | \(a_{6}= +1.01917903 \pm 2.3 \cdot 10^{-8} \) |
\(a_{7}= -0.08110149 \pm 2.0 \cdot 10^{-8} \) | \(a_{8}= -1.07926915 \pm 2.3 \cdot 10^{-8} \) | \(a_{9}= +0.34848504 \pm 2.1 \cdot 10^{-8} \) |
\(a_{10}= -1.69384507 \pm 2.4 \cdot 10^{-8} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= -0.26674794 \pm 2.5 \cdot 10^{-8} \) |
\(a_{13}= +0.69505004 \pm 1.5 \cdot 10^{-8} \) | \(a_{14}= -0.07117971 \pm 1.6 \cdot 10^{-8} \) | \(a_{15}= -2.24114181 \pm 1.5 \cdot 10^{-8} \) |
\(a_{16}= -0.71752478 \pm 2.0 \cdot 10^{-8} \) | \(a_{17}= -0.54788802 \pm 1.9 \cdot 10^{-8} \) | \(a_{18}= +0.30585216 \pm 2.2 \cdot 10^{-8} \) |
\(a_{19}= +0.25455234 \pm 1.4 \cdot 10^{-8} \) | \(a_{20}= +0.44332710 \pm 2.6 \cdot 10^{-8} \) | \(a_{21}= -0.09417852 \pm 1.5 \cdot 10^{-8} \) |
\(a_{22}= -0.26462512 \pm 3.4 \cdot 10^{-8} \) | \(a_{23}= -1.28028189 \pm 1.8 \cdot 10^{-8} \) | \(a_{24}= -1.25329362 \pm 2.6 \cdot 10^{-8} \) |
\(a_{25}= +2.72471067 \pm 1.6 \cdot 10^{-8} \) | \(a_{26}= +0.61001917 \pm 1.2 \cdot 10^{-8} \) | \(a_{27}= -0.75656711 \pm 1.8 \cdot 10^{-8} \) |
\(a_{28}= +0.01862974 \pm 2.0 \cdot 10^{-8} \) | \(a_{29}= -0.49018473 \pm 1.8 \cdot 10^{-8} \) | \(a_{30}= -1.96696554 \pm 1.4 \cdot 10^{-8} \) |
\(a_{31}= +1.19909892 \pm 1.9 \cdot 10^{-8} \) | \(a_{32}= +0.44952475 \pm 1.6 \cdot 10^{-8} \) | \(a_{33}= -0.35012790 \pm 2.9 \cdot 10^{-8} \) |
\(a_{34}= -0.48086063 \pm 2.3 \cdot 10^{-8} \) | \(a_{35}= +0.15652189 \pm 1.9 \cdot 10^{-8} \) | \(a_{36}= -0.08005015 \pm 2.2 \cdot 10^{-8} \) |
\(a_{37}= +0.26849749 \pm 1.9 \cdot 10^{-8} \) | \(a_{38}= +0.22341098 \pm 1.9 \cdot 10^{-8} \) | \(a_{39}= +0.80712192 \pm 1.1 \cdot 10^{-8} \) |
\(a_{40}= +2.08293652 \pm 1.8 \cdot 10^{-8} \) | \(a_{41}= -1.85859339 \pm 1.3 \cdot 10^{-8} \) | \(a_{42}= -0.08265693 \pm 1.7 \cdot 10^{-8} \) |
\(a_{43}= +0.20634587 \pm 1.9 \cdot 10^{-8} \) | \(a_{44}= +0.06925987 \pm 3.7 \cdot 10^{-8} \) | \(a_{45}= -0.67255904 \pm 2.1 \cdot 10^{-8} \) |
\(a_{46}= -1.12365507 \pm 2.6 \cdot 10^{-8} \) | \(a_{47}= +0.09776346 \pm 1.6 \cdot 10^{-8} \) | \(a_{48}= -0.83322055 \pm 2.0 \cdot 10^{-8} \) |
\(a_{49}= -0.99342255 \pm 1.7 \cdot 10^{-8} \) | \(a_{50}= +2.39137566 \pm 2.5 \cdot 10^{-8} \) | \(a_{51}= -0.63623107 \pm 1.9 \cdot 10^{-8} \) |
\(a_{52}= -0.15965925 \pm 1.6 \cdot 10^{-8} \) | \(a_{53}= +1.22319198 \pm 1.5 \cdot 10^{-8} \) | \(a_{54}= -0.66401038 \pm 1.5 \cdot 10^{-8} \) |
\(a_{55}= +0.58190211 \pm 3.0 \cdot 10^{-8} \) | \(a_{56}= +0.08753033 \pm 1.3 \cdot 10^{-8} \) | \(a_{57}= +0.29559710 \pm 1.2 \cdot 10^{-8} \) |
\(a_{58}= -0.43021663 \pm 1.8 \cdot 10^{-8} \) | \(a_{59}= +0.27735127 \pm 2.2 \cdot 10^{-8} \) | \(a_{60}= +0.51481044 \pm 1.2 \cdot 10^{-8} \) |
\(a_{61}= -0.85469413 \pm 1.6 \cdot 10^{-8} \) | \(a_{62}= +1.05240384 \pm 1.8 \cdot 10^{-8} \) | \(a_{63}= -0.02826265 \pm 1.5 \cdot 10^{-8} \) |
\(a_{64}= +1.11205567 \pm 2.1 \cdot 10^{-8} \) | \(a_{65}= -1.34141249 \pm 1.3 \cdot 10^{-8} \) | \(a_{66}= -0.30729404 \pm 5.3 \cdot 10^{-8} \) |
\(a_{67}= -0.73751036 \pm 2.3 \cdot 10^{-8} \) | \(a_{68}= +0.12585481 \pm 3.0 \cdot 10^{-8} \) | \(a_{69}= -1.48671824 \pm 2.2 \cdot 10^{-8} \) |
\(a_{70}= +0.13737335 \pm 1.7 \cdot 10^{-8} \) | \(a_{71}= -0.16042971 \pm 1.4 \cdot 10^{-8} \) | \(a_{72}= -0.37610915 \pm 2.2 \cdot 10^{-8} \) |
\(a_{73}= -1.08971078 \pm 1.9 \cdot 10^{-8} \) | \(a_{74}= +0.23565010 \pm 1.8 \cdot 10^{-8} \) | \(a_{75}= +3.16405089 \pm 1.2 \cdot 10^{-8} \) |
\(a_{76}= -0.05847296 \pm 1.9 \cdot 10^{-8} \) | \(a_{77}= +0.02445302 \pm 3.0 \cdot 10^{-8} \) | \(a_{78}= +0.70838043 \pm 1.5 \cdot 10^{-8} \) |
\(a_{79}= -0.09873729 \pm 1.5 \cdot 10^{-8} \) | \(a_{80}= +1.38478763 \pm 1.2 \cdot 10^{-8} \) | \(a_{81}= -1.22704322 \pm 2.1 \cdot 10^{-8} \) |
\(a_{82}= -1.63121723 \pm 1.3 \cdot 10^{-8} \) | \(a_{83}= +0.19133153 \pm 1.8 \cdot 10^{-8} \) | \(a_{84}= +0.02163365 \pm 1.5 \cdot 10^{-8} \) |
\(a_{85}= +1.05739700 \pm 1.5 \cdot 10^{-8} \) | \(a_{86}= +0.18110198 \pm 2.1 \cdot 10^{-8} \) | \(a_{87}= -0.56922353 \pm 1.3 \cdot 10^{-8} \) |
\(a_{88}= +0.32541189 \pm 3.3 \cdot 10^{-8} \) | \(a_{89}= -0.73465531 \pm 1.9 \cdot 10^{-8} \) | \(a_{90}= -0.59027967 \pm 2.5 \cdot 10^{-8} \) |
\(a_{91}= -0.05636959 \pm 1.8 \cdot 10^{-8} \) | \(a_{92}= +0.29409227 \pm 3.0 \cdot 10^{-8} \) | \(a_{93}= +1.39244509 \pm 1.9 \cdot 10^{-8} \) |
\(a_{94}= +0.08580330 \pm 1.6 \cdot 10^{-8} \) | \(a_{95}= -0.49127354 \pm 1.6 \cdot 10^{-8} \) | \(a_{96}= +0.52200741 \pm 1.7 \cdot 10^{-8} \) |
\(a_{97}= -0.68825941 \pm 1.7 \cdot 10^{-8} \) | \(a_{98}= -0.87188946 \pm 1.9 \cdot 10^{-8} \) | \(a_{99}= -0.10507219 \pm 3.2 \cdot 10^{-8} \) |
\(a_{100}= -0.62589056 \pm 2.8 \cdot 10^{-8} \) | \(a_{101}= +0.10606560 \pm 1.4 \cdot 10^{-8} \) | \(a_{102}= -0.55839598 \pm 2.8 \cdot 10^{-8} \) |
\(a_{103}= +1.38964379 \pm 2.1 \cdot 10^{-8} \) | \(a_{104}= -0.75014607 \pm 1 \cdot 10^{-8} \) | \(a_{105}= +0.18175993 \pm 1.4 \cdot 10^{-8} \) |
\(a_{106}= +1.07354941 \pm 1.9 \cdot 10^{-8} \) | \(a_{107}= -0.92961324 \pm 2.2 \cdot 10^{-8} \) | \(a_{108}= +0.17379027 \pm 1.4 \cdot 10^{-8} \) |
\(a_{109}= -1.50995089 \pm 1.3 \cdot 10^{-8} \) | \(a_{110}= +0.51071350 \pm 5.4 \cdot 10^{-8} \) | \(a_{111}= +0.31179079 \pm 1.1 \cdot 10^{-8} \) |
\(a_{112}= +0.05819233 \pm 1.7 \cdot 10^{-8} \) | \(a_{113}= -0.14090830 \pm 2.4 \cdot 10^{-8} \) | \(a_{114}= +0.25943441 \pm 1.4 \cdot 10^{-8} \) |
\(a_{115}= +2.47088126 \pm 1.3 \cdot 10^{-8} \) | \(a_{116}= +0.11259984 \pm 2.4 \cdot 10^{-8} \) | \(a_{117}= +0.24221454 \pm 1.5 \cdot 10^{-8} \) |
\(a_{118}= +0.24342074 \pm 2.7 \cdot 10^{-8} \) | \(a_{119}= +0.04443453 \pm 1.8 \cdot 10^{-8} \) | \(a_{120}= +2.41879522 \pm 1.4 \cdot 10^{-8} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= -0.75013276 \pm 2.2 \cdot 10^{-8} \) | \(a_{123}= -2.15827835 \pm 1.6 \cdot 10^{-8} \) |
\(a_{124}= -0.27544381 \pm 1.8 \cdot 10^{-8} \) | \(a_{125}= -3.32860700 \pm 1.8 \cdot 10^{-8} \) | \(a_{126}= -0.02480506 \pm 1.3 \cdot 10^{-8} \) |
\(a_{127}= -0.06332552 \pm 1.9 \cdot 10^{-8} \) | \(a_{128}= +0.52648452 \pm 2.0 \cdot 10^{-8} \) | \(a_{129}= +0.23961768 \pm 1.9 \cdot 10^{-8} \) |
\(a_{130}= -1.17730709 \pm 1.0 \cdot 10^{-8} \) | \(a_{131}= +0.57057499 \pm 2.2 \cdot 10^{-8} \) | \(a_{132}= +0.08042753 \pm 5.7 \cdot 10^{-8} \) |
\(a_{133}= -0.02064457 \pm 1.2 \cdot 10^{-8} \) | \(a_{134}= -0.64728499 \pm 2.6 \cdot 10^{-8} \) | \(a_{135}= +1.46013742 \pm 1.6 \cdot 10^{-8} \) |
\(a_{136}= +0.59131864 \pm 2.7 \cdot 10^{-8} \) | \(a_{137}= +0.34156790 \pm 1.8 \cdot 10^{-8} \) | \(a_{138}= -1.30483646 \pm 3.2 \cdot 10^{-8} \) |
\(a_{139}= +1.27252165 \pm 1.5 \cdot 10^{-8} \) | \(a_{140}= -0.03595449 \pm 1.9 \cdot 10^{-8} \) | \(a_{141}= +0.11352713 \pm 2.1 \cdot 10^{-8} \) |
\(a_{142}= -0.14080310 \pm 1.1 \cdot 10^{-8} \) | \(a_{143}= -0.20956547 \pm 2.6 \cdot 10^{-8} \) | \(a_{144}= -0.25004665 \pm 1.6 \cdot 10^{-8} \) |
\(a_{145}= +0.94603249 \pm 1.7 \cdot 10^{-8} \) | \(a_{146}= -0.95639800 \pm 2.1 \cdot 10^{-8} \) | \(a_{147}= -1.15360487 \pm 1.9 \cdot 10^{-8} \) |
\(a_{148}= -0.06167629 \pm 2.4 \cdot 10^{-8} \) | \(a_{149}= +1.67048055 \pm 1.4 \cdot 10^{-8} \) | \(a_{150}= +2.77696798 \pm 1.8 \cdot 10^{-8} \) |
\(a_{151}= +0.71860434 \pm 2.5 \cdot 10^{-8} \) | \(a_{152}= -0.27473049 \pm 1.5 \cdot 10^{-8} \) | \(a_{153}= -0.19093078 \pm 1.9 \cdot 10^{-8} \) |
\(a_{154}= +0.02146149 \pm 5.4 \cdot 10^{-8} \) | \(a_{155}= -2.31420210 \pm 1.8 \cdot 10^{-8} \) | \(a_{156}= -0.18540317 \pm 1.3 \cdot 10^{-8} \) |
\(a_{157}= -0.09509642 \pm 1.7 \cdot 10^{-8} \) | \(a_{158}= -0.08665799 \pm 1.5 \cdot 10^{-8} \) | \(a_{159}= +1.42042298 \pm 1.3 \cdot 10^{-8} \) |
\(a_{160}= -0.86756071 \pm 1.6 \cdot 10^{-8} \) | \(a_{161}= +0.10383277 \pm 1.4 \cdot 10^{-8} \) | \(a_{162}= -1.07692950 \pm 2.5 \cdot 10^{-8} \) |
\(a_{163}= -1.73636398 \pm 1.8 \cdot 10^{-8} \) | \(a_{164}= +0.42693562 \pm 1.1 \cdot 10^{-8} \) | \(a_{165}= +0.67572968 \pm 5.0 \cdot 10^{-8} \) |
\(a_{166}= +0.16792446 \pm 1.6 \cdot 10^{-8} \) | \(a_{167}= -0.03051976 \pm 2.4 \cdot 10^{-8} \) | \(a_{168}= +0.10164398 \pm 1.2 \cdot 10^{-8} \) |
\(a_{169}= -0.51690544 \pm 1.6 \cdot 10^{-8} \) | \(a_{170}= +0.92803742 \pm 1.6 \cdot 10^{-8} \) | \(a_{171}= +0.08870768 \pm 1.3 \cdot 10^{-8} \) |
\(a_{172}= -0.04739950 \pm 2.5 \cdot 10^{-8} \) | \(a_{173}= -0.76267203 \pm 1.9 \cdot 10^{-8} \) | \(a_{174}= -0.49958600 \pm 1.8 \cdot 10^{-8} \) |
\(a_{175}= -0.22097809 \pm 1.1 \cdot 10^{-8} \) | \(a_{176}= +0.21634186 \pm 3.0 \cdot 10^{-8} \) | \(a_{177}= +0.32207219 \pm 2.0 \cdot 10^{-8} \) |
\(a_{178}= -0.64477922 \pm 2.8 \cdot 10^{-8} \) | \(a_{179}= +1.16233336 \pm 2.1 \cdot 10^{-8} \) | \(a_{180}= +0.15449286 \pm 2.5 \cdot 10^{-8} \) |
\(a_{181}= -0.21232357 \pm 1.7 \cdot 10^{-8} \) | \(a_{182}= -0.04947346 \pm 1.4 \cdot 10^{-8} \) | \(a_{183}= -0.99250747 \pm 1 \cdot 10^{-8} \) |
\(a_{184}= +1.38176875 \pm 2.9 \cdot 10^{-8} \) | \(a_{185}= -0.51818698 \pm 1.9 \cdot 10^{-8} \) | \(a_{186}= +1.22209648 \pm 1.8 \cdot 10^{-8} \) |
\(a_{187}= +0.16519445 \pm 3.0 \cdot 10^{-8} \) | \(a_{188}= -0.02245715 \pm 1.8 \cdot 10^{-8} \) | \(a_{189}= +0.06135872 \pm 1.5 \cdot 10^{-8} \) |
\(a_{190}= -0.43117223 \pm 2.4 \cdot 10^{-8} \) | \(a_{191}= +0.33117243 \pm 1.9 \cdot 10^{-8} \) | \(a_{192}= +1.29136674 \pm 1.6 \cdot 10^{-8} \) |
\(a_{193}= +1.57829593 \pm 1.9 \cdot 10^{-8} \) | \(a_{194}= -0.60405929 \pm 2.5 \cdot 10^{-8} \) | \(a_{195}= -1.55770571 \pm 1.0 \cdot 10^{-8} \) |
\(a_{196}= +0.22819810 \pm 2.1 \cdot 10^{-8} \) | \(a_{197}= -0.11131643 \pm 1.4 \cdot 10^{-8} \) | \(a_{198}= -0.09221790 \pm 5.5 \cdot 10^{-8} \) |
\(a_{199}= -0.03630318 \pm 2.1 \cdot 10^{-8} \) | \(a_{200}= -2.94069617 \pm 2.2 \cdot 10^{-8} \) | \(a_{201}= -0.85642866 \pm 1.3 \cdot 10^{-8} \) |
\(a_{202}= +0.09308978 \pm 2.2 \cdot 10^{-8} \) | \(a_{203}= +0.03975471 \pm 1.9 \cdot 10^{-8} \) | \(a_{204}= +0.14614800 \pm 3.3 \cdot 10^{-8} \) |
\(a_{205}= +3.58699407 \pm 1.1 \cdot 10^{-8} \) | \(a_{206}= +1.21963787 \pm 1.7 \cdot 10^{-8} \) | \(a_{207}= -0.44615909 \pm 1.7 \cdot 10^{-8} \) |
\(a_{208}= -0.49871563 \pm 1.5 \cdot 10^{-8} \) | \(a_{209}= -0.07675042 \pm 2.5 \cdot 10^{-8} \) | \(a_{210}= +0.15952383 \pm 1.3 \cdot 10^{-8} \) |
\(a_{211}= -0.30257693 \pm 2.2 \cdot 10^{-8} \) | \(a_{212}= -0.28097820 \pm 1.9 \cdot 10^{-8} \) | \(a_{213}= -0.18629787 \pm 1.7 \cdot 10^{-8} \) |
\(a_{214}= -0.81588643 \pm 3.2 \cdot 10^{-8} \) | \(a_{215}= -0.39823742 \pm 1.8 \cdot 10^{-8} \) | \(a_{216}= +0.81653954 \pm 1.9 \cdot 10^{-8} \) |
\(a_{217}= -0.09724871 \pm 2.3 \cdot 10^{-8} \) | \(a_{218}= -1.32522688 \pm 1.5 \cdot 10^{-8} \) | \(a_{219}= -1.26541889 \pm 1.2 \cdot 10^{-8} \) |
\(a_{220}= -0.13366815 \pm 5.8 \cdot 10^{-8} \) | \(a_{221}= -0.38080959 \pm 1.5 \cdot 10^{-8} \) | \(a_{222}= +0.27364701 \pm 1.4 \cdot 10^{-8} \) |
\(a_{223}= -0.20795731 \pm 2.0 \cdot 10^{-8} \) | \(a_{224}= -0.03645713 \pm 1.6 \cdot 10^{-8} \) | \(a_{225}= +0.94952091 \pm 1.4 \cdot 10^{-8} \) |
\(a_{226}= -0.12366990 \pm 2.6 \cdot 10^{-8} \) | \(a_{227}= -1.56777262 \pm 1.6 \cdot 10^{-8} \) | \(a_{228}= -0.06790131 \pm 1.4 \cdot 10^{-8} \) |
\(a_{229}= +0.21255455 \pm 1.6 \cdot 10^{-8} \) | \(a_{230}= +2.16859917 \pm 1.4 \cdot 10^{-8} \) | \(a_{231}= +0.02839589 \pm 5.0 \cdot 10^{-8} \) |
\(a_{232}= +0.52904126 \pm 1.8 \cdot 10^{-8} \) | \(a_{233}= +1.00181181 \pm 2.3 \cdot 10^{-8} \) | \(a_{234}= +0.21258256 \pm 1.1 \cdot 10^{-8} \) |
\(a_{235}= -0.18867869 \pm 1.2 \cdot 10^{-8} \) | \(a_{236}= -0.06371008 \pm 3.2 \cdot 10^{-8} \) | \(a_{237}= -0.11465797 \pm 1.4 \cdot 10^{-8} \) |
\(a_{238}= +0.03899851 \pm 1.2 \cdot 10^{-8} \) | \(a_{239}= +1.49243235 \pm 1.8 \cdot 10^{-8} \) | \(a_{240}= +1.60807478 \pm 1.0 \cdot 10^{-8} \) |
\(a_{241}= +0.38117111 \pm 2.7 \cdot 10^{-8} \) | \(a_{242}= +0.07978748 \pm 3.4 \cdot 10^{-8} \) | \(a_{243}= -0.66832810 \pm 1.4 \cdot 10^{-8} \) |
\(a_{244}= +0.19633093 \pm 2.4 \cdot 10^{-8} \) | \(a_{245}= +1.91725679 \pm 1.8 \cdot 10^{-8} \) | \(a_{246}= -1.89423940 \pm 1.6 \cdot 10^{-8} \) |
\(a_{247}= +0.17692662 \pm 1 \cdot 10^{-8} \) | \(a_{248}= -1.29415047 \pm 1.3 \cdot 10^{-8} \) | \(a_{249}= +0.22218238 \pm 2.4 \cdot 10^{-8} \) |
\(a_{250}= -2.92139267 \pm 1.6 \cdot 10^{-8} \) | \(a_{251}= -1.33267336 \pm 2.2 \cdot 10^{-8} \) | \(a_{252}= +0.00649219 \pm 1.7 \cdot 10^{-8} \) |
\(a_{253}= +0.38601952 \pm 2.9 \cdot 10^{-8} \) | \(a_{254}= -0.05557842 \pm 2.2 \cdot 10^{-8} \) | \(a_{255}= +1.22789475 \pm 1.2 \cdot 10^{-8} \) |
\(a_{256}= -0.64998009 \pm 2.3 \cdot 10^{-8} \) | \(a_{257}= -0.36054479 \pm 1.6 \cdot 10^{-8} \) | \(a_{258}= +0.21030339 \pm 2.3 \cdot 10^{-8} \) |
\(a_{259}= -0.02177555 \pm 2.0 \cdot 10^{-8} \) | \(a_{260}= +0.30813452 \pm 1.3 \cdot 10^{-8} \) | \(a_{261}= -0.17082205 \pm 1.4 \cdot 10^{-8} \) |
\(a_{262}= +0.50077212 \pm 2.3 \cdot 10^{-8} \) | \(a_{263}= -0.34501825 \pm 2.5 \cdot 10^{-8} \) | \(a_{264}= +0.37788225 \pm 5.2 \cdot 10^{-8} \) |
\(a_{265}= -2.36070052 \pm 1.7 \cdot 10^{-8} \) | \(a_{266}= -0.01811896 \pm 1.5 \cdot 10^{-8} \) | \(a_{267}= -0.85311325 \pm 1.9 \cdot 10^{-8} \) |
\(a_{268}= +0.16941276 \pm 3.1 \cdot 10^{-8} \) | \(a_{269}= +0.35969504 \pm 1.8 \cdot 10^{-8} \) | \(a_{270}= +1.28150747 \pm 1.3 \cdot 10^{-8} \) |
\(a_{271}= +0.60204227 \pm 1.9 \cdot 10^{-8} \) | \(a_{272}= +0.39312323 \pm 2.4 \cdot 10^{-8} \) | \(a_{273}= -0.06545879 \pm 1.3 \cdot 10^{-8} \) |
\(a_{274}= +0.29978125 \pm 1.8 \cdot 10^{-8} \) | \(a_{275}= -0.82153118 \pm 2.7 \cdot 10^{-8} \) | \(a_{276}= +0.34151256 \pm 3.7 \cdot 10^{-8} \) |
\(a_{277}= +0.43669502 \pm 2.7 \cdot 10^{-8} \) | \(a_{278}= +1.11684420 \pm 1.9 \cdot 10^{-8} \) | \(a_{279}= +0.41786804 \pm 1.9 \cdot 10^{-8} \) |
\(a_{280}= -0.16892925 \pm 1.4 \cdot 10^{-8} \) | \(a_{281}= -0.99920264 \pm 2.2 \cdot 10^{-8} \) | \(a_{282}= +0.09963847 \pm 2.2 \cdot 10^{-8} \) |
\(a_{283}= +1.61755146 \pm 1.6 \cdot 10^{-8} \) | \(a_{284}= +0.03685215 \pm 1.4 \cdot 10^{-8} \) | \(a_{285}= -0.57048790 \pm 1.0 \cdot 10^{-8} \) |
\(a_{286}= -0.18392770 \pm 5.0 \cdot 10^{-8} \) | \(a_{287}= +0.15073469 \pm 1.3 \cdot 10^{-8} \) | \(a_{288}= +0.15665265 \pm 1.6 \cdot 10^{-8} \) |
\(a_{289}= -0.69981872 \pm 1.2 \cdot 10^{-8} \) | \(a_{290}= +0.83029699 \pm 1.6 \cdot 10^{-8} \) | \(a_{291}= -0.79923634 \pm 1.1 \cdot 10^{-8} \) |
\(a_{292}= +0.25031637 \pm 2.4 \cdot 10^{-8} \) | \(a_{293}= +0.69643341 \pm 1.9 \cdot 10^{-8} \) | \(a_{294}= -1.01247543 \pm 2.1 \cdot 10^{-8} \) |
\(a_{295}= -0.53527435 \pm 2.4 \cdot 10^{-8} \) | \(a_{296}= -0.28978105 \pm 1.4 \cdot 10^{-8} \) | \(a_{297}= +0.22811357 \pm 2.8 \cdot 10^{-8} \) |
\(a_{298}= +1.46611770 \pm 1.4 \cdot 10^{-8} \) | \(a_{299}= -0.88985998 \pm 1.1 \cdot 10^{-8} \) | \(a_{300}= -0.72681096 \pm 2.2 \cdot 10^{-8} \) |
\(a_{301}= -0.01673496 \pm 2.0 \cdot 10^{-8} \) | \(a_{302}= +0.63069189 \pm 3.1 \cdot 10^{-8} \) | \(a_{303}= +0.12316793 \pm 1.7 \cdot 10^{-8} \) |
\(a_{304}= -0.18264761 \pm 1.2 \cdot 10^{-8} \) | \(a_{305}= +1.64951774 \pm 2.2 \cdot 10^{-8} \) | \(a_{306}= -0.16757273 \pm 1.9 \cdot 10^{-8} \) |
\(a_{307}= -0.17736970 \pm 2.2 \cdot 10^{-8} \) | \(a_{308}= -0.00561708 \pm 5.8 \cdot 10^{-8} \) | \(a_{309}= +1.61371396 \pm 2.1 \cdot 10^{-8} \) |
\(a_{310}= -2.03108780 \pm 1.8 \cdot 10^{-8} \) | \(a_{311}= +0.49192202 \pm 2.3 \cdot 10^{-8} \) | \(a_{312}= -0.87110179 \pm 1 \cdot 10^{-8} \) |
\(a_{313}= -0.71398841 \pm 1.8 \cdot 10^{-8} \) | \(a_{314}= -0.08346254 \pm 1.7 \cdot 10^{-8} \) | \(a_{315}= +0.05454554 \pm 1.4 \cdot 10^{-8} \) |
\(a_{316}= +0.02268084 \pm 1.8 \cdot 10^{-8} \) | \(a_{317}= -1.27558237 \pm 2.2 \cdot 10^{-8} \) | \(a_{318}= +1.24665161 \pm 1.4 \cdot 10^{-8} \) |
\(a_{319}= +0.14779626 \pm 2.8 \cdot 10^{-8} \) | \(a_{320}= -2.14621291 \pm 2.5 \cdot 10^{-8} \) | \(a_{321}= -1.07950676 \pm 2.2 \cdot 10^{-8} \) |
\(a_{322}= +0.09113010 \pm 1.6 \cdot 10^{-8} \) | \(a_{323}= -0.13946618 \pm 1.1 \cdot 10^{-8} \) | \(a_{324}= +0.28186287 \pm 2.9 \cdot 10^{-8} \) |
\(a_{325}= +1.89381027 \pm 1 \cdot 10^{-8} \) | \(a_{326}= -1.52394110 \pm 2.5 \cdot 10^{-8} \) | \(a_{327}= -1.75341974 \pm 1.4 \cdot 10^{-8} \) |
\(a_{328}= +2.00592250 \pm 1 \cdot 10^{-8} \) | \(a_{329}= -0.00792876 \pm 1.1 \cdot 10^{-8} \) | \(a_{330}= +0.59306242 \pm 7.3 \cdot 10^{-8} \) |
\(a_{331}= +1.39265251 \pm 1.4 \cdot 10^{-8} \) | \(a_{332}= -0.04395057 \pm 1.9 \cdot 10^{-8} \) | \(a_{333}= +0.09356736 \pm 1.9 \cdot 10^{-8} \) |
\(a_{334}= -0.02678604 \pm 2.5 \cdot 10^{-8} \) | \(a_{335}= +1.42335882 \pm 2.4 \cdot 10^{-8} \) | \(a_{336}= +0.06757543 \pm 1.3 \cdot 10^{-8} \) |
\(a_{337}= -0.51758056 \pm 2.0 \cdot 10^{-8} \) | \(a_{338}= -0.45366838 \pm 2.1 \cdot 10^{-8} \) | \(a_{339}= -0.16362876 \pm 2.0 \cdot 10^{-8} \) |
\(a_{340}= -0.24289361 \pm 1.9 \cdot 10^{-8} \) | \(a_{341}= -0.36154193 \pm 3.0 \cdot 10^{-8} \) | \(a_{342}= +0.07785538 \pm 1.8 \cdot 10^{-8} \) |
\(a_{343}= +0.16166953 \pm 1.7 \cdot 10^{-8} \) | \(a_{344}= -0.22270274 \pm 2.3 \cdot 10^{-8} \) | \(a_{345}= +2.86929328 \pm 1.4 \cdot 10^{-8} \) |
\(a_{346}= -0.66936844 \pm 2.4 \cdot 10^{-8} \) | \(a_{347}= -1.67637354 \pm 1.6 \cdot 10^{-8} \) | \(a_{348}= +0.13075577 \pm 2.2 \cdot 10^{-8} \) |
\(a_{349}= -0.12904458 \pm 1.9 \cdot 10^{-8} \) | \(a_{350}= -0.19394412 \pm 1.3 \cdot 10^{-8} \) | \(a_{351}= -0.52585200 \pm 1 \cdot 10^{-8} \) |
\(a_{352}= -0.13553681 \pm 2.7 \cdot 10^{-8} \) | \(a_{353}= +0.32482932 \pm 2.0 \cdot 10^{-8} \) | \(a_{354}= +0.28267060 \pm 2.4 \cdot 10^{-8} \) |
\(a_{355}= +0.30962148 \pm 1.4 \cdot 10^{-8} \) | \(a_{356}= +0.16875694 \pm 3.5 \cdot 10^{-8} \) | \(a_{357}= +0.05159929 \pm 1.2 \cdot 10^{-8} \) |
\(a_{358}= +1.02013610 \pm 3.1 \cdot 10^{-8} \) | \(a_{359}= +0.88563735 \pm 2.0 \cdot 10^{-8} \) | \(a_{360}= +0.72587222 \pm 2.1 \cdot 10^{-8} \) |
\(a_{361}= -0.93520310 \pm 1.7 \cdot 10^{-8} \) | \(a_{362}= -0.18634838 \pm 1.1 \cdot 10^{-8} \) | \(a_{363}= +0.10556754 \pm 2.9 \cdot 10^{-8} \) |
\(a_{364}= +0.01294860 \pm 1.8 \cdot 10^{-8} \) | \(a_{365}= +2.10308835 \pm 2.3 \cdot 10^{-8} \) | \(a_{366}= -0.87108633 \pm 1 \cdot 10^{-8} \) |
\(a_{367}= -0.66149442 \pm 2.0 \cdot 10^{-8} \) | \(a_{368}= +0.91863398 \pm 2.4 \cdot 10^{-8} \) | \(a_{369}= -0.64769199 \pm 1.7 \cdot 10^{-8} \) |
\(a_{370}= -0.45479314 \pm 2.4 \cdot 10^{-8} \) | \(a_{371}= -0.09920269 \pm 1.7 \cdot 10^{-8} \) | \(a_{372}= -0.31985717 \pm 1.4 \cdot 10^{-8} \) |
\(a_{373}= -1.11962222 \pm 1.3 \cdot 10^{-8} \) | \(a_{374}= +0.14498493 \pm 5.4 \cdot 10^{-8} \) | \(a_{375}= -3.86532120 \pm 1.7 \cdot 10^{-8} \) |
\(a_{376}= -0.10551309 \pm 1.9 \cdot 10^{-8} \) | \(a_{377}= -0.34070292 \pm 1.6 \cdot 10^{-8} \) | \(a_{378}= +0.05385223 \pm 1.1 \cdot 10^{-8} \) |
\(a_{379}= +0.54205783 \pm 1.7 \cdot 10^{-8} \) | \(a_{380}= +0.11284995 \pm 2.4 \cdot 10^{-8} \) | \(a_{381}= -0.07353631 \pm 1.5 \cdot 10^{-8} \) |
\(a_{382}= +0.29065754 \pm 1.6 \cdot 10^{-8} \) | \(a_{383}= -0.69595279 \pm 2.0 \cdot 10^{-8} \) | \(a_{384}= +0.61137641 \pm 1.4 \cdot 10^{-8} \) |
\(a_{385}= -0.04719313 \pm 5.0 \cdot 10^{-8} \) | \(a_{386}= +1.38521073 \pm 2.6 \cdot 10^{-8} \) | \(a_{387}= +0.07190845 \pm 1.9 \cdot 10^{-8} \) |
\(a_{388}= +0.15809938 \pm 2.7 \cdot 10^{-8} \) | \(a_{389}= -1.04782066 \pm 1.9 \cdot 10^{-8} \) | \(a_{390}= -1.36713948 \pm 1.2 \cdot 10^{-8} \) |
\(a_{391}= +0.70145111 \pm 2.0 \cdot 10^{-8} \) | \(a_{392}= +1.07217031 \pm 2.1 \cdot 10^{-8} \) | \(a_{393}= +0.66257615 \pm 2.6 \cdot 10^{-8} \) |
\(a_{394}= -0.09769823 \pm 2.1 \cdot 10^{-8} \) | \(a_{395}= +0.19055812 \pm 1.3 \cdot 10^{-8} \) | \(a_{396}= +0.02413603 \pm 5.9 \cdot 10^{-8} \) |
\(a_{397}= +1.03672624 \pm 2.4 \cdot 10^{-8} \) | \(a_{398}= -0.03186193 \pm 2.3 \cdot 10^{-8} \) | \(a_{399}= -0.02397336 \pm 1.1 \cdot 10^{-8} \) |
\(a_{400}= -1.95504742 \pm 1.5 \cdot 10^{-8} \) | \(a_{401}= -1.31639867 \pm 1.6 \cdot 10^{-8} \) | \(a_{402}= -0.75165509 \pm 1.8 \cdot 10^{-8} \) |
\(a_{403}= +0.83343376 \pm 1.3 \cdot 10^{-8} \) | \(a_{404}= -0.02436422 \pm 2.4 \cdot 10^{-8} \) | \(a_{405}= +2.36813322 \pm 1.9 \cdot 10^{-8} \) |
\(a_{406}= +0.03489121 \pm 1.1 \cdot 10^{-8} \) | \(a_{407}= -0.08095504 \pm 3.0 \cdot 10^{-8} \) | \(a_{408}= +0.68666456 \pm 3.4 \cdot 10^{-8} \) |
\(a_{409}= +1.06172118 \pm 2.0 \cdot 10^{-8} \) | \(a_{410}= +3.14816924 \pm 1.1 \cdot 10^{-8} \) | \(a_{411}= +0.39664329 \pm 1.9 \cdot 10^{-8} \) |
\(a_{412}= -0.31921368 \pm 2.1 \cdot 10^{-8} \) | \(a_{413}= -0.02249360 \pm 1.9 \cdot 10^{-8} \) | \(a_{414}= -0.39157698 \pm 2.0 \cdot 10^{-8} \) |
\(a_{415}= -0.36926047 \pm 1.5 \cdot 10^{-8} \) | \(a_{416}= +0.31244219 \pm 1.1 \cdot 10^{-8} \) | \(a_{417}= +1.47770671 \pm 1.4 \cdot 10^{-8} \) |
\(a_{418}= -0.06736094 \pm 4.8 \cdot 10^{-8} \) | \(a_{419}= -1.01075172 \pm 1.9 \cdot 10^{-8} \) | \(a_{420}= -0.04175189 \pm 1.3 \cdot 10^{-8} \) |
\(a_{421}= -1.06166564 \pm 1.3 \cdot 10^{-8} \) | \(a_{422}= -0.26556035 \pm 2.3 \cdot 10^{-8} \) | \(a_{423}= +0.03406910 \pm 2.4 \cdot 10^{-8} \) |
\(a_{424}= -1.32015336 \pm 1.6 \cdot 10^{-8} \) | \(a_{425}= -1.49283633 \pm 1.5 \cdot 10^{-8} \) | \(a_{426}= -0.16350660 \pm 1.6 \cdot 10^{-8} \) |
\(a_{427}= +0.06931696 \pm 1.4 \cdot 10^{-8} \) | \(a_{428}= +0.21354052 \pm 3.6 \cdot 10^{-8} \) | \(a_{429}= -0.24335641 \pm 4.5 \cdot 10^{-8} \) |
\(a_{430}= -0.34951794 \pm 2.0 \cdot 10^{-8} \) | \(a_{431}= -1.88506257 \pm 2.5 \cdot 10^{-8} \) | \(a_{432}= +0.54285565 \pm 1.3 \cdot 10^{-8} \) |
\(a_{433}= -0.44284390 \pm 2.3 \cdot 10^{-8} \) | \(a_{434}= -0.08535152 \pm 1.9 \cdot 10^{-8} \) | \(a_{435}= +1.09857350 \pm 1.1 \cdot 10^{-8} \) |
\(a_{436}= +0.34684931 \pm 1.4 \cdot 10^{-8} \) | \(a_{437}= -0.32589876 \pm 1.4 \cdot 10^{-8} \) | \(a_{438}= -1.11061037 \pm 1 \cdot 10^{-8} \) |
\(a_{439}= -0.09334017 \pm 2.4 \cdot 10^{-8} \) | \(a_{440}= -0.62802899 \pm 5.3 \cdot 10^{-8} \) | \(a_{441}= -0.34619290 \pm 1.7 \cdot 10^{-8} \) |
\(a_{442}= -0.33422220 \pm 1 \cdot 10^{-8} \) | \(a_{443}= +0.21865787 \pm 2.5 \cdot 10^{-8} \) | \(a_{444}= -0.07162115 \pm 1.3 \cdot 10^{-8} \) |
\(a_{445}= +1.41784872 \pm 1.3 \cdot 10^{-8} \) | \(a_{446}= -0.18251627 \pm 2.1 \cdot 10^{-8} \) | \(a_{447}= +1.93983366 \pm 1 \cdot 10^{-8} \) |
\(a_{448}= -0.09018937 \pm 1.8 \cdot 10^{-8} \) | \(a_{449}= +1.14436916 \pm 1.4 \cdot 10^{-8} \) | \(a_{450}= +0.83335865 \pm 2.2 \cdot 10^{-8} \) |
\(a_{451}= +0.56038699 \pm 2.3 \cdot 10^{-8} \) | \(a_{452}= +0.03236790 \pm 3.6 \cdot 10^{-8} \) | \(a_{453}= +0.83447418 \pm 2.5 \cdot 10^{-8} \) |
\(a_{454}= -1.37597482 \pm 2.5 \cdot 10^{-8} \) | \(a_{455}= +0.10879055 \pm 1.5 \cdot 10^{-8} \) | \(a_{456}= -0.31902883 \pm 1.4 \cdot 10^{-8} \) |
\(a_{457}= -1.76625199 \pm 1.6 \cdot 10^{-8} \) | \(a_{458}= +0.18655110 \pm 2.3 \cdot 10^{-8} \) | \(a_{459}= +0.41451406 \pm 1.6 \cdot 10^{-8} \) |
\(a_{460}= -0.56758366 \pm 1.4 \cdot 10^{-8} \) | \(a_{461}= -1.47863222 \pm 1.2 \cdot 10^{-8} \) | \(a_{462}= +0.02492200 \pm 7.3 \cdot 10^{-8} \) |
\(a_{463}= +1.14733135 \pm 1.5 \cdot 10^{-8} \) | \(a_{464}= +0.35171969 \pm 1.9 \cdot 10^{-8} \) | \(a_{465}= -2.68735073 \pm 1.6 \cdot 10^{-8} \) |
\(a_{466}= +0.87925239 \pm 1.7 \cdot 10^{-8} \) | \(a_{467}= +1.04505339 \pm 2.0 \cdot 10^{-8} \) | \(a_{468}= -0.05563886 \pm 1.5 \cdot 10^{-8} \) |
\(a_{469}= +0.05981319 \pm 2.1 \cdot 10^{-8} \) | \(a_{470}= -0.16559616 \pm 1 \cdot 10^{-8} \) | \(a_{471}= -0.11043004 \pm 1.5 \cdot 10^{-8} \) |
\(a_{472}= -0.29933667 \pm 2.7 \cdot 10^{-8} \) | \(a_{473}= -0.06221562 \pm 2.9 \cdot 10^{-8} \) | \(a_{474}= -0.10063097 \pm 1.7 \cdot 10^{-8} \) |
\(a_{475}= +0.69358148 \pm 1.4 \cdot 10^{-8} \) | \(a_{476}= -0.01020701 \pm 1.8 \cdot 10^{-8} \) | \(a_{477}= +0.42626411 \pm 1.3 \cdot 10^{-8} \) |
\(a_{478}= +1.30985152 \pm 2.4 \cdot 10^{-8} \) | \(a_{479}= +0.87968747 \pm 2.4 \cdot 10^{-8} \) | \(a_{480}= -1.00744871 \pm 1.3 \cdot 10^{-8} \) |
\(a_{481}= +0.18661919 \pm 2.0 \cdot 10^{-8} \) | \(a_{482}= +0.33453949 \pm 2.6 \cdot 10^{-8} \) | \(a_{483}= +0.12057506 \pm 1.3 \cdot 10^{-8} \) |
\(a_{484}= -0.02088264 \pm 3.7 \cdot 10^{-8} \) | \(a_{485}= +1.32830690 \pm 2.1 \cdot 10^{-8} \) | \(a_{486}= -0.58656633 \pm 1.9 \cdot 10^{-8} \) |
\(a_{487}= +0.00777681 \pm 1.1 \cdot 10^{-8} \) | \(a_{488}= +0.92244500 \pm 1.6 \cdot 10^{-8} \) | \(a_{489}= -2.01634032 \pm 1.7 \cdot 10^{-8} \) |
\(a_{490}= +1.68270389 \pm 1.9 \cdot 10^{-8} \) | \(a_{491}= -0.80208285 \pm 2.5 \cdot 10^{-8} \) | \(a_{492}= +0.49577596 \pm 1.1 \cdot 10^{-8} \) |
\(a_{493}= +0.26856634 \pm 1.8 \cdot 10^{-8} \) | \(a_{494}= +0.15528181 \pm 1 \cdot 10^{-8} \) | \(a_{495}= +0.20278418 \pm 5.2 \cdot 10^{-8} \) |
\(a_{496}= -0.86038319 \pm 1.6 \cdot 10^{-8} \) | \(a_{497}= +0.01301109 \pm 1.6 \cdot 10^{-8} \) | \(a_{498}= +0.19500108 \pm 2.3 \cdot 10^{-8} \) |
\(a_{499}= -0.86408380 \pm 2.2 \cdot 10^{-8} \) | \(a_{500}= +0.76461098 \pm 1.9 \cdot 10^{-8} \) | \(a_{501}= -0.03544086 \pm 1.9 \cdot 10^{-8} \) |
\(a_{502}= -1.16963708 \pm 2.3 \cdot 10^{-8} \) | \(a_{503}= -1.13204259 \pm 2.5 \cdot 10^{-8} \) | \(a_{504}= +0.03050301 \pm 1 \cdot 10^{-8} \) |
\(a_{505}= -0.20470141 \pm 1.0 \cdot 10^{-8} \) | \(a_{506}= +0.33879475 \pm 5.2 \cdot 10^{-8} \) | \(a_{507}= -0.60025276 \pm 1.7 \cdot 10^{-8} \) |
\(a_{508}= +0.01454644 \pm 2.5 \cdot 10^{-8} \) | \(a_{509}= +1.70011835 \pm 2.0 \cdot 10^{-8} \) | \(a_{510}= +1.07767685 \pm 1.1 \cdot 10^{-8} \) |
\(a_{511}= +0.08837716 \pm 2.0 \cdot 10^{-8} \) | \(a_{512}= -1.09694750 \pm 2.2 \cdot 10^{-8} \) | \(a_{513}= -0.19258593 \pm 1.2 \cdot 10^{-8} \) |
\(a_{514}= -0.31643655 \pm 2.1 \cdot 10^{-8} \) | \(a_{515}= -2.68194435 \pm 1.9 \cdot 10^{-8} \) | \(a_{516}= -0.05504234 \pm 2.6 \cdot 10^{-8} \) |
\(a_{517}= -0.02947679 \pm 2.6 \cdot 10^{-8} \) | \(a_{518}= -0.01911157 \pm 1.4 \cdot 10^{-8} \) | \(a_{519}= -0.88564747 \pm 2.0 \cdot 10^{-8} \) |
\(a_{520}= +1.44774512 \pm 1 \cdot 10^{-8} \) | \(a_{521}= +0.18067196 \pm 2.3 \cdot 10^{-8} \) | \(a_{522}= -0.14992406 \pm 1.3 \cdot 10^{-8} \) |
\(a_{523}= +1.09326902 \pm 1.5 \cdot 10^{-8} \) | \(a_{524}= -0.13106621 \pm 2.9 \cdot 10^{-8} \) | \(a_{525}= -0.25660923 \pm 1 \cdot 10^{-8} \) |
\(a_{526}= -0.30280949 \pm 2.6 \cdot 10^{-8} \) | \(a_{527}= -0.65697193 \pm 1.5 \cdot 10^{-8} \) | \(a_{528}= +0.25122545 \pm 5.0 \cdot 10^{-8} \) |
\(a_{529}= +0.63912173 \pm 1.9 \cdot 10^{-8} \) | \(a_{530}= -2.07189770 \pm 2.4 \cdot 10^{-8} \) | \(a_{531}= +0.09665277 \pm 2.4 \cdot 10^{-8} \) |
\(a_{532}= +0.00474224 \pm 1.4 \cdot 10^{-8} \) | \(a_{533}= -1.29181541 \pm 1.0 \cdot 10^{-8} \) | \(a_{534}= -0.74874529 \pm 3.3 \cdot 10^{-8} \) |
\(a_{535}= +1.79410795 \pm 2.4 \cdot 10^{-8} \) | \(a_{536}= +0.79597218 \pm 2.0 \cdot 10^{-8} \) | \(a_{537}= +1.34975135 \pm 1.5 \cdot 10^{-8} \) |
\(a_{538}= +0.31569075 \pm 2.8 \cdot 10^{-8} \) | \(a_{539}= +0.29952817 \pm 2.8 \cdot 10^{-8} \) | \(a_{540}= -0.33540670 \pm 1.1 \cdot 10^{-8} \) |
\(a_{541}= -0.53660064 \pm 1.4 \cdot 10^{-8} \) | \(a_{542}= +0.52838976 \pm 1.6 \cdot 10^{-8} \) | \(a_{543}= -0.24655923 \pm 1.8 \cdot 10^{-8} \) |
\(a_{544}= -0.24628922 \pm 1.4 \cdot 10^{-8} \) | \(a_{545}= +2.91413116 \pm 1.4 \cdot 10^{-8} \) | \(a_{546}= -0.05745071 \pm 1.7 \cdot 10^{-8} \) |
\(a_{547}= +0.31942131 \pm 1.8 \cdot 10^{-8} \) | \(a_{548}= -0.07846122 \pm 2.0 \cdot 10^{-8} \) | \(a_{549}= -0.29784812 \pm 1.5 \cdot 10^{-8} \) |
\(a_{550}= -0.72102689 \pm 5.0 \cdot 10^{-8} \) | \(a_{551}= -0.12477767 \pm 1.1 \cdot 10^{-8} \) | \(a_{552}= +1.60456913 \pm 3.8 \cdot 10^{-8} \) |
\(a_{553}= +0.00800774 \pm 1.8 \cdot 10^{-8} \) | \(a_{554}= +0.38327073 \pm 2.8 \cdot 10^{-8} \) | \(a_{555}= -0.60174094 \pm 1 \cdot 10^{-8} \) |
\(a_{556}= -0.29230967 \pm 2.1 \cdot 10^{-8} \) | \(a_{557}= -1.58408701 \pm 1.6 \cdot 10^{-8} \) | \(a_{558}= +0.36674700 \pm 1.7 \cdot 10^{-8} \) |
\(a_{559}= +0.14342071 \pm 1.1 \cdot 10^{-8} \) | \(a_{560}= -0.11230834 \pm 1.2 \cdot 10^{-8} \) | \(a_{561}= +0.19183088 \pm 4.9 \cdot 10^{-8} \) |
\(a_{562}= -0.87696243 \pm 2.8 \cdot 10^{-8} \) | \(a_{563}= +1.47116360 \pm 2.0 \cdot 10^{-8} \) | \(a_{564}= -0.02607820 \pm 2.1 \cdot 10^{-8} \) |
\(a_{565}= +0.27194611 \pm 1.8 \cdot 10^{-8} \) | \(a_{566}= +1.41966384 \pm 1.7 \cdot 10^{-8} \) | \(a_{567}= +0.09951503 \pm 1.6 \cdot 10^{-8} \) |
\(a_{568}= +0.17314684 \pm 1.4 \cdot 10^{-8} \) | \(a_{569}= +1.14947800 \pm 1.9 \cdot 10^{-8} \) | \(a_{570}= -0.50069569 \pm 1 \cdot 10^{-8} \) |
\(a_{571}= -0.51458243 \pm 1.8 \cdot 10^{-8} \) | \(a_{572}= +0.04813907 \pm 5.3 \cdot 10^{-8} \) | \(a_{573}= +0.38457163 \pm 2.1 \cdot 10^{-8} \) |
\(a_{574}= +0.13229414 \pm 1.4 \cdot 10^{-8} \) | \(a_{575}= -3.48839774 \pm 1.4 \cdot 10^{-8} \) | \(a_{576}= +0.38753477 \pm 2.4 \cdot 10^{-8} \) |
\(a_{577}= -1.69173182 \pm 1.6 \cdot 10^{-8} \) | \(a_{578}= -0.61420446 \pm 1.8 \cdot 10^{-8} \) | \(a_{579}= +1.83278492 \pm 1.5 \cdot 10^{-8} \) |
\(a_{580}= -0.21731217 \pm 2.0 \cdot 10^{-8} \) | \(a_{581}= -0.01551727 \pm 1.7 \cdot 10^{-8} \) | \(a_{582}= -0.70145955 \pm 1.7 \cdot 10^{-8} \) |
\(a_{583}= -0.36880626 \pm 2.5 \cdot 10^{-8} \) | \(a_{584}= +1.17609123 \pm 1.7 \cdot 10^{-8} \) | \(a_{585}= -0.46746219 \pm 1.2 \cdot 10^{-8} \) |
\(a_{586}= +0.61123330 \pm 2.3 \cdot 10^{-8} \) | \(a_{587}= -1.17195723 \pm 1.6 \cdot 10^{-8} \) | \(a_{588}= +0.26499342 \pm 2.2 \cdot 10^{-8} \) |
\(a_{589}= +0.30523344 \pm 1.6 \cdot 10^{-8} \) | \(a_{590}= -0.46979008 \pm 3.3 \cdot 10^{-8} \) | \(a_{591}= -0.12926542 \pm 1.8 \cdot 10^{-8} \) |
\(a_{592}= -0.19265360 \pm 1.8 \cdot 10^{-8} \) | \(a_{593}= +0.28181704 \pm 2.3 \cdot 10^{-8} \) | \(a_{594}= +0.20020666 \pm 5.2 \cdot 10^{-8} \) |
\(a_{595}= -0.08575647 \pm 1.5 \cdot 10^{-8} \) | \(a_{596}= -0.38372441 \pm 1.8 \cdot 10^{-8} \) | \(a_{597}= -0.04215681 \pm 1.9 \cdot 10^{-8} \) |
\(a_{598}= -0.78099650 \pm 1.4 \cdot 10^{-8} \) | \(a_{599}= +1.17278102 \pm 2.0 \cdot 10^{-8} \) | \(a_{600}= -3.41486251 \pm 2.2 \cdot 10^{-8} \) |
\(a_{601}= +0.27770577 \pm 1.8 \cdot 10^{-8} \) | \(a_{602}= -0.01468764 \pm 1.4 \cdot 10^{-8} \) | \(a_{603}= -0.25701133 \pm 2.1 \cdot 10^{-8} \) |
\(a_{604}= -0.16506988 \pm 3.8 \cdot 10^{-8} \) | \(a_{605}= -0.17545009 \pm 3.0 \cdot 10^{-8} \) | \(a_{606}= +0.10809984 \pm 2.7 \cdot 10^{-8} \) |
\(a_{607}= -0.01168584 \pm 2.0 \cdot 10^{-8} \) | \(a_{608}= +0.11442758 \pm 1.4 \cdot 10^{-8} \) | \(a_{609}= +0.04616487 \pm 1.2 \cdot 10^{-8} \) |
\(a_{610}= +1.44771943 \pm 3.4 \cdot 10^{-8} \) | \(a_{611}= +0.06795050 \pm 1.1 \cdot 10^{-8} \) | \(a_{612}= +0.04385852 \pm 2.2 \cdot 10^{-8} \) |
\(a_{613}= -1.78479073 \pm 1.6 \cdot 10^{-8} \) | \(a_{614}= -0.15567068 \pm 2.5 \cdot 10^{-8} \) | \(a_{615}= +4.16537135 \pm 1.4 \cdot 10^{-8} \) |
\(a_{616}= -0.02639139 \pm 5.3 \cdot 10^{-8} \) | \(a_{617}= -1.45328312 \pm 2.2 \cdot 10^{-8} \) | \(a_{618}= +1.41629581 \pm 2.1 \cdot 10^{-8} \) |
\(a_{619}= +0.73814997 \pm 1.6 \cdot 10^{-8} \) | \(a_{620}= +0.53159305 \pm 1.8 \cdot 10^{-8} \) | \(a_{621}= +0.96861917 \pm 1.7 \cdot 10^{-8} \) |
\(a_{622}= +0.43174138 \pm 2.6 \cdot 10^{-8} \) | \(a_{623}= +0.05958164 \pm 1.5 \cdot 10^{-8} \) | \(a_{624}= -0.57912998 \pm 1 \cdot 10^{-8} \) |
\(a_{625}= +3.69933758 \pm 1.4 \cdot 10^{-8} \) | \(a_{626}= -0.62664067 \pm 2.4 \cdot 10^{-8} \) | \(a_{627}= -0.08912588 \pm 4.4 \cdot 10^{-8} \) |
\(a_{628}= +0.02184450 \pm 1.8 \cdot 10^{-8} \) | \(a_{629}= -0.14710656 \pm 1.9 \cdot 10^{-8} \) | \(a_{630}= +0.04787256 \pm 1.5 \cdot 10^{-8} \) |
\(a_{631}= -1.35319279 \pm 2.1 \cdot 10^{-8} \) | \(a_{632}= +0.10656411 \pm 1.6 \cdot 10^{-8} \) | \(a_{633}= -0.35136531 \pm 2.2 \cdot 10^{-8} \) |
\(a_{634}= -1.11953047 \pm 3.2 \cdot 10^{-8} \) | \(a_{635}= +0.12221515 \pm 2.1 \cdot 10^{-8} \) | \(a_{636}= -0.32628394 \pm 1.3 \cdot 10^{-8} \) |
\(a_{637}= -0.69047838 \pm 1.0 \cdot 10^{-8} \) | \(a_{638}= +0.12971519 \pm 5.2 \cdot 10^{-8} \) | \(a_{639}= -0.05590736 \pm 1.7 \cdot 10^{-8} \) |
\(a_{640}= -1.01608931 \pm 2.4 \cdot 10^{-8} \) | \(a_{641}= +0.42433352 \pm 2.2 \cdot 10^{-8} \) | \(a_{642}= -0.94744232 \pm 3.0 \cdot 10^{-8} \) |
\(a_{643}= -1.32441129 \pm 1.8 \cdot 10^{-8} \) | \(a_{644}= -0.02385132 \pm 1.6 \cdot 10^{-8} \) | \(a_{645}= -0.46245037 \pm 1.5 \cdot 10^{-8} \) |
\(a_{646}= -0.12240420 \pm 1.5 \cdot 10^{-8} \) | \(a_{647}= +0.60244852 \pm 2.3 \cdot 10^{-8} \) | \(a_{648}= +1.32430989 \pm 2.6 \cdot 10^{-8} \) |
\(a_{649}= -0.08362455 \pm 3.2 \cdot 10^{-8} \) | \(a_{650}= +1.66212576 \pm 1 \cdot 10^{-8} \) | \(a_{651}= -0.11292937 \pm 1.9 \cdot 10^{-8} \) |
\(a_{652}= +0.39885843 \pm 2.5 \cdot 10^{-8} \) | \(a_{653}= +1.48031019 \pm 1.7 \cdot 10^{-8} \) | \(a_{654}= -1.53891029 \pm 1.6 \cdot 10^{-8} \) |
\(a_{655}= -1.10118174 \pm 1.7 \cdot 10^{-8} \) | \(a_{656}= +1.33358681 \pm 1.0 \cdot 10^{-8} \) | \(a_{657}= -0.37974791 \pm 1.6 \cdot 10^{-8} \) |
\(a_{658}= -0.00695878 \pm 1.0 \cdot 10^{-8} \) | \(a_{659}= -1.62666675 \pm 1.9 \cdot 10^{-8} \) | \(a_{660}= -0.15522119 \pm 7.7 \cdot 10^{-8} \) |
\(a_{661}= -0.77854555 \pm 2.2 \cdot 10^{-8} \) | \(a_{662}= +1.22227852 \pm 1.7 \cdot 10^{-8} \) | \(a_{663}= -0.44221243 \pm 1 \cdot 10^{-8} \) |
\(a_{664}= -0.20649822 \pm 2.0 \cdot 10^{-8} \) | \(a_{665}= +0.03984301 \pm 1.2 \cdot 10^{-8} \) | \(a_{666}= +0.08212054 \pm 1.7 \cdot 10^{-8} \) |
\(a_{667}= +0.62757464 \pm 1.7 \cdot 10^{-8} \) | \(a_{668}= +0.00701066 \pm 3.3 \cdot 10^{-8} \) | \(a_{669}= -0.24148894 \pm 2.2 \cdot 10^{-8} \) |
\(a_{670}= +1.24922828 \pm 3.4 \cdot 10^{-8} \) | \(a_{671}= +0.25769998 \pm 2.7 \cdot 10^{-8} \) | \(a_{672}= -0.04233558 \pm 1.6 \cdot 10^{-8} \) |
\(a_{673}= +1.10822574 \pm 1.5 \cdot 10^{-8} \) | \(a_{674}= -0.45426091 \pm 1.5 \cdot 10^{-8} \) | \(a_{675}= -2.06142648 \pm 1 \cdot 10^{-8} \) |
\(a_{676}= +0.11873783 \pm 2.4 \cdot 10^{-8} \) | \(a_{677}= +0.95454053 \pm 2.2 \cdot 10^{-8} \) | \(a_{678}= -0.14361079 \pm 3.1 \cdot 10^{-8} \) |
\(a_{679}= +0.05581886 \pm 1.3 \cdot 10^{-8} \) | \(a_{680}= -1.14121597 \pm 1.4 \cdot 10^{-8} \) | \(a_{681}= -1.82056480 \pm 1.7 \cdot 10^{-8} \) |
\(a_{682}= -0.31731170 \pm 5.3 \cdot 10^{-8} \) | \(a_{683}= +0.40906518 \pm 1.6 \cdot 10^{-8} \) | \(a_{684}= -0.02037695 \pm 1.7 \cdot 10^{-8} \) |
\(a_{685}= -0.65920929 \pm 1.9 \cdot 10^{-8} \) | \(a_{686}= +0.14189124 \pm 1.8 \cdot 10^{-8} \) | \(a_{687}= +0.24682746 \pm 1.0 \cdot 10^{-8} \) |
\(a_{688}= -0.14805828 \pm 1.8 \cdot 10^{-8} \) | \(a_{689}= +0.85017963 \pm 1.0 \cdot 10^{-8} \) | \(a_{690}= +2.51827036 \pm 1.4 \cdot 10^{-8} \) |
\(a_{691}= -0.78728466 \pm 2.0 \cdot 10^{-8} \) | \(a_{692}= +0.17519263 \pm 2.6 \cdot 10^{-8} \) | \(a_{693}= +0.00852151 \pm 5.2 \cdot 10^{-8} \) |
\(a_{694}= -1.47128976 \pm 2.0 \cdot 10^{-8} \) | \(a_{695}= -2.45590437 \pm 1.6 \cdot 10^{-8} \) | \(a_{696}= +0.61434540 \pm 2.1 \cdot 10^{-8} \) |
\(a_{697}= +1.01830105 \pm 1.1 \cdot 10^{-8} \) | \(a_{698}= -0.11325755 \pm 1.9 \cdot 10^{-8} \) | \(a_{699}= +1.16334683 \pm 2.5 \cdot 10^{-8} \) |
\(a_{700}= +0.05076065 \pm 1.4 \cdot 10^{-8} \) | \(a_{701}= +0.57058996 \pm 2.4 \cdot 10^{-8} \) | \(a_{702}= -0.46152045 \pm 1 \cdot 10^{-8} \) |
\(a_{703}= +0.06834666 \pm 1.2 \cdot 10^{-8} \) | \(a_{704}= -0.33529740 \pm 3.1 \cdot 10^{-8} \) | \(a_{705}= -0.21910179 \pm 1.7 \cdot 10^{-8} \) |
\(a_{706}= +0.28509043 \pm 1.7 \cdot 10^{-8} \) | \(a_{707}= -0.00860208 \pm 1.2 \cdot 10^{-8} \) | \(a_{708}= -0.07398288 \pm 2.7 \cdot 10^{-8} \) |
\(a_{709}= -0.58681585 \pm 1.6 \cdot 10^{-8} \) | \(a_{710}= +0.27174308 \pm 1 \cdot 10^{-8} \) | \(a_{711}= -0.03440847 \pm 1 \cdot 10^{-8} \) |
\(a_{712}= +0.79289081 \pm 3.1 \cdot 10^{-8} \) | \(a_{713}= -1.53518464 \pm 1.8 \cdot 10^{-8} \) | \(a_{714}= +0.04528674 \pm 1.2 \cdot 10^{-8} \) |
\(a_{715}= +0.40445108 \pm 4.6 \cdot 10^{-8} \) | \(a_{716}= -0.26699843 \pm 3.3 \cdot 10^{-8} \) | \(a_{717}= +1.73307645 \pm 1.4 \cdot 10^{-8} \) |
\(a_{718}= +0.77729046 \pm 2.4 \cdot 10^{-8} \) | \(a_{719}= +0.33647065 \pm 2.2 \cdot 10^{-8} \) | \(a_{720}= +0.48257777 \pm 1.1 \cdot 10^{-8} \) |
\(a_{721}= -0.11270218 \pm 2.2 \cdot 10^{-8} \) | \(a_{722}= -0.82079245 \pm 1.6 \cdot 10^{-8} \) | \(a_{723}= +0.44263224 \pm 2.8 \cdot 10^{-8} \) |
\(a_{724}= +0.04877263 \pm 1.4 \cdot 10^{-8} \) | \(a_{725}= -1.33561157 \pm 1.3 \cdot 10^{-8} \) | \(a_{726}= +0.09265264 \pm 5.3 \cdot 10^{-8} \) |
\(a_{727}= +1.26981811 \pm 2.2 \cdot 10^{-8} \) | \(a_{728}= +0.06083796 \pm 1 \cdot 10^{-8} \) | \(a_{729}= +0.45095197 \pm 1.7 \cdot 10^{-8} \) |
\(a_{730}= +1.84580123 \pm 3.1 \cdot 10^{-8} \) | \(a_{731}= -0.11305443 \pm 1.8 \cdot 10^{-8} \) | \(a_{732}= +0.22798790 \pm 1 \cdot 10^{-8} \) |
\(a_{733}= +0.78910295 \pm 2.6 \cdot 10^{-8} \) | \(a_{734}= -0.58056867 \pm 2.1 \cdot 10^{-8} \) | \(a_{735}= +2.22640081 \pm 1.6 \cdot 10^{-8} \) |
\(a_{736}= -0.57551839 \pm 1.7 \cdot 10^{-8} \) | \(a_{737}= +0.22236774 \pm 3.3 \cdot 10^{-8} \) | \(a_{738}= -0.56845480 \pm 1.5 \cdot 10^{-8} \) |
\(a_{739}= +1.23362784 \pm 2.4 \cdot 10^{-8} \) | \(a_{740}= +0.11903221 \pm 2.7 \cdot 10^{-8} \) | \(a_{741}= +0.20545477 \pm 1 \cdot 10^{-8} \) |
\(a_{742}= -0.08706645 \pm 1.6 \cdot 10^{-8} \) | \(a_{743}= +1.03390931 \pm 1.7 \cdot 10^{-8} \) | \(a_{744}= -1.50282303 \pm 1.7 \cdot 10^{-8} \) |
\(a_{745}= -3.22394553 \pm 1.6 \cdot 10^{-8} \) | \(a_{746}= -0.98265014 \pm 1.0 \cdot 10^{-8} \) | \(a_{747}= +0.06667618 \pm 2.8 \cdot 10^{-8} \) |
\(a_{748}= -0.03794665 \pm 5.7 \cdot 10^{-8} \) | \(a_{749}= +0.07539302 \pm 1.4 \cdot 10^{-8} \) | \(a_{750}= -3.39244645 \pm 1.7 \cdot 10^{-8} \) |
\(a_{751}= +0.16430258 \pm 2.1 \cdot 10^{-8} \) | \(a_{752}= -0.07014771 \pm 1.6 \cdot 10^{-8} \) | \(a_{753}= -1.54755745 \pm 2.2 \cdot 10^{-8} \) |
\(a_{754}= -0.29902209 \pm 1 \cdot 10^{-8} \) | \(a_{755}= -1.38687113 \pm 2.2 \cdot 10^{-8} \) | \(a_{756}= -0.01409465 \pm 1.2 \cdot 10^{-8} \) |
\(a_{757}= +1.06665265 \pm 1.7 \cdot 10^{-8} \) | \(a_{758}= +0.47574368 \pm 2.0 \cdot 10^{-8} \) | \(a_{759}= +0.44826242 \pm 4.8 \cdot 10^{-8} \) |
\(a_{760}= +0.53021637 \pm 1.6 \cdot 10^{-8} \) | \(a_{761}= -0.75284591 \pm 2.0 \cdot 10^{-8} \) | \(a_{762}= -0.06454004 \pm 1.7 \cdot 10^{-8} \) |
\(a_{763}= +0.12245926 \pm 1.6 \cdot 10^{-8} \) | \(a_{764}= -0.07607329 \pm 1.7 \cdot 10^{-8} \) | \(a_{765}= +0.36848704 \pm 1.7 \cdot 10^{-8} \) |
\(a_{766}= -0.61081149 \pm 2.9 \cdot 10^{-8} \) | \(a_{767}= +0.19277301 \pm 1.4 \cdot 10^{-8} \) | \(a_{768}= -0.75478475 \pm 2.3 \cdot 10^{-8} \) |
\(a_{769}= +1.09265789 \pm 1.7 \cdot 10^{-8} \) | \(a_{770}= -0.04141962 \pm 7.4 \cdot 10^{-8} \) | \(a_{771}= -0.41868007 \pm 1.0 \cdot 10^{-8} \) |
\(a_{772}= -0.36254878 \pm 3.0 \cdot 10^{-8} \) | \(a_{773}= -0.50637031 \pm 2.0 \cdot 10^{-8} \) | \(a_{774}= +0.06311133 \pm 2.0 \cdot 10^{-8} \) |
\(a_{775}= +3.26719763 \pm 1 \cdot 10^{-8} \) | \(a_{776}= +0.74281714 \pm 2.1 \cdot 10^{-8} \) | \(a_{777}= -0.02528670 \pm 1.2 \cdot 10^{-8} \) |
\(a_{778}= -0.91963262 \pm 1.2 \cdot 10^{-8} \) | \(a_{779}= -0.47310930 \pm 1.0 \cdot 10^{-8} \) | \(a_{780}= +0.35781902 \pm 1.1 \cdot 10^{-8} \) |
\(a_{781}= +0.04837138 \pm 2.5 \cdot 10^{-8} \) | \(a_{782}= +0.61563715 \pm 3.3 \cdot 10^{-8} \) | \(a_{783}= +0.37085765 \pm 1.1 \cdot 10^{-8} \) |
\(a_{784}= +0.71280529 \pm 1.5 \cdot 10^{-8} \) | \(a_{785}= +0.18353142 \pm 1.7 \cdot 10^{-8} \) | \(a_{786}= +0.58151806 \pm 3.1 \cdot 10^{-8} \) |
\(a_{787}= -0.94302690 \pm 2.6 \cdot 10^{-8} \) | \(a_{788}= +0.02557039 \pm 2.4 \cdot 10^{-8} \) | \(a_{789}= -0.40064998 \pm 2.3 \cdot 10^{-8} \) |
\(a_{790}= +0.16724567 \pm 1 \cdot 10^{-8} \) | \(a_{791}= +0.01142787 \pm 2.3 \cdot 10^{-8} \) | \(a_{792}= +0.11340118 \pm 5.5 \cdot 10^{-8} \) |
\(a_{793}= -0.59405519 \pm 1 \cdot 10^{-8} \) | \(a_{794}= +0.90989548 \pm 2.5 \cdot 10^{-8} \) | \(a_{795}= -2.74134668 \pm 1.1 \cdot 10^{-8} \) |
\(a_{796}= +0.00833917 \pm 2.3 \cdot 10^{-8} \) | \(a_{797}= +0.04494650 \pm 1.7 \cdot 10^{-8} \) | \(a_{798}= -0.02104052 \pm 1.3 \cdot 10^{-8} \) |
\(a_{799}= -0.05356343 \pm 1.6 \cdot 10^{-8} \) | \(a_{800}= +1.22482488 \pm 1.4 \cdot 10^{-8} \) | \(a_{801}= -0.25601639 \pm 1.6 \cdot 10^{-8} \) |
\(a_{802}= -1.15535340 \pm 2.1 \cdot 10^{-8} \) | \(a_{803}= +0.32856016 \pm 2.9 \cdot 10^{-8} \) | \(a_{804}= +0.19672937 \pm 1.9 \cdot 10^{-8} \) |
\(a_{805}= -0.20039214 \pm 1.3 \cdot 10^{-8} \) | \(a_{806}= +0.73147333 \pm 1.2 \cdot 10^{-8} \) | \(a_{807}= +0.41769331 \pm 1.7 \cdot 10^{-8} \) |
\(a_{808}= -0.11447333 \pm 2.3 \cdot 10^{-8} \) | \(a_{809}= -0.56405099 \pm 2.4 \cdot 10^{-8} \) | \(a_{810}= +2.07842110 \pm 2.3 \cdot 10^{-8} \) |
\(a_{811}= +0.86286400 \pm 1.9 \cdot 10^{-8} \) | \(a_{812}= -0.00913201 \pm 1.9 \cdot 10^{-8} \) | \(a_{813}= +0.69911730 \pm 2.6 \cdot 10^{-8} \) |
\(a_{814}= -0.07105118 \pm 5.4 \cdot 10^{-8} \) | \(a_{815}= +3.35109732 \pm 2.3 \cdot 10^{-8} \) | \(a_{816}= +0.45651155 \pm 2.6 \cdot 10^{-8} \) |
\(a_{817}= +0.05252583 \pm 1.2 \cdot 10^{-8} \) | \(a_{818}= +0.93183258 \pm 2.9 \cdot 10^{-8} \) | \(a_{819}= -0.01964396 \pm 1.6 \cdot 10^{-8} \) |
\(a_{820}= -0.82396481 \pm 1.0 \cdot 10^{-8} \) | \(a_{821}= -0.74384188 \pm 2.6 \cdot 10^{-8} \) | \(a_{822}= +0.34811884 \pm 1.7 \cdot 10^{-8} \) |
\(a_{823}= -1.53855798 \pm 1.7 \cdot 10^{-8} \) | \(a_{824}= -1.49979967 \pm 1.6 \cdot 10^{-8} \) | \(a_{825}= -0.95399724 \pm 4.6 \cdot 10^{-8} \) |
\(a_{826}= -0.01974178 \pm 1.4 \cdot 10^{-8} \) | \(a_{827}= -1.58202479 \pm 2.0 \cdot 10^{-8} \) | \(a_{828}= +0.10248676 \pm 2.0 \cdot 10^{-8} \) |
\(a_{829}= -0.15426109 \pm 1.4 \cdot 10^{-8} \) | \(a_{830}= -0.32408597 \pm 1.1 \cdot 10^{-8} \) | \(a_{831}= +0.50710898 \pm 2.6 \cdot 10^{-8} \) |
\(a_{832}= +0.77293434 \pm 1.6 \cdot 10^{-8} \) | \(a_{833}= +0.54428431 \pm 1.6 \cdot 10^{-8} \) | \(a_{834}= +1.29692738 \pm 1.8 \cdot 10^{-8} \) |
\(a_{835}= +0.05890165 \pm 2.0 \cdot 10^{-8} \) | \(a_{836}= +0.01763026 \pm 5.2 \cdot 10^{-8} \) | \(a_{837}= -0.90719881 \pm 2.2 \cdot 10^{-8} \) |
\(a_{838}= -0.88709862 \pm 1.9 \cdot 10^{-8} \) | \(a_{839}= -1.13920276 \pm 2.0 \cdot 10^{-8} \) | \(a_{840}= -0.19616789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{841}= -0.75971893 \pm 1.3 \cdot 10^{-8} \) | \(a_{842}= -0.93178384 \pm 1.5 \cdot 10^{-8} \) | \(a_{843}= -1.16031696 \pm 1.7 \cdot 10^{-8} \) |
\(a_{844}= +0.06950464 \pm 2.4 \cdot 10^{-8} \) | \(a_{845}= +0.99760214 \pm 1.6 \cdot 10^{-8} \) | \(a_{846}= +0.02990117 \pm 2.0 \cdot 10^{-8} \) |
\(a_{847}= -0.00737286 \pm 3.0 \cdot 10^{-8} \) | \(a_{848}= -0.87767055 \pm 1.1 \cdot 10^{-8} \) | \(a_{849}= +1.87837013 \pm 1.8 \cdot 10^{-8} \) |
\(a_{850}= -1.31020608 \pm 2.4 \cdot 10^{-8} \) | \(a_{851}= -0.34375247 \pm 1.0 \cdot 10^{-8} \) | \(a_{852}= +0.04279430 \pm 1.5 \cdot 10^{-8} \) |
\(a_{853}= +1.66260535 \pm 2.4 \cdot 10^{-8} \) | \(a_{854}= +0.06083688 \pm 1.4 \cdot 10^{-8} \) | \(a_{855}= -0.17120148 \pm 1.6 \cdot 10^{-8} \) |
\(a_{856}= +1.00330289 \pm 3.1 \cdot 10^{-8} \) | \(a_{857}= +0.93851363 \pm 1.9 \cdot 10^{-8} \) | \(a_{858}= -0.21358474 \pm 6.9 \cdot 10^{-8} \) |
\(a_{859}= -1.76444007 \pm 2.1 \cdot 10^{-8} \) | \(a_{860}= +0.09147872 \pm 2.1 \cdot 10^{-8} \) | \(a_{861}= +0.17503958 \pm 1.3 \cdot 10^{-8} \) |
\(a_{862}= -1.65444823 \pm 2.8 \cdot 10^{-8} \) | \(a_{863}= -0.56686866 \pm 1.9 \cdot 10^{-8} \) | \(a_{864}= -0.34009564 \pm 1.4 \cdot 10^{-8} \) |
\(a_{865}= +1.47191961 \pm 2.1 \cdot 10^{-8} \) | \(a_{866}= -0.38866736 \pm 2.8 \cdot 10^{-8} \) | \(a_{867}= -0.81265951 \pm 1.2 \cdot 10^{-8} \) |
\(a_{868}= +0.02233890 \pm 2.1 \cdot 10^{-8} \) | \(a_{869}= +0.02977041 \pm 2.6 \cdot 10^{-8} \) | \(a_{870}= +0.96417647 \pm 1 \cdot 10^{-8} \) |
\(a_{871}= -0.51260661 \pm 2.1 \cdot 10^{-8} \) | \(a_{872}= +1.62964342 \pm 1.1 \cdot 10^{-8} \) | \(a_{873}= -0.23984811 \pm 1.5 \cdot 10^{-8} \) |
\(a_{874}= -0.28602903 \pm 2.0 \cdot 10^{-8} \) | \(a_{875}= +0.26995498 \pm 1.8 \cdot 10^{-8} \) | \(a_{876}= +0.29067810 \pm 1 \cdot 10^{-8} \) |
\(a_{877}= +0.13350189 \pm 2.0 \cdot 10^{-8} \) | \(a_{878}= -0.08192115 \pm 3.1 \cdot 10^{-8} \) | \(a_{879}= +0.80872834 \pm 1.8 \cdot 10^{-8} \) |
\(a_{880}= -0.41752918 \pm 5.1 \cdot 10^{-8} \) | \(a_{881}= -0.46716104 \pm 2.3 \cdot 10^{-8} \) | \(a_{882}= -0.30384043 \pm 1.8 \cdot 10^{-8} \) |
\(a_{883}= +1.12764041 \pm 2.3 \cdot 10^{-8} \) | \(a_{884}= +0.08747539 \pm 1.6 \cdot 10^{-8} \) | \(a_{885}= -0.62158353 \pm 1.5 \cdot 10^{-8} \) |
\(a_{886}= +0.19190775 \pm 3.1 \cdot 10^{-8} \) | \(a_{887}= +0.33775722 \pm 1.7 \cdot 10^{-8} \) | \(a_{888}= -0.33650619 \pm 1.1 \cdot 10^{-8} \) |
\(a_{889}= +0.00513579 \pm 1.7 \cdot 10^{-8} \) | \(a_{890}= +1.24439228 \pm 1.6 \cdot 10^{-8} \) | \(a_{891}= +0.36996745 \pm 3.1 \cdot 10^{-8} \) |
\(a_{892}= +0.04776966 \pm 2.5 \cdot 10^{-8} \) | \(a_{893}= +0.02488592 \pm 1 \cdot 10^{-8} \) | \(a_{894}= +1.70251875 \pm 1 \cdot 10^{-8} \) |
\(a_{895}= -2.24324638 \pm 2.7 \cdot 10^{-8} \) | \(a_{896}= -0.04269868 \pm 1.5 \cdot 10^{-8} \) | \(a_{897}= -1.03334358 \pm 1.2 \cdot 10^{-8} \) |
\(a_{898}= +1.00436960 \pm 1.7 \cdot 10^{-8} \) | \(a_{899}= -0.58777998 \pm 1.8 \cdot 10^{-8} \) | \(a_{900}= -0.21811350 \pm 2.4 \cdot 10^{-8} \) |
\(a_{901}= -0.67017223 \pm 1.3 \cdot 10^{-8} \) | \(a_{902}= +0.49183050 \pm 4.7 \cdot 10^{-8} \) | \(a_{903}= -0.01943335 \pm 1.5 \cdot 10^{-8} \) |
\(a_{904}= +0.15207798 \pm 3.1 \cdot 10^{-8} \) | \(a_{905}= +0.40977407 \pm 1.5 \cdot 10^{-8} \) | \(a_{906}= +0.73238647 \pm 3.5 \cdot 10^{-8} \) |
\(a_{907}= -0.56035124 \pm 2.4 \cdot 10^{-8} \) | \(a_{908}= +0.36013148 \pm 3.0 \cdot 10^{-8} \) | \(a_{909}= +0.03696228 \pm 1.3 \cdot 10^{-8} \) |
\(a_{910}= +0.09548136 \pm 1.2 \cdot 10^{-8} \) | \(a_{911}= +1.92394551 \pm 1.7 \cdot 10^{-8} \) | \(a_{912}= -0.21209824 \pm 1.3 \cdot 10^{-8} \) |
\(a_{913}= -0.05768863 \pm 2.9 \cdot 10^{-8} \) | \(a_{914}= -1.55017267 \pm 2.3 \cdot 10^{-8} \) | \(a_{915}= +1.91549074 \pm 1 \cdot 10^{-8} \) |
\(a_{916}= -0.04882569 \pm 2.5 \cdot 10^{-8} \) | \(a_{917}= -0.04627448 \pm 1.7 \cdot 10^{-8} \) | \(a_{918}= +0.36380333 \pm 1.5 \cdot 10^{-8} \) |
\(a_{919}= -0.30693782 \pm 1.8 \cdot 10^{-8} \) | \(a_{920}= -2.66674591 \pm 1.0 \cdot 10^{-8} \) | \(a_{921}= -0.20596930 \pm 1.9 \cdot 10^{-8} \) |
\(a_{922}= -1.29773966 \pm 1.9 \cdot 10^{-8} \) | \(a_{923}= -0.11150668 \pm 1 \cdot 10^{-8} \) | \(a_{924}= -0.00652279 \pm 7.7 \cdot 10^{-8} \) |
\(a_{925}= +0.73157796 \pm 1.6 \cdot 10^{-8} \) | \(a_{926}= +1.00696940 \pm 1.8 \cdot 10^{-8} \) | \(a_{927}= +0.48427007 \pm 2.6 \cdot 10^{-8} \) |
\(a_{928}= -0.22035017 \pm 1.3 \cdot 10^{-8} \) | \(a_{929}= +1.54733443 \pm 1.9 \cdot 10^{-8} \) | \(a_{930}= -2.35858625 \pm 1.4 \cdot 10^{-8} \) |
\(a_{931}= -0.25287804 \pm 1.1 \cdot 10^{-8} \) | \(a_{932}= -0.23012519 \pm 2.1 \cdot 10^{-8} \) | \(a_{933}= +0.57124095 \pm 1.1 \cdot 10^{-8} \) |
\(a_{934}= +0.91720389 \pm 2.2 \cdot 10^{-8} \) | \(a_{935}= -0.31881719 \pm 5.0 \cdot 10^{-8} \) | \(a_{936}= -0.26141468 \pm 1 \cdot 10^{-8} \) |
\(a_{937}= +1.01706098 \pm 1.8 \cdot 10^{-8} \) | \(a_{938}= +0.05249578 \pm 1.8 \cdot 10^{-8} \) | \(a_{939}= -0.82911396 \pm 1.9 \cdot 10^{-8} \) |
\(a_{940}= +0.04334119 \pm 1.0 \cdot 10^{-8} \) | \(a_{941}= +0.93271099 \pm 1.9 \cdot 10^{-8} \) | \(a_{942}= -0.09692028 \pm 1.5 \cdot 10^{-8} \) |
\(a_{943}= +2.37952346 \pm 1.2 \cdot 10^{-8} \) | \(a_{944}= -0.19900641 \pm 2.0 \cdot 10^{-8} \) | \(a_{945}= -0.11841932 \pm 1.5 \cdot 10^{-8} \) |
\(a_{946}= -0.05460430 \pm 5.3 \cdot 10^{-8} \) | \(a_{947}= -0.54211003 \pm 2.4 \cdot 10^{-8} \) | \(a_{948}= +0.02633797 \pm 1.9 \cdot 10^{-8} \) |
\(a_{949}= -0.75740352 \pm 1.2 \cdot 10^{-8} \) | \(a_{950}= +0.60873028 \pm 2.1 \cdot 10^{-8} \) | \(a_{951}= -1.48126095 \pm 2.2 \cdot 10^{-8} \) |
\(a_{952}= -0.04795682 \pm 1.3 \cdot 10^{-8} \) | \(a_{953}= +0.22205706 \pm 1.8 \cdot 10^{-8} \) | \(a_{954}= +0.37411591 \pm 1.7 \cdot 10^{-8} \) |
\(a_{955}= -0.63914655 \pm 1.7 \cdot 10^{-8} \) | \(a_{956}= -0.34282514 \pm 2.6 \cdot 10^{-8} \) | \(a_{957}= +0.17162735 \pm 4.8 \cdot 10^{-8} \) |
\(a_{958}= +0.77206848 \pm 2.6 \cdot 10^{-8} \) | \(a_{959}= -0.02770166 \pm 1.8 \cdot 10^{-8} \) | \(a_{960}= -2.49227447 \pm 1.5 \cdot 10^{-8} \) |
\(a_{961}= +0.43783822 \pm 2.4 \cdot 10^{-8} \) | \(a_{962}= +0.16378861 \pm 1.0 \cdot 10^{-8} \) | \(a_{963}= -0.32395631 \pm 2.5 \cdot 10^{-8} \) |
\(a_{964}= -0.08755843 \pm 3.2 \cdot 10^{-8} \) | \(a_{965}= -3.04603373 \pm 2.3 \cdot 10^{-8} \) | \(a_{966}= +0.10582418 \pm 1.7 \cdot 10^{-8} \) |
\(a_{967}= -1.50242278 \pm 2.2 \cdot 10^{-8} \) | \(a_{968}= -0.09811538 \pm 3.3 \cdot 10^{-8} \) | \(a_{969}= -0.16195411 \pm 1.2 \cdot 10^{-8} \) |
\(a_{970}= +1.16580480 \pm 3.3 \cdot 10^{-8} \) | \(a_{971}= -0.69788839 \pm 2.4 \cdot 10^{-8} \) | \(a_{972}= +0.15352098 \pm 2.2 \cdot 10^{-8} \) |
\(a_{973}= -0.10320340 \pm 1.7 \cdot 10^{-8} \) | \(a_{974}= +0.00682541 \pm 1.5 \cdot 10^{-8} \) | \(a_{975}= +2.19917370 \pm 1 \cdot 10^{-8} \) |
\(a_{976}= +0.61326421 \pm 1.0 \cdot 10^{-8} \) | \(a_{977}= -0.41062681 \pm 1.7 \cdot 10^{-8} \) | \(a_{978}= -1.76966576 \pm 2.0 \cdot 10^{-8} \) |
\(a_{979}= +0.22150691 \pm 3.0 \cdot 10^{-8} \) | \(a_{980}= -0.44041114 \pm 1.9 \cdot 10^{-8} \) | \(a_{981}= -0.52619530 \pm 1.4 \cdot 10^{-8} \) |
\(a_{982}= -0.70395782 \pm 2.4 \cdot 10^{-8} \) | \(a_{983}= +0.21624306 \pm 1.7 \cdot 10^{-8} \) | \(a_{984}= +2.32936324 \pm 1.4 \cdot 10^{-8} \) |
\(a_{985}= +0.21483525 \pm 1.0 \cdot 10^{-8} \) | \(a_{986}= +0.23571054 \pm 2.0 \cdot 10^{-8} \) | \(a_{987}= -0.00920722 \pm 1.0 \cdot 10^{-8} \) |
\(a_{988}= -0.04064164 \pm 1 \cdot 10^{-8} \) | \(a_{989}= -0.26418089 \pm 1.9 \cdot 10^{-8} \) | \(a_{990}= +0.17797602 \pm 7.5 \cdot 10^{-8} \) |
\(a_{991}= +0.03423856 \pm 1.7 \cdot 10^{-8} \) | \(a_{992}= +0.53902464 \pm 1.7 \cdot 10^{-8} \) | \(a_{993}= +1.61720782 \pm 1.6 \cdot 10^{-8} \) |
\(a_{994}= +0.01141934 \pm 1.0 \cdot 10^{-8} \) | \(a_{995}= +0.07006336 \pm 2.3 \cdot 10^{-8} \) | \(a_{996}= -0.05103729 \pm 2.1 \cdot 10^{-8} \) |
\(a_{997}= +0.61800976 \pm 1.8 \cdot 10^{-8} \) | \(a_{998}= -0.75837372 \pm 2.7 \cdot 10^{-8} \) | \(a_{999}= -0.20313637 \pm 1 \cdot 10^{-8} \) |
\(a_{1000}= +3.59246285 \pm 1.5 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000