Maass form invariants
Level: | \( 11 \) |
Weight: | \( 0 \) |
Character: | 11.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(10.6694194813172660517110241767 \pm 2 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.83015314 \pm 1.1 \cdot 10^{-6} \) | \(a_{3}= -0.06787432 \pm 9.0 \cdot 10^{-7} \) |
\(a_{4}= +2.34946053 \pm 1.2 \cdot 10^{-6} \) | \(a_{5}= -0.97667227 \pm 9.4 \cdot 10^{-7} \) | \(a_{6}= -0.12422041 \pm 1.1 \cdot 10^{-6} \) |
\(a_{7}= -1.64023254 \pm 9.4 \cdot 10^{-7} \) | \(a_{8}= +2.46971943 \pm 1.0 \cdot 10^{-6} \) | \(a_{9}= -0.99539308 \pm 1.0 \cdot 10^{-6} \) |
\(a_{10}= -1.78745983 \pm 1.1 \cdot 10^{-6} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= -0.15946804 \pm 1.1 \cdot 10^{-6} \) |
\(a_{13}= -0.38330067 \pm 7.4 \cdot 10^{-7} \) | \(a_{14}= -3.00187674 \pm 7.8 \cdot 10^{-7} \) | \(a_{15}= +0.06629097 \pm 7.1 \cdot 10^{-7} \) |
\(a_{16}= +2.17050425 \pm 9.5 \cdot 10^{-7} \) | \(a_{17}= -0.73225768 \pm 9.3 \cdot 10^{-7} \) | \(a_{18}= -1.82172177 \pm 1.0 \cdot 10^{-6} \) |
\(a_{19}= +1.70042108 \pm 6.7 \cdot 10^{-7} \) | \(a_{20}= -2.29465296 \pm 1.2 \cdot 10^{-6} \) | \(a_{21}= +0.11132967 \pm 7.2 \cdot 10^{-7} \) |
\(a_{22}= -0.55181194 \pm 1.1 \cdot 10^{-6} \) | \(a_{23}= +0.51786692 \pm 8.7 \cdot 10^{-7} \) | \(a_{24}= -0.16763054 \pm 1.2 \cdot 10^{-6} \) |
\(a_{25}= -0.04611127 \pm 7.7 \cdot 10^{-7} \) | \(a_{26}= -0.70149892 \pm 5.8 \cdot 10^{-7} \) | \(a_{27}= +0.13543596 \pm 8.6 \cdot 10^{-7} \) |
\(a_{28}= -3.85366161 \pm 9.4 \cdot 10^{-7} \) | \(a_{29}= -0.41268375 \pm 8.6 \cdot 10^{-7} \) | \(a_{30}= +0.12132263 \pm 6.6 \cdot 10^{-7} \) |
\(a_{31}= +0.10945521 \pm 9.2 \cdot 10^{-7} \) | \(a_{32}= +1.50263574 \pm 7.8 \cdot 10^{-7} \) | \(a_{33}= +0.02046488 \pm 9.1 \cdot 10^{-7} \) |
\(a_{34}= -1.34014370 \pm 1.1 \cdot 10^{-6} \) | \(a_{35}= +1.60196964 \pm 8.9 \cdot 10^{-7} \) | \(a_{36}= -2.33863674 \pm 1.0 \cdot 10^{-6} \) |
\(a_{37}= -0.86847304 \pm 9.3 \cdot 10^{-7} \) | \(a_{38}= +3.11203098 \pm 9.2 \cdot 10^{-7} \) | \(a_{39}= +0.02601627 \pm 5.4 \cdot 10^{-7} \) |
\(a_{40}= -2.41210649 \pm 8.8 \cdot 10^{-7} \) | \(a_{41}= -1.78003002 \pm 6.1 \cdot 10^{-7} \) | \(a_{42}= +0.20375035 \pm 8.0 \cdot 10^{-7} \) |
\(a_{43}= +0.04571231 \pm 8.9 \cdot 10^{-7} \) | \(a_{44}= -0.70838900 \pm 1.2 \cdot 10^{-6} \) | \(a_{45}= +0.97217282 \pm 9.8 \cdot 10^{-7} \) |
\(a_{46}= +0.94777577 \pm 1.2 \cdot 10^{-6} \) | \(a_{47}= -0.17497620 \pm 7.4 \cdot 10^{-7} \) | \(a_{48}= -0.14732151 \pm 9.7 \cdot 10^{-7} \) |
\(a_{49}= +1.69036279 \pm 8.2 \cdot 10^{-7} \) | \(a_{50}= -0.08439068 \pm 1.1 \cdot 10^{-6} \) | \(a_{51}= +0.04970150 \pm 9.1 \cdot 10^{-7} \) |
\(a_{52}= -0.90054978 \pm 7.8 \cdot 10^{-7} \) | \(a_{53}= +1.14584089 \pm 7.2 \cdot 10^{-7} \) | \(a_{54}= +0.24786854 \pm 7.4 \cdot 10^{-7} \) |
\(a_{55}= +0.29447777 \pm 9.5 \cdot 10^{-7} \) | \(a_{56}= -4.05091417 \pm 6.4 \cdot 10^{-7} \) | \(a_{57}= -0.11541493 \pm 6.0 \cdot 10^{-7} \) |
\(a_{58}= -0.75527446 \pm 8.4 \cdot 10^{-7} \) | \(a_{59}= +0.82636531 \pm 1.0 \cdot 10^{-6} \) | \(a_{60}= +0.15574802 \pm 5.7 \cdot 10^{-7} \) |
\(a_{61}= +0.39766146 \pm 7.7 \cdot 10^{-7} \) | \(a_{62}= +0.20031979 \pm 8.4 \cdot 10^{-7} \) | \(a_{63}= +1.63267611 \pm 7.1 \cdot 10^{-7} \) |
\(a_{64}= +0.57954928 \pm 9.9 \cdot 10^{-7} \) | \(a_{65}= +0.37435913 \pm 6.2 \cdot 10^{-7} \) | \(a_{66}= +0.03745386 \pm 2.0 \cdot 10^{-6} \) |
\(a_{67}= -0.60180561 \pm 1.0 \cdot 10^{-6} \) | \(a_{68}= -1.72041053 \pm 1.4 \cdot 10^{-6} \) | \(a_{69}= -0.03514987 \pm 1.0 \cdot 10^{-6} \) |
\(a_{70}= +2.93184978 \pm 8.1 \cdot 10^{-7} \) | \(a_{71}= -1.13418039 \pm 6.9 \cdot 10^{-7} \) | \(a_{72}= -2.45834162 \pm 1.0 \cdot 10^{-6} \) |
\(a_{73}= +0.53826363 \pm 8.9 \cdot 10^{-7} \) | \(a_{74}= -1.58943867 \pm 8.6 \cdot 10^{-7} \) | \(a_{75}= +0.00312977 \pm 5.6 \cdot 10^{-7} \) |
\(a_{76}= +3.99507221 \pm 9.2 \cdot 10^{-7} \) | \(a_{77}= +0.49454872 \pm 9.5 \cdot 10^{-7} \) | \(a_{78}= +0.04761376 \pm 7.1 \cdot 10^{-7} \) |
\(a_{79}= +0.39023345 \pm 7.2 \cdot 10^{-7} \) | \(a_{80}= -2.11987132 \pm 5.7 \cdot 10^{-7} \) | \(a_{81}= +0.98620045 \pm 9.8 \cdot 10^{-7} \) |
\(a_{82}= -3.25772754 \pm 6.1 \cdot 10^{-7} \) | \(a_{83}= +0.72222971 \pm 8.8 \cdot 10^{-7} \) | \(a_{84}= +0.26156468 \pm 7.4 \cdot 10^{-7} \) |
\(a_{85}= +0.71517578 \pm 7.3 \cdot 10^{-7} \) | \(a_{86}= +0.08366053 \pm 1.0 \cdot 10^{-6} \) | \(a_{87}= +0.02801063 \pm 6.3 \cdot 10^{-7} \) |
\(a_{88}= -0.74464843 \pm 1.0 \cdot 10^{-6} \) | \(a_{89}= -1.65725106 \pm 9.2 \cdot 10^{-7} \) | \(a_{90}= +1.77922514 \pm 1.1 \cdot 10^{-6} \) |
\(a_{91}= +0.62870222 \pm 8.5 \cdot 10^{-7} \) | \(a_{92}= +1.21670789 \pm 1.4 \cdot 10^{-6} \) | \(a_{93}= -0.00742920 \pm 9.2 \cdot 10^{-7} \) |
\(a_{94}= -0.32023325 \pm 7.5 \cdot 10^{-7} \) | \(a_{95}= -1.66075412 \pm 7.9 \cdot 10^{-7} \) | \(a_{96}= -0.10199038 \pm 8.1 \cdot 10^{-7} \) |
\(a_{97}= -1.98772519 \pm 8.0 \cdot 10^{-7} \) | \(a_{98}= +3.09362277 \pm 9.2 \cdot 10^{-7} \) | \(a_{99}= +0.30012230 \pm 1.0 \cdot 10^{-6} \) |
\(a_{100}= -0.10833661 \pm 1.3 \cdot 10^{-6} \) | \(a_{101}= +0.82524666 \pm 6.8 \cdot 10^{-7} \) | \(a_{102}= +0.09096135 \pm 1.3 \cdot 10^{-6} \) |
\(a_{103}= +0.60096467 \pm 1.0 \cdot 10^{-6} \) | \(a_{104}= -0.94664510 \pm 4.3 \cdot 10^{-7} \) | \(a_{105}= -0.10873261 \pm 6.5 \cdot 10^{-7} \) |
\(a_{106}= +2.09706431 \pm 8.9 \cdot 10^{-7} \) | \(a_{107}= -0.85398794 \pm 1.0 \cdot 10^{-6} \) | \(a_{108}= +0.31820143 \pm 6.6 \cdot 10^{-7} \) |
\(a_{109}= -1.07660342 \pm 6.5 \cdot 10^{-7} \) | \(a_{110}= +0.53893942 \pm 2.0 \cdot 10^{-6} \) | \(a_{111}= +0.05894702 \pm 5.2 \cdot 10^{-7} \) |
\(a_{112}= -3.56013170 \pm 8.0 \cdot 10^{-7} \) | \(a_{113}= -1.10290237 \pm 1.1 \cdot 10^{-6} \) | \(a_{114}= -0.21122700 \pm 6.8 \cdot 10^{-7} \) |
\(a_{115}= -0.50578626 \pm 6.4 \cdot 10^{-7} \) | \(a_{116}= -0.96958418 \pm 1.1 \cdot 10^{-6} \) | \(a_{117}= +0.38153483 \pm 7.0 \cdot 10^{-7} \) |
\(a_{118}= +1.51237507 \pm 1.2 \cdot 10^{-6} \) | \(a_{119}= +1.20107288 \pm 8.4 \cdot 10^{-7} \) | \(a_{120}= +0.16372010 \pm 6.6 \cdot 10^{-7} \) |
\(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +0.72778138 \pm 1.0 \cdot 10^{-6} \) | \(a_{123}= +0.12081833 \pm 7.6 \cdot 10^{-7} \) |
\(a_{124}= +0.25716069 \pm 8.5 \cdot 10^{-7} \) | \(a_{125}= +1.02170787 \pm 8.6 \cdot 10^{-7} \) | \(a_{126}= +2.98804732 \pm 6.4 \cdot 10^{-7} \) |
\(a_{127}= -0.55758051 \pm 9.1 \cdot 10^{-7} \) | \(a_{128}= -0.44197180 \pm 9.5 \cdot 10^{-7} \) | \(a_{129}= -0.00310269 \pm 9.0 \cdot 10^{-7} \) |
\(a_{130}= +0.68513454 \pm 5.1 \cdot 10^{-7} \) | \(a_{131}= -0.61722682 \pm 1.0 \cdot 10^{-6} \) | \(a_{132}= +0.04808142 \pm 2.2 \cdot 10^{-6} \) |
\(a_{133}= -2.78908599 \pm 5.9 \cdot 10^{-7} \) | \(a_{134}= -1.10139643 \pm 1.2 \cdot 10^{-6} \) | \(a_{135}= -0.13227654 \pm 7.8 \cdot 10^{-7} \) |
\(a_{136}= -1.80847103 \pm 1.2 \cdot 10^{-6} \) | \(a_{137}= +0.86523980 \pm 8.8 \cdot 10^{-7} \) | \(a_{138}= -0.06432964 \pm 1.5 \cdot 10^{-6} \) |
\(a_{139}= +0.53564285 \pm 7.1 \cdot 10^{-7} \) | \(a_{140}= +3.76376445 \pm 9.3 \cdot 10^{-7} \) | \(a_{141}= +0.01187639 \pm 1.0 \cdot 10^{-6} \) |
\(a_{142}= -2.07572380 \pm 5.6 \cdot 10^{-7} \) | \(a_{143}= +0.11556950 \pm 7.5 \cdot 10^{-7} \) | \(a_{144}= -2.16050490 \pm 7.5 \cdot 10^{-7} \) |
\(a_{145}= +0.40305678 \pm 8.0 \cdot 10^{-7} \) | \(a_{146}= +0.98510488 \pm 9.8 \cdot 10^{-7} \) | \(a_{147}= -0.11473223 \pm 8.9 \cdot 10^{-7} \) |
\(a_{148}= -2.04044314 \pm 1.1 \cdot 10^{-6} \) | \(a_{149}= -0.83321704 \pm 6.8 \cdot 10^{-7} \) | \(a_{150}= +0.00572796 \pm 8.7 \cdot 10^{-7} \) |
\(a_{151}= -1.37464952 \pm 1.1 \cdot 10^{-6} \) | \(a_{152}= +4.19956298 \pm 7.0 \cdot 10^{-7} \) | \(a_{153}= +0.72888423 \pm 9.1 \cdot 10^{-7} \) |
\(a_{154}= +0.90509989 \pm 2.0 \cdot 10^{-6} \) | \(a_{155}= -0.10690186 \pm 8.6 \cdot 10^{-7} \) | \(a_{156}= +0.06112421 \pm 6.4 \cdot 10^{-7} \) |
\(a_{157}= +0.53599375 \pm 8.0 \cdot 10^{-7} \) | \(a_{158}= +0.71418697 \pm 7.3 \cdot 10^{-7} \) | \(a_{159}= -0.07777318 \pm 6.2 \cdot 10^{-7} \) |
\(a_{160}= -1.46758267 \pm 7.6 \cdot 10^{-7} \) | \(a_{161}= -0.84942217 \pm 7.0 \cdot 10^{-7} \) | \(a_{162}= +1.80489786 \pm 1.1 \cdot 10^{-6} \) |
\(a_{163}= +1.19997493 \pm 8.8 \cdot 10^{-7} \) | \(a_{164}= -4.18211028 \pm 5.4 \cdot 10^{-7} \) | \(a_{165}= -0.01998748 \pm 1.8 \cdot 10^{-6} \) |
\(a_{166}= +1.32179098 \pm 7.7 \cdot 10^{-7} \) | \(a_{167}= +0.50885899 \pm 1.1 \cdot 10^{-6} \) | \(a_{168}= +0.27495306 \pm 5.7 \cdot 10^{-7} \) |
\(a_{169}= -0.85308060 \pm 7.5 \cdot 10^{-7} \) | \(a_{170}= +1.30888120 \pm 7.7 \cdot 10^{-7} \) | \(a_{171}= -1.69258737 \pm 6.5 \cdot 10^{-7} \) |
\(a_{172}= +0.10739927 \pm 1.2 \cdot 10^{-6} \) | \(a_{173}= +0.65720577 \pm 9.0 \cdot 10^{-7} \) | \(a_{174}= +0.05126374 \pm 8.6 \cdot 10^{-7} \) |
\(a_{175}= +0.07563320 \pm 5.2 \cdot 10^{-7} \) | \(a_{176}= -0.65443165 \pm 9.6 \cdot 10^{-7} \) | \(a_{177}= -0.05608899 \pm 9.7 \cdot 10^{-7} \) |
\(a_{178}= -3.03302323 \pm 1.3 \cdot 10^{-6} \) | \(a_{179}= +0.34453975 \pm 1.0 \cdot 10^{-6} \) | \(a_{180}= +2.28408167 \pm 1.1 \cdot 10^{-6} \) |
\(a_{181}= +0.22227023 \pm 8.2 \cdot 10^{-7} \) | \(a_{182}= +1.15062135 \pm 6.5 \cdot 10^{-7} \) | \(a_{183}= -0.02699100 \pm 4.5 \cdot 10^{-7} \) |
\(a_{184}= +1.27898599 \pm 1.3 \cdot 10^{-6} \) | \(a_{185}= +0.84821354 \pm 9.1 \cdot 10^{-7} \) | \(a_{186}= -0.01359657 \pm 8.4 \cdot 10^{-7} \) |
\(a_{187}= +0.22078400 \pm 9.4 \cdot 10^{-7} \) | \(a_{188}= -0.41109968 \pm 8.7 \cdot 10^{-7} \) | \(a_{189}= -0.22214646 \pm 7.3 \cdot 10^{-7} \) |
\(a_{190}= -3.03943438 \pm 1.1 \cdot 10^{-6} \) | \(a_{191}= -1.22307415 \pm 9.1 \cdot 10^{-7} \) | \(a_{192}= -0.03933652 \pm 7.8 \cdot 10^{-7} \) |
\(a_{193}= +0.03083107 \pm 9.3 \cdot 10^{-7} \) | \(a_{194}= -3.63784150 \pm 1.2 \cdot 10^{-6} \) | \(a_{195}= -0.02540937 \pm 4.7 \cdot 10^{-7} \) |
\(a_{196}= +3.97144064 \pm 1.0 \cdot 10^{-6} \) | \(a_{197}= -0.53015266 \pm 6.7 \cdot 10^{-7} \) | \(a_{198}= +0.54926978 \pm 2.1 \cdot 10^{-6} \) |
\(a_{199}= -0.78655850 \pm 1.0 \cdot 10^{-6} \) | \(a_{200}= -0.11388190 \pm 1.0 \cdot 10^{-6} \) | \(a_{201}= +0.04084715 \pm 6.2 \cdot 10^{-7} \) |
\(a_{202}= +1.51032778 \pm 1.0 \cdot 10^{-6} \) | \(a_{203}= +0.67689732 \pm 8.9 \cdot 10^{-7} \) | \(a_{204}= +0.11677170 \pm 1.5 \cdot 10^{-6} \) |
\(a_{205}= +1.73850597 \pm 5.3 \cdot 10^{-7} \) | \(a_{206}= +1.09985738 \pm 7.9 \cdot 10^{-7} \) | \(a_{207}= -0.51548115 \pm 8.2 \cdot 10^{-7} \) |
\(a_{208}= -0.83195572 \pm 7.0 \cdot 10^{-7} \) | \(a_{209}= -0.51269625 \pm 6.8 \cdot 10^{-7} \) | \(a_{210}= -0.19899732 \pm 6.4 \cdot 10^{-7} \) |
\(a_{211}= +0.48110930 \pm 1.0 \cdot 10^{-6} \) | \(a_{212}= +2.69210795 \pm 9.0 \cdot 10^{-7} \) | \(a_{213}= +0.07698173 \pm 8.3 \cdot 10^{-7} \) |
\(a_{214}= -1.56292872 \pm 1.5 \cdot 10^{-6} \) | \(a_{215}= -0.04464595 \pm 8.5 \cdot 10^{-7} \) | \(a_{216}= +0.33448881 \pm 8.9 \cdot 10^{-7} \) |
\(a_{217}= -0.17953199 \pm 1.0 \cdot 10^{-6} \) | \(a_{218}= -1.97034914 \pm 7.3 \cdot 10^{-7} \) | \(a_{219}= -0.03653428 \pm 5.8 \cdot 10^{-7} \) |
\(a_{220}= +0.69186390 \pm 2.2 \cdot 10^{-6} \) | \(a_{221}= +0.28067486 \pm 7.1 \cdot 10^{-7} \) | \(a_{222}= +0.10788207 \pm 6.6 \cdot 10^{-7} \) |
\(a_{223}= +0.90907362 \pm 9.5 \cdot 10^{-7} \) | \(a_{224}= -2.46467204 \pm 7.7 \cdot 10^{-7} \) | \(a_{225}= +0.04589884 \pm 6.8 \cdot 10^{-7} \) |
\(a_{226}= -2.01848024 \pm 1.2 \cdot 10^{-6} \) | \(a_{227}= +0.05917371 \pm 7.5 \cdot 10^{-7} \) | \(a_{228}= -0.27116282 \pm 6.8 \cdot 10^{-7} \) |
\(a_{229}= -0.09562253 \pm 7.7 \cdot 10^{-7} \) | \(a_{230}= -0.92566632 \pm 6.9 \cdot 10^{-7} \) | \(a_{231}= -0.03356716 \pm 1.8 \cdot 10^{-6} \) |
\(a_{232}= -1.01921308 \pm 8.6 \cdot 10^{-7} \) | \(a_{233}= +0.58045154 \pm 1.0 \cdot 10^{-6} \) | \(a_{234}= +0.69826717 \pm 5.2 \cdot 10^{-7} \) |
\(a_{235}= +0.17089441 \pm 6.0 \cdot 10^{-7} \) | \(a_{236}= +1.94151268 \pm 1.5 \cdot 10^{-6} \) | \(a_{237}= -0.02648683 \pm 6.7 \cdot 10^{-7} \) |
\(a_{238}= +2.19814731 \pm 5.7 \cdot 10^{-7} \) | \(a_{239}= -0.80102756 \pm 8.5 \cdot 10^{-7} \) | \(a_{240}= +0.14388483 \pm 4.7 \cdot 10^{-7} \) |
\(a_{241}= -1.82264243 \pm 1.3 \cdot 10^{-6} \) | \(a_{242}= +0.16637756 \pm 1.1 \cdot 10^{-6} \) | \(a_{243}= -0.20237364 \pm 6.5 \cdot 10^{-7} \) |
\(a_{244}= +0.93428992 \pm 1.1 \cdot 10^{-6} \) | \(a_{245}= -1.65093047 \pm 8.5 \cdot 10^{-7} \) | \(a_{246}= +0.22111605 \pm 7.7 \cdot 10^{-7} \) |
\(a_{247}= -0.65177253 \pm 3.5 \cdot 10^{-7} \) | \(a_{248}= +0.27032365 \pm 6.5 \cdot 10^{-7} \) | \(a_{249}= -0.04902085 \pm 1.1 \cdot 10^{-6} \) |
\(a_{250}= +1.86988187 \pm 7.7 \cdot 10^{-7} \) | \(a_{251}= +1.68631402 \pm 1.0 \cdot 10^{-6} \) | \(a_{252}= +3.83590809 \pm 7.9 \cdot 10^{-7} \) |
\(a_{253}= -0.15614275 \pm 8.8 \cdot 10^{-7} \) | \(a_{254}= -1.02045772 \pm 1.0 \cdot 10^{-6} \) | \(a_{255}= -0.04854207 \pm 5.7 \cdot 10^{-7} \) |
\(a_{256}= -1.38842537 \pm 1.1 \cdot 10^{-6} \) | \(a_{257}= -0.59544970 \pm 7.7 \cdot 10^{-7} \) | \(a_{258}= -0.00567840 \pm 1.1 \cdot 10^{-6} \) |
\(a_{259}= +1.42449775 \pm 9.4 \cdot 10^{-7} \) | \(a_{260}= +0.87954201 \pm 6.5 \cdot 10^{-7} \) | \(a_{261}= +0.41078255 \pm 7.0 \cdot 10^{-7} \) |
\(a_{262}= -1.12961960 \pm 1.1 \cdot 10^{-6} \) | \(a_{263}= -0.26075625 \pm 1.2 \cdot 10^{-6} \) | \(a_{264}= +0.05054251 \pm 1.9 \cdot 10^{-6} \) |
\(a_{265}= -1.11911103 \pm 8.3 \cdot 10^{-7} \) | \(a_{266}= -5.10445449 \pm 7.4 \cdot 10^{-7} \) | \(a_{267}= +0.11248479 \pm 9.1 \cdot 10^{-7} \) |
\(a_{268}= -1.41391853 \pm 1.4 \cdot 10^{-6} \) | \(a_{269}= +1.45256410 \pm 8.4 \cdot 10^{-7} \) | \(a_{270}= -0.24208633 \pm 6.1 \cdot 10^{-7} \) |
\(a_{271}= -0.22048031 \pm 9.0 \cdot 10^{-7} \) | \(a_{272}= -1.58936841 \pm 1.1 \cdot 10^{-6} \) | \(a_{273}= -0.04267274 \pm 6.4 \cdot 10^{-7} \) |
\(a_{274}= +1.58352135 \pm 8.4 \cdot 10^{-7} \) | \(a_{275}= +0.01390307 \pm 7.8 \cdot 10^{-7} \) | \(a_{276}= -0.08258322 \pm 1.7 \cdot 10^{-6} \) |
\(a_{277}= +1.19776312 \pm 1.3 \cdot 10^{-6} \) | \(a_{278}= +0.98030844 \pm 9.1 \cdot 10^{-7} \) | \(a_{279}= -0.10895095 \pm 9.1 \cdot 10^{-7} \) |
\(a_{280}= +3.95641556 \pm 6.8 \cdot 10^{-7} \) | \(a_{281}= -1.54281373 \pm 1.0 \cdot 10^{-6} \) | \(a_{282}= +0.02173562 \pm 1.0 \cdot 10^{-6} \) |
\(a_{283}= +0.13973708 \pm 7.8 \cdot 10^{-7} \) | \(a_{284}= -2.66471206 \pm 6.7 \cdot 10^{-7} \) | \(a_{285}= +0.11272256 \pm 5.0 \cdot 10^{-7} \) |
\(a_{286}= +0.21150988 \pm 1.8 \cdot 10^{-6} \) | \(a_{287}= +2.91966316 \pm 6.1 \cdot 10^{-7} \) | \(a_{288}= -1.49571322 \pm 7.7 \cdot 10^{-7} \) |
\(a_{289}= -0.46379868 \pm 5.7 \cdot 10^{-7} \) | \(a_{290}= +0.73765563 \pm 7.7 \cdot 10^{-7} \) | \(a_{291}= +0.13491550 \pm 5.5 \cdot 10^{-7} \) |
\(a_{292}= +1.26462916 \pm 1.1 \cdot 10^{-6} \) | \(a_{293}= +0.75835375 \pm 9.1 \cdot 10^{-7} \) | \(a_{294}= -0.20997755 \pm 1.0 \cdot 10^{-6} \) |
\(a_{295}= -0.80708809 \pm 1.1 \cdot 10^{-6} \) | \(a_{296}= -2.14488475 \pm 6.7 \cdot 10^{-7} \) | \(a_{297}= -0.04083548 \pm 8.7 \cdot 10^{-7} \) |
\(a_{298}= -1.52491478 \pm 6.7 \cdot 10^{-7} \) | \(a_{299}= -0.19849873 \pm 5.3 \cdot 10^{-7} \) | \(a_{300}= +0.00735327 \pm 1.0 \cdot 10^{-6} \) |
\(a_{301}= -0.07497882 \pm 9.4 \cdot 10^{-7} \) | \(a_{302}= -2.51581914 \pm 1.4 \cdot 10^{-6} \) | \(a_{303}= -0.05601306 \pm 8.2 \cdot 10^{-7} \) |
\(a_{304}= +3.69077118 \pm 5.8 \cdot 10^{-7} \) | \(a_{305}= -0.38838493 \pm 1.0 \cdot 10^{-6} \) | \(a_{306}= +1.33396976 \pm 9.0 \cdot 10^{-7} \) |
\(a_{307}= +0.08270401 \pm 1.0 \cdot 10^{-6} \) | \(a_{308}= +1.16192269 \pm 2.2 \cdot 10^{-6} \) | \(a_{309}= -0.04079007 \pm 9.9 \cdot 10^{-7} \) |
\(a_{310}= -0.19564678 \pm 8.5 \cdot 10^{-7} \) | \(a_{311}= +1.53502914 \pm 1.0 \cdot 10^{-6} \) | \(a_{312}= +0.06425290 \pm 4.6 \cdot 10^{-7} \) |
\(a_{313}= -0.83512745 \pm 8.8 \cdot 10^{-7} \) | \(a_{314}= +0.98095065 \pm 8.2 \cdot 10^{-7} \) | \(a_{315}= -1.59458949 \pm 6.6 \cdot 10^{-7} \) |
\(a_{316}= +0.91683808 \pm 8.5 \cdot 10^{-7} \) | \(a_{317}= -0.35440603 \pm 1.0 \cdot 10^{-6} \) | \(a_{318}= -0.14233682 \pm 6.7 \cdot 10^{-7} \) |
\(a_{319}= +0.12442883 \pm 8.7 \cdot 10^{-7} \) | \(a_{320}= -0.56602972 \pm 1.1 \cdot 10^{-6} \) | \(a_{321}= +0.05796385 \pm 1.0 \cdot 10^{-6} \) |
\(a_{322}= -1.55457266 \pm 7.7 \cdot 10^{-7} \) | \(a_{323}= -1.24514640 \pm 5.3 \cdot 10^{-7} \) | \(a_{324}= +2.31703904 \pm 1.3 \cdot 10^{-6} \) |
\(a_{325}= +0.01767448 \pm 3.6 \cdot 10^{-7} \) | \(a_{326}= +2.19613789 \pm 1.1 \cdot 10^{-6} \) | \(a_{327}= +0.07307373 \pm 6.9 \cdot 10^{-7} \) |
\(a_{328}= -4.39617473 \pm 4.4 \cdot 10^{-7} \) | \(a_{329}= +0.28700166 \pm 5.5 \cdot 10^{-7} \) | \(a_{330}= -0.03658015 \pm 2.9 \cdot 10^{-6} \) |
\(a_{331}= -1.62341978 \pm 6.9 \cdot 10^{-7} \) | \(a_{332}= +1.69685020 \pm 8.9 \cdot 10^{-7} \) | \(a_{333}= +0.86447205 \pm 9.1 \cdot 10^{-7} \) |
\(a_{334}= +0.93128989 \pm 1.1 \cdot 10^{-6} \) | \(a_{335}= +0.58776685 \pm 1.1 \cdot 10^{-6} \) | \(a_{336}= +0.24164153 \pm 6.3 \cdot 10^{-7} \) |
\(a_{337}= -0.70757009 \pm 9.4 \cdot 10^{-7} \) | \(a_{338}= -1.56126814 \pm 1.0 \cdot 10^{-6} \) | \(a_{339}= +0.07485875 \pm 9.5 \cdot 10^{-7} \) |
\(a_{340}= +1.68027726 \pm 8.9 \cdot 10^{-7} \) | \(a_{341}= -0.03300199 \pm 9.3 \cdot 10^{-7} \) | \(a_{342}= -3.09769410 \pm 8.4 \cdot 10^{-7} \) |
\(a_{343}= -1.13235551 \pm 8.0 \cdot 10^{-7} \) | \(a_{344}= +0.11289658 \pm 1.0 \cdot 10^{-6} \) | \(a_{345}= +0.03432990 \pm 6.9 \cdot 10^{-7} \) |
\(a_{346}= +1.20278721 \pm 1.1 \cdot 10^{-6} \) | \(a_{347}= -0.56596032 \pm 7.8 \cdot 10^{-7} \) | \(a_{348}= +0.06580987 \pm 1.0 \cdot 10^{-6} \) |
\(a_{349}= +0.86708642 \pm 9.1 \cdot 10^{-7} \) | \(a_{350}= +0.13842035 \pm 6.4 \cdot 10^{-7} \) | \(a_{351}= -0.05191269 \pm 4.0 \cdot 10^{-7} \) |
\(a_{352}= -0.45306172 \pm 7.9 \cdot 10^{-7} \) | \(a_{353}= +0.68863963 \pm 9.7 \cdot 10^{-7} \) | \(a_{354}= -0.10265143 \pm 1.1 \cdot 10^{-6} \) |
\(a_{355}= +1.10772254 \pm 6.7 \cdot 10^{-7} \) | \(a_{356}= -3.89364594 \pm 1.6 \cdot 10^{-6} \) | \(a_{357}= -0.08152201 \pm 5.7 \cdot 10^{-7} \) |
\(a_{358}= +0.63056051 \pm 1.4 \cdot 10^{-6} \) | \(a_{359}= -0.53513744 \pm 9.3 \cdot 10^{-7} \) | \(a_{360}= +2.40099410 \pm 1.0 \cdot 10^{-6} \) |
\(a_{361}= +1.89143185 \pm 7.9 \cdot 10^{-7} \) | \(a_{362}= +0.40678856 \pm 5.1 \cdot 10^{-7} \) | \(a_{363}= -0.00617039 \pm 9.1 \cdot 10^{-7} \) |
\(a_{364}= +1.47711106 \pm 8.4 \cdot 10^{-7} \) | \(a_{365}= -0.52570717 \pm 1.1 \cdot 10^{-6} \) | \(a_{366}= -0.04939767 \pm 4.2 \cdot 10^{-7} \) |
\(a_{367}= +0.29767881 \pm 9.5 \cdot 10^{-7} \) | \(a_{368}= +1.12403235 \pm 1.1 \cdot 10^{-6} \) | \(a_{369}= +1.77182956 \pm 8.3 \cdot 10^{-7} \) |
\(a_{370}= +1.55236068 \pm 1.1 \cdot 10^{-6} \) | \(a_{371}= -1.87944551 \pm 8.0 \cdot 10^{-7} \) | \(a_{372}= -0.01745461 \pm 6.8 \cdot 10^{-7} \) |
\(a_{373}= +1.04335019 \pm 6.2 \cdot 10^{-7} \) | \(a_{374}= +0.40406853 \pm 2.0 \cdot 10^{-6} \) | \(a_{375}= -0.06934773 \pm 8.1 \cdot 10^{-7} \) |
\(a_{376}= -0.43214213 \pm 9.0 \cdot 10^{-7} \) | \(a_{377}= +0.15818196 \pm 7.7 \cdot 10^{-7} \) | \(a_{378}= -0.40656204 \pm 5.4 \cdot 10^{-7} \) |
\(a_{379}= -0.21755050 \pm 8.3 \cdot 10^{-7} \) | \(a_{380}= -3.90187626 \pm 1.1 \cdot 10^{-6} \) | \(a_{381}= +0.03784540 \pm 7.0 \cdot 10^{-7} \) |
\(a_{382}= -2.23841299 \pm 7.8 \cdot 10^{-7} \) | \(a_{383}= +0.47614823 \pm 9.7 \cdot 10^{-7} \) | \(a_{384}= +0.02999854 \pm 6.7 \cdot 10^{-7} \) |
\(a_{385}= -0.48301202 \pm 1.8 \cdot 10^{-6} \) | \(a_{386}= +0.05642557 \pm 1.2 \cdot 10^{-6} \) | \(a_{387}= -0.04550172 \pm 9.0 \cdot 10^{-7} \) |
\(a_{388}= -4.67008187 \pm 1.2 \cdot 10^{-6} \) | \(a_{389}= +0.52039124 \pm 9.0 \cdot 10^{-7} \) | \(a_{390}= -0.04650304 \pm 5.9 \cdot 10^{-7} \) |
\(a_{391}= -0.37921203 \pm 9.6 \cdot 10^{-7} \) | \(a_{392}= +4.17472181 \pm 1.0 \cdot 10^{-6} \) | \(a_{393}= +0.04189385 \pm 1.2 \cdot 10^{-6} \) |
\(a_{394}= -0.97026056 \pm 1.0 \cdot 10^{-6} \) | \(a_{395}= -0.38113019 \pm 6.3 \cdot 10^{-7} \) | \(a_{396}= +0.70512551 \pm 2.3 \cdot 10^{-6} \) |
\(a_{397}= +1.03184092 \pm 1.1 \cdot 10^{-6} \) | \(a_{398}= -1.43952251 \pm 1.1 \cdot 10^{-6} \) | \(a_{399}= +0.18930732 \pm 5.3 \cdot 10^{-7} \) |
\(a_{400}= -0.10008471 \pm 7.4 \cdot 10^{-7} \) | \(a_{401}= -0.78525095 \pm 7.7 \cdot 10^{-7} \) | \(a_{402}= +0.07475654 \pm 8.8 \cdot 10^{-7} \) |
\(a_{403}= -0.04195425 \pm 6.2 \cdot 10^{-7} \) | \(a_{404}= +1.93888446 \pm 1.1 \cdot 10^{-6} \) | \(a_{405}= -0.96319464 \pm 9.0 \cdot 10^{-7} \) |
\(a_{406}= +1.23882575 \pm 5.5 \cdot 10^{-7} \) | \(a_{407}= +0.26185447 \pm 9.4 \cdot 10^{-7} \) | \(a_{408}= +0.12274875 \pm 1.5 \cdot 10^{-6} \) |
\(a_{409}= -0.14005137 \pm 9.7 \cdot 10^{-7} \) | \(a_{410}= +3.18173216 \pm 5.2 \cdot 10^{-7} \) | \(a_{411}= -0.05872757 \pm 8.8 \cdot 10^{-7} \) |
\(a_{412}= +1.41194277 \pm 1.0 \cdot 10^{-6} \) | \(a_{413}= -1.35543127 \pm 9.0 \cdot 10^{-7} \) | \(a_{414}= -0.94340944 \pm 9.5 \cdot 10^{-7} \) |
\(a_{415}= -0.70538174 \pm 7.4 \cdot 10^{-7} \) | \(a_{416}= -0.57596128 \pm 5.3 \cdot 10^{-7} \) | \(a_{417}= -0.03635640 \pm 6.8 \cdot 10^{-7} \) |
\(a_{418}= -0.93831265 \pm 1.7 \cdot 10^{-6} \) | \(a_{419}= +0.06544292 \pm 8.9 \cdot 10^{-7} \) | \(a_{420}= -0.25546297 \pm 6.1 \cdot 10^{-7} \) |
\(a_{421}= +0.86858538 \pm 6.5 \cdot 10^{-7} \) | \(a_{422}= +0.88050369 \pm 1.0 \cdot 10^{-6} \) | \(a_{423}= +0.17417010 \pm 1.1 \cdot 10^{-6} \) |
\(a_{424}= +2.82990551 \pm 7.6 \cdot 10^{-7} \) | \(a_{425}= +0.03376533 \pm 7.1 \cdot 10^{-7} \) | \(a_{426}= +0.14088835 \pm 7.5 \cdot 10^{-7} \) |
\(a_{427}= -0.65225727 \pm 6.5 \cdot 10^{-7} \) | \(a_{428}= -2.00641097 \pm 1.6 \cdot 10^{-6} \) | \(a_{429}= -0.00784420 \pm 1.6 \cdot 10^{-6} \) |
\(a_{430}= -0.08170892 \pm 9.4 \cdot 10^{-7} \) | \(a_{431}= +0.73320174 \pm 1.1 \cdot 10^{-6} \) | \(a_{432}= +0.29396432 \pm 6.2 \cdot 10^{-7} \) |
\(a_{433}= -0.33392921 \pm 1.0 \cdot 10^{-6} \) | \(a_{434}= -0.32857104 \pm 9.0 \cdot 10^{-7} \) | \(a_{435}= -0.02735721 \pm 5.1 \cdot 10^{-7} \) |
\(a_{436}= -2.52943725 \pm 6.8 \cdot 10^{-7} \) | \(a_{437}= +0.88059183 \pm 6.9 \cdot 10^{-7} \) | \(a_{438}= -0.06686333 \pm 4.3 \cdot 10^{-7} \) |
\(a_{439}= +0.24246717 \pm 1.1 \cdot 10^{-6} \) | \(a_{440}= +0.72727747 \pm 2.0 \cdot 10^{-6} \) | \(a_{441}= -1.68257541 \pm 8.2 \cdot 10^{-7} \) |
\(a_{442}= +0.51367797 \pm 4.5 \cdot 10^{-7} \) | \(a_{443}= -1.92079334 \pm 1.1 \cdot 10^{-6} \) | \(a_{444}= +0.13849370 \pm 6.3 \cdot 10^{-7} \) |
\(a_{445}= +1.61859116 \pm 6.2 \cdot 10^{-7} \) | \(a_{446}= +1.66374394 \pm 1.0 \cdot 10^{-6} \) | \(a_{447}= +0.05655404 \pm 3.4 \cdot 10^{-7} \) |
\(a_{448}= -0.95059559 \pm 8.6 \cdot 10^{-7} \) | \(a_{449}= +1.04162590 \pm 6.9 \cdot 10^{-7} \) | \(a_{450}= +0.08400190 \pm 1.0 \cdot 10^{-6} \) |
\(a_{451}= +0.53669925 \pm 6.2 \cdot 10^{-7} \) | \(a_{452}= -2.59122558 \pm 1.6 \cdot 10^{-6} \) | \(a_{453}= +0.09330341 \pm 1.1 \cdot 10^{-6} \) |
\(a_{454}= +0.10829695 \pm 1.1 \cdot 10^{-6} \) | \(a_{455}= -0.61403603 \pm 7.3 \cdot 10^{-7} \) | \(a_{456}= -0.28504250 \pm 6.8 \cdot 10^{-7} \) |
\(a_{457}= +1.70038779 \pm 7.6 \cdot 10^{-7} \) | \(a_{458}= -0.17500387 \pm 1.1 \cdot 10^{-6} \) | \(a_{459}= -0.09917402 \pm 7.6 \cdot 10^{-7} \) |
\(a_{460}= -1.18832486 \pm 6.9 \cdot 10^{-7} \) | \(a_{461}= -0.92483367 \pm 5.9 \cdot 10^{-7} \) | \(a_{462}= -0.06143304 \pm 2.9 \cdot 10^{-6} \) |
\(a_{463}= +0.29609411 \pm 7.4 \cdot 10^{-7} \) | \(a_{464}= -0.89573183 \pm 9.2 \cdot 10^{-7} \) | \(a_{465}= +0.00725589 \pm 7.9 \cdot 10^{-7} \) |
\(a_{466}= +1.06231521 \pm 8.4 \cdot 10^{-7} \) | \(a_{467}= -0.80457816 \pm 9.6 \cdot 10^{-7} \) | \(a_{468}= +0.89640102 \pm 7.4 \cdot 10^{-7} \) |
\(a_{469}= +0.98710114 \pm 1.0 \cdot 10^{-6} \) | \(a_{470}= +0.31276293 \pm 4.6 \cdot 10^{-7} \) | \(a_{471}= -0.03638021 \pm 7.2 \cdot 10^{-7} \) |
\(a_{472}= +2.04089046 \pm 1.2 \cdot 10^{-6} \) | \(a_{473}= -0.01378278 \pm 9.0 \cdot 10^{-7} \) | \(a_{474}= -0.04847496 \pm 8.1 \cdot 10^{-7} \) |
\(a_{475}= -0.07840857 \pm 6.9 \cdot 10^{-7} \) | \(a_{476}= +2.82187333 \pm 8.6 \cdot 10^{-7} \) | \(a_{477}= -1.14056209 \pm 6.5 \cdot 10^{-7} \) |
\(a_{478}= -1.46600311 \pm 1.1 \cdot 10^{-6} \) | \(a_{479}= -0.73097847 \pm 1.1 \cdot 10^{-6} \) | \(a_{480}= +0.09961118 \pm 6.2 \cdot 10^{-7} \) |
\(a_{481}= +0.33288630 \pm 9.4 \cdot 10^{-7} \) | \(a_{482}= -3.33571477 \pm 1.2 \cdot 10^{-6} \) | \(a_{483}= +0.05765396 \pm 6.4 \cdot 10^{-7} \) |
\(a_{484}= +0.21358732 \pm 1.2 \cdot 10^{-6} \) | \(a_{485}= +1.94135608 \pm 1.0 \cdot 10^{-6} \) | \(a_{486}= -0.37037476 \pm 9.2 \cdot 10^{-7} \) |
\(a_{487}= -1.57948776 \pm 5.2 \cdot 10^{-7} \) | \(a_{488}= +0.98211225 \pm 7.9 \cdot 10^{-7} \) | \(a_{489}= -0.08144749 \pm 8.1 \cdot 10^{-7} \) |
\(a_{490}= -3.02145558 \pm 8.9 \cdot 10^{-7} \) | \(a_{491}= -0.70128689 \pm 1.1 \cdot 10^{-6} \) | \(a_{492}= +0.28385791 \pm 5.4 \cdot 10^{-7} \) |
\(a_{493}= +0.30219085 \pm 8.4 \cdot 10^{-7} \) | \(a_{494}= -1.19284355 \pm 4.1 \cdot 10^{-7} \) | \(a_{495}= -0.29312113 \pm 1.9 \cdot 10^{-6} \) |
\(a_{496}= +0.23757299 \pm 7.7 \cdot 10^{-7} \) | \(a_{497}= +1.86031958 \pm 7.9 \cdot 10^{-7} \) | \(a_{498}= -0.08971567 \pm 1.1 \cdot 10^{-6} \) |
\(a_{499}= +1.54860176 \pm 1.0 \cdot 10^{-6} \) | \(a_{500}= +2.40046232 \pm 9.3 \cdot 10^{-7} \) | \(a_{501}= -0.03453846 \pm 9.2 \cdot 10^{-7} \) |
\(a_{502}= +3.08621290 \pm 1.0 \cdot 10^{-6} \) | \(a_{503}= -0.17699665 \pm 1.1 \cdot 10^{-6} \) | \(a_{504}= +4.03225192 \pm 4.1 \cdot 10^{-7} \) |
\(a_{505}= -0.80599554 \pm 4.8 \cdot 10^{-7} \) | \(a_{506}= -0.28576515 \pm 1.9 \cdot 10^{-6} \) | \(a_{507}= +0.05790227 \pm 8.3 \cdot 10^{-7} \) |
\(a_{508}= -1.31001340 \pm 1.1 \cdot 10^{-6} \) | \(a_{509}= -1.16033393 \pm 9.5 \cdot 10^{-7} \) | \(a_{510}= -0.08883943 \pm 5.1 \cdot 10^{-7} \) |
\(a_{511}= -0.88287753 \pm 9.7 \cdot 10^{-7} \) | \(a_{512}= -2.09905925 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +0.23029815 \pm 5.9 \cdot 10^{-7} \) |
\(a_{514}= -1.08976414 \pm 1.0 \cdot 10^{-6} \) | \(a_{515}= -0.58694553 \pm 8.9 \cdot 10^{-7} \) | \(a_{516}= -0.00728965 \pm 1.2 \cdot 10^{-6} \) |
\(a_{517}= +0.05275731 \pm 7.5 \cdot 10^{-7} \) | \(a_{518}= +2.60704903 \pm 6.7 \cdot 10^{-7} \) | \(a_{519}= -0.04460740 \pm 9.5 \cdot 10^{-7} \) |
\(a_{520}= +0.92456202 \pm 3.4 \cdot 10^{-7} \) | \(a_{521}= +0.52388875 \pm 1.1 \cdot 10^{-6} \) | \(a_{522}= +0.75179497 \pm 6.4 \cdot 10^{-7} \) |
\(a_{523}= +0.79866125 \pm 7.4 \cdot 10^{-7} \) | \(a_{524}= -1.45015005 \pm 1.3 \cdot 10^{-6} \) | \(a_{525}= -0.00513355 \pm 3.8 \cdot 10^{-7} \) |
\(a_{526}= -0.47722387 \pm 1.2 \cdot 10^{-6} \) | \(a_{527}= -0.08014942 \pm 7.2 \cdot 10^{-7} \) | \(a_{528}= +0.04441911 \pm 1.8 \cdot 10^{-6} \) |
\(a_{529}= -0.73181385 \pm 9.0 \cdot 10^{-7} \) | \(a_{530}= -2.04814457 \pm 1.1 \cdot 10^{-6} \) | \(a_{531}= -0.82255831 \pm 1.1 \cdot 10^{-6} \) |
\(a_{532}= -6.55284744 \pm 6.5 \cdot 10^{-7} \) | \(a_{533}= +0.68228669 \pm 5.1 \cdot 10^{-7} \) | \(a_{534}= +0.20586440 \pm 1.5 \cdot 10^{-6} \) |
\(a_{535}= +0.83406635 \pm 1.1 \cdot 10^{-6} \) | \(a_{536}= -1.48629101 \pm 9.6 \cdot 10^{-7} \) | \(a_{537}= -0.02338540 \pm 7.4 \cdot 10^{-7} \) |
\(a_{538}= +2.65841476 \pm 1.3 \cdot 10^{-6} \) | \(a_{539}= -0.50966356 \pm 8.3 \cdot 10^{-7} \) | \(a_{540}= -0.31077852 \pm 5.2 \cdot 10^{-7} \) |
\(a_{541}= +0.83729938 \pm 6.9 \cdot 10^{-7} \) | \(a_{542}= -0.40351273 \pm 7.6 \cdot 10^{-7} \) | \(a_{543}= -0.01508644 \pm 8.4 \cdot 10^{-7} \) |
\(a_{544}= -1.10031657 \pm 7.0 \cdot 10^{-7} \) | \(a_{545}= +1.05148871 \pm 6.8 \cdot 10^{-7} \) | \(a_{546}= -0.07809765 \pm 8.3 \cdot 10^{-7} \) |
\(a_{547}= +1.98006807 \pm 8.4 \cdot 10^{-7} \) | \(a_{548}= +2.03284677 \pm 9.4 \cdot 10^{-7} \) | \(a_{549}= -0.39582947 \pm 7.1 \cdot 10^{-7} \) |
\(a_{550}= +0.02544475 \pm 1.8 \cdot 10^{-6} \) | \(a_{551}= -0.70173615 \pm 5.4 \cdot 10^{-7} \) | \(a_{552}= -0.08681031 \pm 1.7 \cdot 10^{-6} \) |
\(a_{553}= -0.64007360 \pm 8.8 \cdot 10^{-7} \) | \(a_{554}= +2.19208994 \pm 1.3 \cdot 10^{-6} \) | \(a_{555}= -0.05757192 \pm 4.1 \cdot 10^{-7} \) |
\(a_{556}= +1.25847173 \pm 9.8 \cdot 10^{-7} \) | \(a_{557}= +1.73406857 \pm 7.9 \cdot 10^{-7} \) | \(a_{558}= -0.19939693 \pm 8.2 \cdot 10^{-7} \) |
\(a_{559}= -0.01752156 \pm 5.5 \cdot 10^{-7} \) | \(a_{560}= +3.47708192 \pm 6.0 \cdot 10^{-7} \) | \(a_{561}= -0.01498556 \pm 1.8 \cdot 10^{-6} \) |
\(a_{562}= -2.82358540 \pm 1.3 \cdot 10^{-6} \) | \(a_{563}= -1.68076694 \pm 9.5 \cdot 10^{-7} \) | \(a_{564}= +0.02790311 \pm 1.0 \cdot 10^{-6} \) |
\(a_{565}= +1.07717417 \pm 8.7 \cdot 10^{-7} \) | \(a_{566}= +0.25574025 \pm 8.3 \cdot 10^{-7} \) | \(a_{567}= -1.61759807 \pm 7.7 \cdot 10^{-7} \) |
\(a_{568}= -2.80110734 \pm 6.9 \cdot 10^{-7} \) | \(a_{569}= +0.10981462 \pm 9.1 \cdot 10^{-7} \) | \(a_{570}= +0.20629955 \pm 4.6 \cdot 10^{-7} \) |
\(a_{571}= -1.51245219 \pm 8.7 \cdot 10^{-7} \) | \(a_{572}= +0.27152598 \pm 2.0 \cdot 10^{-6} \) | \(a_{573}= +0.08301533 \pm 9.8 \cdot 10^{-7} \) |
\(a_{574}= +5.34343072 \pm 6.7 \cdot 10^{-7} \) | \(a_{575}= -0.02387950 \pm 6.9 \cdot 10^{-7} \) | \(a_{576}= -0.57687934 \pm 1.1 \cdot 10^{-6} \) |
\(a_{577}= +1.61442998 \pm 7.8 \cdot 10^{-7} \) | \(a_{578}= -0.84882262 \pm 8.6 \cdot 10^{-7} \) | \(a_{579}= -0.00209264 \pm 7.0 \cdot 10^{-7} \) |
\(a_{580}= +0.94696599 \pm 9.7 \cdot 10^{-7} \) | \(a_{581}= -1.18462468 \pm 7.9 \cdot 10^{-7} \) | \(a_{582}= +0.24691603 \pm 8.2 \cdot 10^{-7} \) |
\(a_{583}= -0.34548403 \pm 7.3 \cdot 10^{-7} \) | \(a_{584}= +1.32936016 \pm 8.2 \cdot 10^{-7} \) | \(a_{585}= -0.37263449 \pm 5.7 \cdot 10^{-7} \) |
\(a_{586}= +1.38790350 \pm 1.0 \cdot 10^{-6} \) | \(a_{587}= +0.40288314 \pm 7.8 \cdot 10^{-7} \) | \(a_{588}= -0.26955885 \pm 1.0 \cdot 10^{-6} \) |
\(a_{589}= +0.18611994 \pm 7.9 \cdot 10^{-7} \) | \(a_{590}= -1.47709480 \pm 1.5 \cdot 10^{-6} \) | \(a_{591}= +0.03598375 \pm 8.4 \cdot 10^{-7} \) |
\(a_{592}= -1.88502443 \pm 8.6 \cdot 10^{-7} \) | \(a_{593}= -0.72585411 \pm 1.1 \cdot 10^{-6} \) | \(a_{594}= -0.07473518 \pm 1.9 \cdot 10^{-6} \) |
\(a_{595}= -1.17305458 \pm 7.4 \cdot 10^{-7} \) | \(a_{596}= -1.95761054 \pm 8.6 \cdot 10^{-7} \) | \(a_{597}= +0.05338713 \pm 9.2 \cdot 10^{-7} \) |
\(a_{598}= -0.36328308 \pm 6.7 \cdot 10^{-7} \) | \(a_{599}= -1.91009285 \pm 9.5 \cdot 10^{-7} \) | \(a_{600}= +0.00772966 \pm 1.0 \cdot 10^{-6} \) |
\(a_{601}= +0.57761571 \pm 8.5 \cdot 10^{-7} \) | \(a_{602}= -0.13722272 \pm 6.8 \cdot 10^{-7} \) | \(a_{603}= +0.59903314 \pm 1.0 \cdot 10^{-6} \) |
\(a_{604}= -3.22968479 \pm 1.7 \cdot 10^{-6} \) | \(a_{605}= -0.08878839 \pm 9.5 \cdot 10^{-7} \) | \(a_{606}= -0.10251248 \pm 1.2 \cdot 10^{-6} \) |
\(a_{607}= +0.98310587 \pm 9.4 \cdot 10^{-7} \) | \(a_{608}= +2.55511350 \pm 6.9 \cdot 10^{-7} \) | \(a_{609}= -0.04594395 \pm 5.7 \cdot 10^{-7} \) |
\(a_{610}= -0.71080390 \pm 1.6 \cdot 10^{-6} \) | \(a_{611}= +0.06706850 \pm 5.3 \cdot 10^{-7} \) | \(a_{612}= +1.71248473 \pm 1.0 \cdot 10^{-6} \) |
\(a_{613}= -0.88596091 \pm 7.7 \cdot 10^{-7} \) | \(a_{614}= +0.15136101 \pm 1.1 \cdot 10^{-6} \) | \(a_{615}= -0.11799992 \pm 6.7 \cdot 10^{-7} \) |
\(a_{616}= +1.22139658 \pm 2.0 \cdot 10^{-6} \) | \(a_{617}= -0.26862188 \pm 1.0 \cdot 10^{-6} \) | \(a_{618}= -0.07465208 \pm 9.9 \cdot 10^{-7} \) |
\(a_{619}= +0.21572804 \pm 7.7 \cdot 10^{-7} \) | \(a_{620}= -0.25116171 \pm 8.7 \cdot 10^{-7} \) | \(a_{621}= +0.07013780 \pm 8.3 \cdot 10^{-7} \) |
\(a_{622}= +2.80933841 \pm 1.2 \cdot 10^{-6} \) | \(a_{623}= +2.71827711 \pm 7.2 \cdot 10^{-7} \) | \(a_{624}= +0.05646843 \pm 4.6 \cdot 10^{-7} \) |
\(a_{625}= -0.95176248 \pm 6.8 \cdot 10^{-7} \) | \(a_{626}= -1.52841113 \pm 1.1 \cdot 10^{-6} \) | \(a_{627}= +0.03479891 \pm 1.5 \cdot 10^{-6} \) |
\(a_{628}= +1.25929617 \pm 8.6 \cdot 10^{-7} \) | \(a_{629}= +0.63594606 \pm 9.1 \cdot 10^{-7} \) | \(a_{630}= -2.91834297 \pm 7.3 \cdot 10^{-7} \) |
\(a_{631}= +0.97469166 \pm 1.0 \cdot 10^{-6} \) | \(a_{632}= +0.96376713 \pm 7.7 \cdot 10^{-7} \) | \(a_{633}= -0.03265497 \pm 1.0 \cdot 10^{-6} \) |
\(a_{634}= -0.64861730 \pm 1.5 \cdot 10^{-6} \) | \(a_{635}= +0.54457342 \pm 9.9 \cdot 10^{-7} \) | \(a_{636}= -0.18272501 \pm 6.3 \cdot 10^{-7} \) |
\(a_{637}= -0.64791718 \pm 4.7 \cdot 10^{-7} \) | \(a_{638}= +0.22772382 \pm 1.9 \cdot 10^{-6} \) | \(a_{639}= +1.12895531 \pm 8.3 \cdot 10^{-7} \) |
\(a_{640}= +0.43166161 \pm 1.1 \cdot 10^{-6} \) | \(a_{641}= -0.79565627 \pm 1.0 \cdot 10^{-6} \) | \(a_{642}= +0.10608273 \pm 1.4 \cdot 10^{-6} \) |
\(a_{643}= -1.55421900 \pm 8.4 \cdot 10^{-7} \) | \(a_{644}= -1.99568387 \pm 7.6 \cdot 10^{-7} \) | \(a_{645}= +0.00303031 \pm 7.1 \cdot 10^{-7} \) |
\(a_{646}= -2.27880860 \pm 7.2 \cdot 10^{-7} \) | \(a_{647}= -0.62417464 \pm 1.1 \cdot 10^{-6} \) | \(a_{648}= +2.43563842 \pm 1.2 \cdot 10^{-6} \) |
\(a_{649}= -0.24915852 \pm 1.0 \cdot 10^{-6} \) | \(a_{650}= +0.03234701 \pm 3.5 \cdot 10^{-7} \) | \(a_{651}= +0.01218561 \pm 9.1 \cdot 10^{-7} \) |
\(a_{652}= +2.81929373 \pm 1.2 \cdot 10^{-6} \) | \(a_{653}= +0.63827450 \pm 8.1 \cdot 10^{-7} \) | \(a_{654}= +0.13373612 \pm 7.5 \cdot 10^{-7} \) |
\(a_{655}= +0.60282832 \pm 8.1 \cdot 10^{-7} \) | \(a_{656}= -3.86356273 \pm 5.1 \cdot 10^{-7} \) | \(a_{657}= -0.53578390 \pm 7.9 \cdot 10^{-7} \) |
\(a_{658}= +0.52525699 \pm 4.7 \cdot 10^{-7} \) | \(a_{659}= +0.35448974 \pm 9.1 \cdot 10^{-7} \) | \(a_{660}= -0.04695979 \pm 3.1 \cdot 10^{-6} \) |
\(a_{661}= +0.10974337 \pm 1.0 \cdot 10^{-6} \) | \(a_{662}= -2.97110682 \pm 8.2 \cdot 10^{-7} \) | \(a_{663}= -0.01905062 \pm 3.7 \cdot 10^{-7} \) |
\(a_{664}= +1.78370475 \pm 9.5 \cdot 10^{-7} \) | \(a_{665}= +2.72402295 \pm 5.9 \cdot 10^{-7} \) | \(a_{666}= +1.58211625 \pm 8.3 \cdot 10^{-7} \) |
\(a_{667}= -0.21371526 \pm 7.9 \cdot 10^{-7} \) | \(a_{668}= +1.19554412 \pm 1.5 \cdot 10^{-6} \) | \(a_{669}= -0.06170276 \pm 1.0 \cdot 10^{-6} \) |
\(a_{670}= +1.07570336 \pm 1.6 \cdot 10^{-6} \) | \(a_{671}= -0.11989944 \pm 7.8 \cdot 10^{-7} \) | \(a_{672}= +0.16728795 \pm 7.5 \cdot 10^{-7} \) |
\(a_{673}= +1.15272451 \pm 7.0 \cdot 10^{-7} \) | \(a_{674}= -1.29496163 \pm 7.0 \cdot 10^{-7} \) | \(a_{675}= -0.00624512 \pm 3.8 \cdot 10^{-7} \) |
\(a_{676}= -2.00427920 \pm 1.1 \cdot 10^{-6} \) | \(a_{677}= -1.66187906 \pm 1.0 \cdot 10^{-6} \) | \(a_{678}= +0.13700298 \pm 1.4 \cdot 10^{-6} \) |
\(a_{679}= +3.26033153 \pm 6.4 \cdot 10^{-7} \) | \(a_{680}= +1.76628351 \pm 6.7 \cdot 10^{-7} \) | \(a_{681}= -0.00401638 \pm 8.0 \cdot 10^{-7} \) |
\(a_{682}= -0.06039869 \pm 2.0 \cdot 10^{-6} \) | \(a_{683}= -0.38174536 \pm 7.6 \cdot 10^{-7} \) | \(a_{684}= -3.97666722 \pm 8.0 \cdot 10^{-7} \) |
\(a_{685}= -0.84505573 \pm 9.1 \cdot 10^{-7} \) | \(a_{686}= -2.07238399 \pm 8.6 \cdot 10^{-7} \) | \(a_{687}= +0.00649031 \pm 5.0 \cdot 10^{-7} \) |
\(a_{688}= +0.09921876 \pm 8.7 \cdot 10^{-7} \) | \(a_{689}= -0.43920158 \pm 4.7 \cdot 10^{-7} \) | \(a_{690}= +0.06282898 \pm 6.6 \cdot 10^{-7} \) |
\(a_{691}= -0.73913129 \pm 9.5 \cdot 10^{-7} \) | \(a_{692}= +1.54407902 \pm 1.2 \cdot 10^{-6} \) | \(a_{693}= -0.49227037 \pm 1.9 \cdot 10^{-6} \) |
\(a_{694}= -1.03579407 \pm 9.6 \cdot 10^{-7} \) | \(a_{695}= -0.52314752 \pm 7.8 \cdot 10^{-7} \) | \(a_{696}= +0.06917840 \pm 9.8 \cdot 10^{-7} \) |
\(a_{697}= +1.30344066 \pm 5.3 \cdot 10^{-7} \) | \(a_{698}= +1.58690093 \pm 9.1 \cdot 10^{-7} \) | \(a_{699}= -0.03939776 \pm 1.1 \cdot 10^{-6} \) |
\(a_{700}= +0.17769723 \pm 6.7 \cdot 10^{-7} \) | \(a_{701}= +0.46573466 \pm 1.1 \cdot 10^{-6} \) | \(a_{702}= -0.09500818 \pm 3.6 \cdot 10^{-7} \) |
\(a_{703}= -1.47676987 \pm 5.6 \cdot 10^{-7} \) | \(a_{704}= -0.17474068 \pm 1.0 \cdot 10^{-6} \) | \(a_{705}= -0.01159934 \pm 8.4 \cdot 10^{-7} \) |
\(a_{706}= +1.26031599 \pm 8.3 \cdot 10^{-7} \) | \(a_{707}= -1.35359643 \pm 6.0 \cdot 10^{-7} \) | \(a_{708}= -0.13177886 \pm 1.3 \cdot 10^{-6} \) |
\(a_{709}= +1.08440721 \pm 7.8 \cdot 10^{-7} \) | \(a_{710}= +2.02730189 \pm 4.3 \cdot 10^{-7} \) | \(a_{711}= -0.38843567 \pm 3.9 \cdot 10^{-7} \) |
\(a_{712}= -4.09294513 \pm 1.4 \cdot 10^{-6} \) | \(a_{713}= +0.05668323 \pm 8.7 \cdot 10^{-7} \) | \(a_{714}= -0.14919776 \pm 6.0 \cdot 10^{-7} \) |
\(a_{715}= -0.11287353 \pm 1.7 \cdot 10^{-6} \) | \(a_{716}= +0.80948255 \pm 1.5 \cdot 10^{-6} \) | \(a_{717}= +0.05436920 \pm 6.8 \cdot 10^{-7} \) |
\(a_{718}= -0.97938348 \pm 1.1 \cdot 10^{-6} \) | \(a_{719}= -1.25519636 \pm 1.0 \cdot 10^{-6} \) | \(a_{720}= +2.11010523 \pm 5.4 \cdot 10^{-7} \) |
\(a_{721}= -0.98572180 \pm 1.0 \cdot 10^{-6} \) | \(a_{722}= +3.46160994 \pm 7.9 \cdot 10^{-7} \) | \(a_{723}= +0.12371062 \pm 1.3 \cdot 10^{-6} \) |
\(a_{724}= +0.52221513 \pm 6.8 \cdot 10^{-7} \) | \(a_{725}= +0.01902937 \pm 6.4 \cdot 10^{-7} \) | \(a_{726}= -0.01129276 \pm 2.0 \cdot 10^{-6} \) |
\(a_{727}= -0.70254951 \pm 1.0 \cdot 10^{-6} \) | \(a_{728}= +1.55271810 \pm 4.2 \cdot 10^{-7} \) | \(a_{729}= -0.97246448 \pm 8.0 \cdot 10^{-7} \) |
\(a_{730}= -0.96212463 \pm 1.4 \cdot 10^{-6} \) | \(a_{731}= -0.03347319 \pm 8.5 \cdot 10^{-7} \) | \(a_{732}= -0.06341430 \pm 3.7 \cdot 10^{-7} \) |
\(a_{733}= -1.30735928 \pm 1.2 \cdot 10^{-6} \) | \(a_{734}= +0.54479781 \pm 1.0 \cdot 10^{-6} \) | \(a_{735}= +0.11205579 \pm 7.5 \cdot 10^{-7} \) |
\(a_{736}= +0.77816534 \pm 8.2 \cdot 10^{-7} \) | \(a_{737}= +0.18145122 \pm 1.0 \cdot 10^{-6} \) | \(a_{738}= +3.24271944 \pm 7.4 \cdot 10^{-7} \) |
\(a_{739}= +0.15518208 \pm 1.1 \cdot 10^{-6} \) | \(a_{740}= +1.99284424 \pm 1.3 \cdot 10^{-6} \) | \(a_{741}= +0.04423862 \pm 3.9 \cdot 10^{-7} \) |
\(a_{742}= -3.43967312 \pm 7.4 \cdot 10^{-7} \) | \(a_{743}= -0.80314759 \pm 8.4 \cdot 10^{-7} \) | \(a_{744}= -0.01834803 \pm 8.1 \cdot 10^{-7} \) |
\(a_{745}= +0.81377998 \pm 7.5 \cdot 10^{-7} \) | \(a_{746}= +1.90949063 \pm 5.0 \cdot 10^{-7} \) | \(a_{747}= -0.71890246 \pm 1.3 \cdot 10^{-6} \) |
\(a_{748}= +0.51872329 \pm 2.2 \cdot 10^{-6} \) | \(a_{749}= +1.40073881 \pm 6.6 \cdot 10^{-7} \) | \(a_{750}= -0.12691697 \pm 8.0 \cdot 10^{-7} \) |
\(a_{751}= +1.09644901 \pm 9.9 \cdot 10^{-7} \) | \(a_{752}= -0.37978659 \pm 7.7 \cdot 10^{-7} \) | \(a_{753}= -0.11445742 \pm 1.0 \cdot 10^{-6} \) |
\(a_{754}= +0.28949720 \pm 4.3 \cdot 10^{-7} \) | \(a_{755}= +1.34258207 \pm 1.0 \cdot 10^{-6} \) | \(a_{756}= -0.52192434 \pm 5.9 \cdot 10^{-7} \) |
\(a_{757}= -0.95825910 \pm 8.3 \cdot 10^{-7} \) | \(a_{758}= -0.39815072 \pm 9.4 \cdot 10^{-7} \) | \(a_{759}= +0.01059808 \pm 1.7 \cdot 10^{-6} \) |
\(a_{760}= -4.10159672 \pm 7.5 \cdot 10^{-7} \) | \(a_{761}= +1.80551143 \pm 9.6 \cdot 10^{-7} \) | \(a_{762}= +0.06926288 \pm 8.2 \cdot 10^{-7} \) |
\(a_{763}= +1.76587997 \pm 7.9 \cdot 10^{-7} \) | \(a_{764}= -2.87356443 \pm 8.3 \cdot 10^{-7} \) | \(a_{765}= -0.71188102 \pm 7.9 \cdot 10^{-7} \) |
\(a_{766}= +0.87142417 \pm 1.4 \cdot 10^{-6} \) | \(a_{767}= -0.31674637 \pm 6.5 \cdot 10^{-7} \) | \(a_{768}= +0.09423843 \pm 1.1 \cdot 10^{-6} \) |
\(a_{769}= -0.62448730 \pm 8.0 \cdot 10^{-7} \) | \(a_{770}= -0.88398597 \pm 2.9 \cdot 10^{-6} \) | \(a_{771}= +0.04041575 \pm 4.9 \cdot 10^{-7} \) |
\(a_{772}= +0.07243637 \pm 1.4 \cdot 10^{-6} \) | \(a_{773}= -0.64714159 \pm 9.6 \cdot 10^{-7} \) | \(a_{774}= -0.08327511 \pm 9.4 \cdot 10^{-7} \) |
\(a_{775}= -0.00504712 \pm 4.5 \cdot 10^{-7} \) | \(a_{776}= -4.90912352 \pm 1.0 \cdot 10^{-6} \) | \(a_{777}= -0.09668682 \pm 5.7 \cdot 10^{-7} \) |
\(a_{778}= +0.95239567 \pm 5.8 \cdot 10^{-7} \) | \(a_{779}= -3.02680057 \pm 5.0 \cdot 10^{-7} \) | \(a_{780}= -0.05969832 \pm 5.3 \cdot 10^{-7} \) |
\(a_{781}= +0.34196825 \pm 7.0 \cdot 10^{-7} \) | \(a_{782}= -0.69401609 \pm 1.5 \cdot 10^{-6} \) | \(a_{783}= -0.05589222 \pm 5.5 \cdot 10^{-7} \) |
\(a_{784}= +3.66893961 \pm 7.2 \cdot 10^{-7} \) | \(a_{785}= -0.52349024 \pm 8.2 \cdot 10^{-7} \) | \(a_{786}= +0.07667217 \pm 1.4 \cdot 10^{-6} \) |
\(a_{787}= +1.74796125 \pm 1.2 \cdot 10^{-6} \) | \(a_{788}= -1.24557276 \pm 1.1 \cdot 10^{-6} \) | \(a_{789}= +0.01769865 \pm 1.0 \cdot 10^{-6} \) |
\(a_{790}= -0.69752661 \pm 4.5 \cdot 10^{-7} \) | \(a_{791}= +1.80901636 \pm 1.1 \cdot 10^{-6} \) | \(a_{792}= +0.74121789 \pm 2.0 \cdot 10^{-6} \) |
\(a_{793}= -0.15242390 \pm 4.5 \cdot 10^{-7} \) | \(a_{794}= +1.88842691 \pm 1.1 \cdot 10^{-6} \) | \(a_{795}= +0.07595890 \pm 5.4 \cdot 10^{-7} \) |
\(a_{796}= -1.84798815 \pm 1.1 \cdot 10^{-6} \) | \(a_{797}= +1.71678168 \pm 8.2 \cdot 10^{-7} \) | \(a_{798}= +0.34646140 \pm 6.1 \cdot 10^{-7} \) |
\(a_{799}= +0.12812767 \pm 7.5 \cdot 10^{-7} \) | \(a_{800}= -0.06928844 \pm 6.6 \cdot 10^{-7} \) | \(a_{801}= +1.64961623 \pm 7.5 \cdot 10^{-7} \) |
\(a_{802}= -1.43712949 \pm 1.0 \cdot 10^{-6} \) | \(a_{803}= -0.16229259 \pm 9.0 \cdot 10^{-7} \) | \(a_{804}= +0.09596876 \pm 9.2 \cdot 10^{-7} \) |
\(a_{805}= +0.82960708 \pm 6.4 \cdot 10^{-7} \) | \(a_{806}= -0.07678271 \pm 5.8 \cdot 10^{-7} \) | \(a_{807}= -0.09859181 \pm 8.2 \cdot 10^{-7} \) |
\(a_{808}= +2.03812772 \pm 1.0 \cdot 10^{-6} \) | \(a_{809}= -0.00926787 \pm 1.1 \cdot 10^{-6} \) | \(a_{810}= -1.76279370 \pm 1.1 \cdot 10^{-6} \) |
\(a_{811}= +0.01170064 \pm 9.0 \cdot 10^{-7} \) | \(a_{812}= +1.59034352 \pm 8.9 \cdot 10^{-7} \) | \(a_{813}= +0.01496495 \pm 1.2 \cdot 10^{-6} \) |
\(a_{814}= +0.47923379 \pm 2.0 \cdot 10^{-6} \) | \(a_{815}= -1.17198224 \pm 1.0 \cdot 10^{-6} \) | \(a_{816}= +0.10787731 \pm 1.2 \cdot 10^{-6} \) |
\(a_{817}= +0.07773018 \pm 5.9 \cdot 10^{-7} \) | \(a_{818}= -0.25631545 \pm 1.3 \cdot 10^{-6} \) | \(a_{819}= -0.62580584 \pm 7.6 \cdot 10^{-7} \) |
\(a_{820}= +4.08455115 \pm 4.8 \cdot 10^{-7} \) | \(a_{821}= +1.66870361 \pm 1.2 \cdot 10^{-6} \) | \(a_{822}= -0.10748044 \pm 8.3 \cdot 10^{-7} \) |
\(a_{823}= -0.31418830 \pm 8.1 \cdot 10^{-7} \) | \(a_{824}= +1.48421412 \pm 7.8 \cdot 10^{-7} \) | \(a_{825}= -0.00094366 \pm 1.6 \cdot 10^{-6} \) |
\(a_{826}= -2.48064680 \pm 6.6 \cdot 10^{-7} \) | \(a_{827}= -1.47944718 \pm 9.7 \cdot 10^{-7} \) | \(a_{828}= -1.21110261 \pm 9.6 \cdot 10^{-7} \) |
\(a_{829}= +0.16671814 \pm 6.9 \cdot 10^{-7} \) | \(a_{830}= -1.29095660 \pm 5.4 \cdot 10^{-7} \) | \(a_{831}= -0.08129736 \pm 1.2 \cdot 10^{-6} \) |
\(a_{832}= -0.22214163 \pm 7.6 \cdot 10^{-7} \) | \(a_{833}= -1.23778114 \pm 7.7 \cdot 10^{-7} \) | \(a_{834}= -0.06653777 \pm 8.8 \cdot 10^{-7} \) |
\(a_{835}= -0.49698847 \pm 9.3 \cdot 10^{-7} \) | \(a_{836}= -1.20455959 \pm 1.9 \cdot 10^{-6} \) | \(a_{837}= +0.01482417 \pm 1.0 \cdot 10^{-6} \) |
\(a_{838}= +0.11977057 \pm 9.0 \cdot 10^{-7} \) | \(a_{839}= -1.21700615 \pm 9.5 \cdot 10^{-7} \) | \(a_{840}= -0.26853903 \pm 4.7 \cdot 10^{-7} \) |
\(a_{841}= -0.82969212 \pm 6.1 \cdot 10^{-7} \) | \(a_{842}= +1.58964427 \pm 7.4 \cdot 10^{-7} \) | \(a_{843}= +0.10471744 \pm 8.3 \cdot 10^{-7} \) |
\(a_{844}= +1.13034730 \pm 1.1 \cdot 10^{-6} \) | \(a_{845}= +0.83318017 \pm 7.8 \cdot 10^{-7} \) | \(a_{846}= +0.31875796 \pm 9.6 \cdot 10^{-7} \) |
\(a_{847}= -0.14911205 \pm 9.5 \cdot 10^{-7} \) | \(a_{848}= +2.48705252 \pm 5.3 \cdot 10^{-7} \) | \(a_{849}= -0.00948456 \pm 8.8 \cdot 10^{-7} \) |
\(a_{850}= +0.06179573 \pm 1.1 \cdot 10^{-6} \) | \(a_{851}= -0.44975346 \pm 5.0 \cdot 10^{-7} \) | \(a_{852}= +0.18086553 \pm 7.4 \cdot 10^{-7} \) |
\(a_{853}= -0.08313239 \pm 1.1 \cdot 10^{-6} \) | \(a_{854}= -1.19373070 \pm 6.8 \cdot 10^{-7} \) | \(a_{855}= +1.65310316 \pm 7.6 \cdot 10^{-7} \) |
\(a_{856}= -2.10911062 \pm 1.4 \cdot 10^{-6} \) | \(a_{857}= -1.59165506 \pm 8.9 \cdot 10^{-7} \) | \(a_{858}= -0.01435609 \pm 2.7 \cdot 10^{-6} \) |
\(a_{859}= +1.23762475 \pm 1.0 \cdot 10^{-6} \) | \(a_{860}= -0.10489389 \pm 1.0 \cdot 10^{-6} \) | \(a_{861}= -0.19817016 \pm 6.3 \cdot 10^{-7} \) |
\(a_{862}= +1.34187148 \pm 1.3 \cdot 10^{-6} \) | \(a_{863}= +0.85085500 \pm 8.9 \cdot 10^{-7} \) | \(a_{864}= +0.20351091 \pm 6.9 \cdot 10^{-7} \) |
\(a_{865}= -0.64187466 \pm 1.0 \cdot 10^{-6} \) | \(a_{866}= -0.61114159 \pm 1.3 \cdot 10^{-6} \) | \(a_{867}= +0.03148002 \pm 6.0 \cdot 10^{-7} \) |
\(a_{868}= -0.42180332 \pm 1.0 \cdot 10^{-6} \) | \(a_{869}= -0.11765981 \pm 7.3 \cdot 10^{-7} \) | \(a_{870}= -0.05006788 \pm 3.8 \cdot 10^{-7} \) |
\(a_{871}= +0.23067249 \pm 1.0 \cdot 10^{-6} \) | \(a_{872}= -2.65890839 \pm 5.2 \cdot 10^{-7} \) | \(a_{873}= +1.97856789 \pm 7.0 \cdot 10^{-7} \) |
\(a_{874}= +1.61161790 \pm 9.6 \cdot 10^{-7} \) | \(a_{875}= -1.67583850 \pm 8.8 \cdot 10^{-7} \) | \(a_{876}= -0.08583585 \pm 4.5 \cdot 10^{-7} \) |
\(a_{877}= -0.62538682 \pm 9.6 \cdot 10^{-7} \) | \(a_{878}= +0.44375206 \pm 1.4 \cdot 10^{-6} \) | \(a_{879}= -0.05147275 \pm 8.7 \cdot 10^{-7} \) |
\(a_{880}= +0.63916525 \pm 1.9 \cdot 10^{-6} \) | \(a_{881}= -1.26380552 \pm 1.0 \cdot 10^{-6} \) | \(a_{882}= -3.07937068 \pm 8.6 \cdot 10^{-7} \) |
\(a_{883}= +1.73655602 \pm 1.1 \cdot 10^{-6} \) | \(a_{884}= +0.65943450 \pm 7.6 \cdot 10^{-7} \) | \(a_{885}= +0.05478056 \pm 7.3 \cdot 10^{-7} \) |
\(a_{886}= -3.51534596 \pm 1.4 \cdot 10^{-6} \) | \(a_{887}= +0.54626464 \pm 7.9 \cdot 10^{-7} \) | \(a_{888}= +0.14558260 \pm 5.2 \cdot 10^{-7} \) |
\(a_{889}= +0.91456170 \pm 8.2 \cdot 10^{-7} \) | \(a_{890}= +2.96226969 \pm 7.7 \cdot 10^{-7} \) | \(a_{891}= -0.29735062 \pm 9.9 \cdot 10^{-7} \) |
\(a_{892}= +2.13583259 \pm 1.1 \cdot 10^{-6} \) | \(a_{893}= -0.29753322 \pm 4.5 \cdot 10^{-7} \) | \(a_{894}= +0.10350256 \pm 4.0 \cdot 10^{-7} \) |
\(a_{895}= -0.33650243 \pm 1.2 \cdot 10^{-6} \) | \(a_{896}= +0.72493653 \pm 7.4 \cdot 10^{-7} \) | \(a_{897}= +0.01347297 \pm 5.7 \cdot 10^{-7} \) |
\(a_{898}= +1.90633491 \pm 8.1 \cdot 10^{-7} \) | \(a_{899}= -0.04517038 \pm 8.6 \cdot 10^{-7} \) | \(a_{900}= +0.10783751 \pm 1.1 \cdot 10^{-6} \) |
\(a_{901}= -0.83905080 \pm 6.3 \cdot 10^{-7} \) | \(a_{902}= +0.98224181 \pm 1.7 \cdot 10^{-6} \) | \(a_{903}= +0.00508914 \pm 7.3 \cdot 10^{-7} \) |
\(a_{904}= -2.72385941 \pm 1.4 \cdot 10^{-6} \) | \(a_{905}= -0.21708517 \pm 7.0 \cdot 10^{-7} \) | \(a_{906}= +0.17075952 \pm 1.6 \cdot 10^{-6} \) |
\(a_{907}= -1.16842597 \pm 1.1 \cdot 10^{-6} \) | \(a_{908}= +0.13902630 \pm 1.4 \cdot 10^{-6} \) | \(a_{909}= -0.82144482 \pm 6.2 \cdot 10^{-7} \) |
\(a_{910}= -1.12377997 \pm 5.8 \cdot 10^{-7} \) | \(a_{911}= -0.55483585 \pm 7.9 \cdot 10^{-7} \) | \(a_{912}= -0.25050860 \pm 6.2 \cdot 10^{-7} \) |
\(a_{913}= -0.21776045 \pm 8.9 \cdot 10^{-7} \) | \(a_{914}= +3.11197005 \pm 1.0 \cdot 10^{-6} \) | \(a_{915}= +0.02636136 \pm 3.7 \cdot 10^{-7} \) |
\(a_{916}= -0.22466136 \pm 1.1 \cdot 10^{-6} \) | \(a_{917}= +1.01239551 \pm 8.3 \cdot 10^{-7} \) | \(a_{918}= -0.18150364 \pm 7.2 \cdot 10^{-7} \) |
\(a_{919}= +0.74759998 \pm 8.5 \cdot 10^{-7} \) | \(a_{920}= -1.24915016 \pm 5.1 \cdot 10^{-7} \) | \(a_{921}= -0.00561348 \pm 9.3 \cdot 10^{-7} \) |
\(a_{922}= -1.69258725 \pm 9.1 \cdot 10^{-7} \) | \(a_{923}= +0.43473210 \pm 3.7 \cdot 10^{-7} \) | \(a_{924}= -0.07886472 \pm 3.1 \cdot 10^{-6} \) |
\(a_{925}= +0.04004639 \pm 7.5 \cdot 10^{-7} \) | \(a_{926}= +0.54189757 \pm 8.4 \cdot 10^{-7} \) | \(a_{927}= -0.59819607 \pm 1.2 \cdot 10^{-6} \) |
\(a_{928}= -0.62011335 \pm 6.1 \cdot 10^{-7} \) | \(a_{929}= -0.92932625 \pm 9.1 \cdot 10^{-7} \) | \(a_{930}= +0.01327939 \pm 6.9 \cdot 10^{-7} \) |
\(a_{931}= +2.87432851 \pm 5.2 \cdot 10^{-7} \) | \(a_{932}= +1.36374798 \pm 1.0 \cdot 10^{-6} \) | \(a_{933}= -0.10418906 \pm 5.1 \cdot 10^{-7} \) |
\(a_{934}= -1.47250125 \pm 1.0 \cdot 10^{-6} \) | \(a_{935}= -0.21563361 \pm 1.8 \cdot 10^{-6} \) | \(a_{936}= +0.94228398 \pm 3.5 \cdot 10^{-7} \) |
\(a_{937}= +0.49585081 \pm 8.5 \cdot 10^{-7} \) | \(a_{938}= +1.80654626 \pm 8.6 \cdot 10^{-7} \) | \(a_{939}= +0.05668371 \pm 9.1 \cdot 10^{-7} \) |
\(a_{940}= +0.40150966 \pm 4.8 \cdot 10^{-7} \) | \(a_{941}= +1.00018753 \pm 9.0 \cdot 10^{-7} \) | \(a_{942}= -0.06658136 \pm 7.4 \cdot 10^{-7} \) |
\(a_{943}= -0.92181866 \pm 5.9 \cdot 10^{-7} \) | \(a_{944}= +1.79362941 \pm 9.6 \cdot 10^{-7} \) | \(a_{945}= +0.21696429 \pm 7.3 \cdot 10^{-7} \) |
\(a_{946}= -0.02522460 \pm 2.0 \cdot 10^{-6} \) | \(a_{947}= +0.04728132 \pm 1.1 \cdot 10^{-6} \) | \(a_{948}= -0.06222976 \pm 9.2 \cdot 10^{-7} \) |
\(a_{949}= -0.20631681 \pm 6.0 \cdot 10^{-7} \) | \(a_{950}= -0.14349970 \pm 1.0 \cdot 10^{-6} \) | \(a_{951}= +0.02405507 \pm 1.0 \cdot 10^{-6} \) |
\(a_{952}= +2.96631303 \pm 6.0 \cdot 10^{-7} \) | \(a_{953}= -0.29278730 \pm 8.4 \cdot 10^{-7} \) | \(a_{954}= -2.08740329 \pm 8.2 \cdot 10^{-7} \) |
\(a_{955}= +1.19454261 \pm 8.1 \cdot 10^{-7} \) | \(a_{956}= -1.88198264 \pm 1.2 \cdot 10^{-6} \) | \(a_{957}= -0.00844552 \pm 1.7 \cdot 10^{-6} \) |
\(a_{958}= -1.33780255 \pm 1.2 \cdot 10^{-6} \) | \(a_{959}= -1.41919448 \pm 8.7 \cdot 10^{-7} \) | \(a_{960}= +0.03841888 \pm 7.2 \cdot 10^{-7} \) |
\(a_{961}= -0.98801956 \pm 1.1 \cdot 10^{-6} \) | \(a_{962}= +0.60923290 \pm 5.0 \cdot 10^{-7} \) | \(a_{963}= +0.85005369 \pm 1.1 \cdot 10^{-6} \) |
\(a_{964}= -4.28222644 \pm 1.5 \cdot 10^{-6} \) | \(a_{965}= -0.03011185 \pm 1.0 \cdot 10^{-6} \) | \(a_{966}= +0.10551557 \pm 8.1 \cdot 10^{-7} \) |
\(a_{967}= +0.81151093 \pm 1.0 \cdot 10^{-6} \) | \(a_{968}= +0.22451995 \pm 1.0 \cdot 10^{-6} \) | \(a_{969}= +0.08451347 \pm 5.6 \cdot 10^{-7} \) |
\(a_{970}= +3.55297893 \pm 1.5 \cdot 10^{-6} \) | \(a_{971}= -0.64530934 \pm 1.1 \cdot 10^{-6} \) | \(a_{972}= -0.47546889 \pm 1.0 \cdot 10^{-6} \) |
\(a_{973}= -0.87857883 \pm 8.1 \cdot 10^{-7} \) | \(a_{974}= -2.89070449 \pm 7.2 \cdot 10^{-7} \) | \(a_{975}= -0.00119964 \pm 2.7 \cdot 10^{-7} \) |
\(a_{976}= +0.86312590 \pm 5.0 \cdot 10^{-7} \) | \(a_{977}= -1.04425137 \pm 8.3 \cdot 10^{-7} \) | \(a_{978}= -0.14906137 \pm 9.3 \cdot 10^{-7} \) |
\(a_{979}= +0.49967999 \pm 9.3 \cdot 10^{-7} \) | \(a_{980}= -3.87879597 \pm 9.1 \cdot 10^{-7} \) | \(a_{981}= +1.07164359 \pm 6.7 \cdot 10^{-7} \) |
\(a_{982}= -1.28346240 \pm 1.1 \cdot 10^{-6} \) | \(a_{983}= -1.26970403 \pm 8.2 \cdot 10^{-7} \) | \(a_{984}= +0.29838739 \pm 6.9 \cdot 10^{-7} \) |
\(a_{985}= +0.51778541 \pm 4.8 \cdot 10^{-7} \) | \(a_{986}= +0.55305553 \pm 9.3 \cdot 10^{-7} \) | \(a_{987}= -0.01948004 \pm 4.8 \cdot 10^{-7} \) |
\(a_{988}= -1.53131384 \pm 3.5 \cdot 10^{-7} \) | \(a_{989}= +0.02367289 \pm 8.9 \cdot 10^{-7} \) | \(a_{990}= -0.53645656 \pm 3.0 \cdot 10^{-6} \) |
\(a_{991}= -1.05826048 \pm 8.0 \cdot 10^{-7} \) | \(a_{992}= +0.16447130 \pm 8.3 \cdot 10^{-7} \) | \(a_{993}= +0.11018852 \pm 7.4 \cdot 10^{-7} \) |
\(a_{994}= +3.40466973 \pm 4.6 \cdot 10^{-7} \) | \(a_{995}= +0.76820988 \pm 1.1 \cdot 10^{-6} \) | \(a_{996}= -0.11517256 \pm 9.8 \cdot 10^{-7} \) |
\(a_{997}= -1.56037885 \pm 8.6 \cdot 10^{-7} \) | \(a_{998}= +2.83417838 \pm 1.2 \cdot 10^{-6} \) | \(a_{999}= -0.11762248 \pm 4.1 \cdot 10^{-7} \) |
\(a_{1000}= +2.52333178 \pm 7.0 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000